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1 Nuclear spectra and cores

All spectra are localized at a prime p > 0.

A cellular spectrum X of finite type is a Hurewicz complex if it has
no cells of negative dimension, one 0-cell and 7o X = HyX # 0; thus
X is (—1)-connected and Ho(X;F,) = F,.

A map f: Y — X of Hurewicz complexes is a monomorphism if it

induces an isomorphism on 7o( ) and a monomorphism on 7, ( ).

A Hurewicz complex is nuclear if for all n > 0 its (n + 1)-skeleton
X,+1 is obtained from the n-skeleton X, as the mapping cone of
Jn: Jn — X, from a wedge of n-spheres J,, satisfying

(1.1) ker[jp,: Tndn — ™ Xn] Cp - mpdp.

A monomorphism f: Y — X is a core if Y is nuclear. Every X has
such a core, but Y may not be unique up to homotopy.

2 Some general results

A Hurewicz complex X is

e irreducible if every monomorphism Y — X from a Hurewicz
complex is an equivalence;

e atomic if any map X — X inducing an isomorphism on mo( ) is
an equivalence.

e minimal atomic if it is atomic and every monomorphism ¥ — X
from an atomic Hurewicz complex Y is an equivalence.

Theorem 2.1. Let X be a Hurewicz complez.
(i) If X is nuclear complex then every core of X is an equivalence.
(ii) If X is nuclear then it is irreducible and atomic.
(iii) X 4s minimal atomic iff it is equivalent to a nuclear complex.
)

(iv) X is irreducible iff it is minimal atomic.
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Priddy [6] noted that the condition (1.1) is equivalent to triviality of
the Hurewicz homomorphisms h: 7, X,, — Hp(X,;F,) for all n > 1.
Definition 2.2. A Hurewicz complex X has no mod p detectable
homotopy if the Hurewicz homomorphism h: 7, X — H,(X;F,) is
trivial for alln > 1.

Definition 2.3. A complex X is minimal if for each n,

~

Hn(XnQFp) — Hn(XnJrl?Fp) = Hn(XQFp)-

The next result is a variation on an old result of Cooke [3].
Theorem 2.4. FEvery finite type connective p-local complez is

equivalent to a minimal complez.

Our next result characterizes nuclear complexes in a useful way.

Theorem 2.5 (Nuclear Test). A Hurewicz complex is nuclear if

and only if it is minimal and has no mod p detectable homotopy.

Using the nuclear test it is easy to identify lots of minimal atomic
spectra. For example, if H*(X;F,) is monogenic over the Steenrod
algebra then X has no mod p detectable homotopy. Hence

H*(BP (n);F,) is always minimal atomic for 0 < n < co and the
natural map BP (co) = BP — MU, is a core.

At p = 2, the spectra
ko, ku, tmf = eoa, BoP, CP*°, HP*>, RP>

are all minimal atomic. Y*°RP° is atomic but not minimal atomic.
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Sketch proof of the Nuclear Test

Suppose that X is defined inductively by attaching cells so that for
each n there is a cofibre exact sequence

Jn
Jn Xn > X7L+1

with J,, a finite wedge of n-spheres. Then there is a diagram of long
exact sequences containing the following portion whose vertical maps
are Hurewicz homomorphisms and H. stands for mod p homology.
Notice that the vertical arrow for X.J, is surjective.

(2.1)

7Tn+1Xn+1 — 7Tn+12<]n — T X, ’ 7T7LX7L+1

l ! ! l

0 Hﬁn—&—an—&-l E— ﬁn-{-lan E— H’nxn — Fan—i-l

If X is nuclear then (1.1) holds for every n. A diagram chase shows
that the left-most arrow is 0 since the composition

7Tn+1Xn+1 — 7Tn+12']n — Hn-i—lz']n

is 0. This shows that X has no mod p detectable homotopy. As the
vertical map for X, is 0, every element of F,,,_HZJ,L lifts to 412,
hence we see that the boundary map FHHEJ,L — H, X, is 0 and
so X is minimal.

Conversely, if X is minimal and has no mod p detectable homotopy it

is nuclear.
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3 S-algebras

From [4] there is a good category of spectra with symmetric monoidal
smash product whose unit is the sphere spectrum S. For example, the
category of S-modules .#s in which every object satisfies SA M = M
(rather than just having S A M ~ M). The derived homotopy
category g is equivalent to Boardman’s, so the usual homotopy
theory of spectra is equivalent to the homotopy theory of S-modules.

An S-algebra is an S-module R with product R Ag R — R which is
strictly associative and unital in .Zg; R is commutative if the
obvious commutativity diagram commutes. This is stronger than the
notion of a ring spectrum in which the associativity and unital
conditions only hold in Zs.

Let R be a commutative S-algebra. An R-module is an S-module
with product R Ag M — M which is strictly associative and unital.
The category of R-modules .#r has a strictly associative and unital
tensor product that sends M and N to M Ar N and passing to the
derived homotopy category Zg. An R-algebra is an R-module A with
a product A Ap A — A that is strictly associative and unital in .#ZR.
A is an R-ring spectrum if it has a product A Ap A — A which is
associative and unital in Zg.

For a spectrum X there is a free R-module Fr X ~ R A X which is
characterized by a universal property. When R is commutative, there
is a free commutative R-algebra
PrX = \/ RAXW /5,
k>0
which is the analogue of a polynomial ring over a commutative ring.

The map X — * induces an augmentation PR X — Pgr* = R.
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If A is a commutative R-algebra and f: X — A is a map, we can
form the diagram of spectra

PN
A CX
and by the universal property we get a diagram of R-algebras
PrX
e
A PrCX

The pushout of this is A Ap,x PrCX.

If X is a wedge of S™’s we view the resulting R-algebra as the result
of attaching PrCX, viewed as a bunch of ‘(n + 1)-cell objects’, to A.
This allows us to define cellular and CW objects by starting with S
and inductively attaching cells.

For example, given a prime p, using p: S° — S° ~ S we have

A =85 Ap,s0o PRCS®. This is a commutative S-algebra and

moA = F,. When p = 2, this is a substitute for the Moore spectrum
M(2) which is not a commutative ring spectrum. There is a Kiinneth
spectral sequence

E127 q = Tors*[z] (PS*a S*) = 7Tp+qAa

)

where ,5, = S, = 7S, = has degree 0 and acts on ,S, through
multiplication by p.
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A cellular p-local commutative S-algebra R is nuclear if its

(n 4 1)-skeleton Ry, ) is defined inductively starting with Ry = S
and using a map k,,: K,, — R, from a finite wedge of n-spheres
which satisfies the condition

(3.1) ker[kn*: T Kn — 7Tn}%[n]] Cp-mnkn,
analogous to that of (1.1), and then forming
R[n+1] = R[n] Apsk, PsCK,,.

We will sketch a theory of nuclear and minimal atomic commutative
S-algebras analogous to the one for spectra. A central ingredient is a
suitable homology theory defined on pairs of commutative S-algebras
B/A (i.e., S-algebras A, B together a morphism A — B).

4 Topological André-Quillen theory

Let A be a commutative S-algebra and let B be a commutative

A-algebra. Then (assuming these are g-cofibrant) there is a functor
h%y ~ 95; B+—s Qp/a-

This has various good properties. For example, if C' is a commutative
B-algebra, there is a cofibration sequence of C-modules

Qprscic N C — Qpja — Qcya-
Also, as B A4 C-modules there are equivalences
Qprscrc = QpaNhaC, Qppoa=QpanaCV BAsQc)a.
For a spectrum X,

QPRx/R’Z(PRX)/\X, QR/IP’RXZR/\X'
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Topological André-Quillen homology and cohomology of B/A with
coefficients in a B-module M are defined by
TAQH(B/A, M) = Wn(QB/A /\B M),
TAQ"(B/A; M) = (Fp(Qp/a, M)).
If A and B are connective and k = Ag = By, there is an
Eilenberg-Mac Lane object Hk which is a commutative B-algebra.
For an k-module N we define
HAQ,,(B/A;N) = 7,(Qpya A HN),
HAQ"(B/A;N) = m,(Fp(S2p/a, HN)).
When N =k we define
HAQ, (B/A) = HAQ,,(B/A;k),
HAQ"(B/A) = HAQ"(B/A;k).

For a connective B-algebra with Cy = k there is a long exact sequence

- — HAQ,(B/A; N) — HAQ,(C/A; N) — HAQ,(C/B; N)
— HAQ;_1(B/A;N) — -

and a similar long exact sequence for cohomology.

Some interesting examples are provided by Basterra & Mandell. Let
X be connective spectrum and let 2°°X — BO be an infinite loop
map with associated Thom spectrum 7'. Then

QT/S ~ T/\X
For example, Qps/s ~ MU A X?ku and HAQ,(MU/S) = Hy—z(ku).

Computations of topological André-Quillen homology for cellular
S-algebras can be done in a similar way to cellular homology of CW
complexes. Our next results contain the crucial observations required
for this.
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Theorem 4.1. For any n,

ﬂ(:AO 1fk:n,

HAQ,(PAS"/A) = HAQ ., (A/P4S™) |
otherwise.

Corollary 4.2. If R is a connective CW commutative S-algebra then
Rpy) — Rppyq) induces a map HAQy (R, /S) — HAQ(Rpny1)/5)
which is an isomorphism if k < n and an epimorphism if k = n.
Furthermore there is an exact sequence

0— HAQnH(R[nH]/S) — HAQ, ., (S/PsK,,)
— HAQn(R[n]/S) — HAQn(R[n+1]/S) — 0

in which
HAQ, ;1 (S/PsKy,) = m, K.

We also have a commutative diagram with exact columns which is
analogous to (2.1).

0
On
Tnr1Rinsy ——— HAQ, 1 (Rp11)/5:Fp)

(11) | |

T DK, —— HAQ, 11 (Rpt1)/Rpng; Fp)

l !

7TnR[n] — HAQH (R[n] /S; Fp)

n

Using these ideas we are led to analogues of our results for minimal
atomic and nuclear S-modules.




