Proof

The following proof is based on that outlined by Segal in [4], page 80 .
We begin by observing that if $D=\frac{\mathrm{d}}{\mathrm{d} s}$ and $f(s)$ is a smooth function of the real variable s, then

$$
\begin{equation*}
F(D)_{\left.\right|_{s=0}} f(s)=\int_{0}^{1} f(s) \mathrm{d} s . \tag{2.2}
\end{equation*}
$$

This holds since the Taylor expansion of a smooth function g satisfies

$$
\sum_{k \geqslant 1} \frac{1}{k!} D^{k} g(s)=g(s+1)-g(s),
$$

hence taking $g(s)=\int f(s) \mathrm{d} s$ to be an indefinite integral of f we obtain

$$
\sum_{k \geqslant 0} \frac{1}{(k+1)!} D^{k} f(s)=g(s+1)-g(s) .
$$

Evaluating at $s=0$ gives Equation (2.2).
The matrix-valued function

$$
\varphi(s)=\exp (s A) B \exp ((1-s) A)
$$

can be shown (for example, using Theorem 2.12) to satisfy

$$
\varphi(s)=\exp (s A) B \exp (-s A) \exp (A)=\exp (s \operatorname{ad} A)(B) \exp (A) .
$$

So

$$
F(D)(\varphi(s))=\left(\sum_{k \geqslant 0} \frac{\left((s+1)^{k+1}-s^{k+1}\right)}{(k+1)!}(\operatorname{ad} A)^{k}\right)(B) \exp (A),
$$

giving

$$
\begin{aligned}
F(D)(\varphi(s))_{\left.\right|_{s=0}} & =\left(\sum_{k \geqslant 0} \frac{1}{(k+1)!}(\operatorname{ad} A)^{k}\right)(B) \exp (A) \\
& =F(\operatorname{ad} A)(B) \exp (A) .
\end{aligned}
$$

We also have

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \exp (A+t B)=\int_{0}^{1} \varphi(s) \mathrm{d} s
$$

which is obtained by expanding the left hand side as a power series in $A+t B$ and differentiating, then using the identity

$$
\int_{0}^{1} \frac{s^{m}(1-s)^{n}}{m!n!} \mathrm{d} s=\frac{1}{(m+n+1)!}
$$

for $m, n \geqslant 0$ to identify this with the right hand side. The desired formula now follows by combining the last two results.

