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1 Nuclear spectra and cores

All spectra are localized at a prime p > 0.

A cellular spectrum X of finite type is a Hurewicz complex if it has
no cells of negative dimension, one 0-cell and π0X = H0X 6= 0; thus
X is (−1)-connected and H0(X;Fp) = Fp.

A map f : Y −→ X of Hurewicz complexes is a monomorphism if it
induces an isomorphism on π0( ) and a monomorphism on π∗( ).

A Hurewicz complex is nuclear if for all n > 0 its (n + 1)-skeleton
Xn+1 is obtained from the n-skeleton Xn as the mapping cone of
jn : Jn −→ Xn from a wedge of n-spheres Jn satisfying

(1.1) ker[jn∗ : πnJn −→ πnXn] ⊆ p · πnJn.

A monomorphism f : Y −→ X is a core if Y is nuclear. Every X has
such a core, but Y may not be unique up to homotopy.
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2 Some general results

A Hurewicz complex X is
• irreducible if every monomorphism Y −→ X from a Hurewicz
complex is an equivalence;
• atomic if any map X −→ X inducing an isomorphism on π0( ) is
an equivalence.
• minimal atomic if it is atomic and every monomorphism Y −→ X

from an atomic Hurewicz complex Y is an equivalence.
Theorem 2.1. Let X be a Hurewicz complex.

(i) If X is nuclear complex then every core of X is an equivalence.

(ii) If X is nuclear then it is irreducible and atomic.

(iii) X is minimal atomic iff it is equivalent to a nuclear complex.

(iv) X is irreducible iff it is minimal atomic.
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Priddy [6] noted that the condition (1.1) is equivalent to triviality of
the Hurewicz homomorphisms h : πnXn −→ Hn(Xn;Fp) for all n > 1.

Definition 2.2. A Hurewicz complex X has no mod p detectable
homotopy if the Hurewicz homomorphism h : πnX −→ Hn(X;Fp) is
trivial for all n > 1.

Definition 2.3. A complex X is minimal if for each n,

Hn(Xn;Fp)
∼=−−→ Hn(Xn+1;Fp) = Hn(X;Fp).

The next result is a variation on an old result of Cooke [3].

Theorem 2.4. Every finite type connective p-local complex is
equivalent to a minimal complex.
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Our next result characterizes nuclear complexes in a useful way.

Theorem 2.5 (Nuclear Test). A Hurewicz complex is nuclear if
and only if it is minimal and has no mod p detectable homotopy.

Using the nuclear test it is easy to identify lots of minimal atomic
spectra. For example, if H∗(X;Fp) is monogenic over the Steenrod
algebra then X has no mod p detectable homotopy. Hence
H∗(BP 〈n〉 ;Fp) is always minimal atomic for 0 6 n 6 ∞ and the
natural map BP 〈∞〉 = BP −→ MU(p) is a core.

At p = 2, the spectra

ko, ku, tmf = eo2, BoP, CP∞, HP∞, RP∞−1

are all minimal atomic. Σ∞RP∞ is atomic but not minimal atomic.
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Sketch proof of the Nuclear Test

Suppose that X is defined inductively by attaching cells so that for
each n there is a cofibre exact sequence

Jn
jn−→ Xn −→ Xn+1

with Jn a finite wedge of n-spheres. Then there is a diagram of long
exact sequences containing the following portion whose vertical maps
are Hurewicz homomorphisms and H∗ stands for mod p homology.
Notice that the vertical arrow for ΣJn is surjective.
(2.1)

πn+1Xn+1 −−−−→ πn+1ΣJn −−−−→ πnXn −−−−→ πnXn+1y
y

y
y

0 → Hn+1Xn+1 −−−−→ Hn+1ΣJn −−−−→ HnXn −−−−→ HnXn+1
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If X is nuclear then (1.1) holds for every n. A diagram chase shows
that the left-most arrow is 0 since the composition

πn+1Xn+1 −→ πn+1ΣJn −→ Hn+1ΣJn

is 0. This shows that X has no mod p detectable homotopy. As the
vertical map for Xn is 0, every element of Hn+1ΣJn lifts to πn+1ΣJn,
hence we see that the boundary map Hn+1ΣJn −→ HnXn is 0 and
so X is minimal.

Conversely, if X is minimal and has no mod p detectable homotopy it
is nuclear.
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3 S-algebras

From [4] there is a good category of spectra with symmetric monoidal
smash product whose unit is the sphere spectrum S. For example, the
category of S-modules MS in which every object satisfies S ∧M ∼= M

(rather than just having S ∧ M ' M). The derived homotopy
category DS is equivalent to Boardman’s, so the usual homotopy
theory of spectra is equivalent to the homotopy theory of S-modules.

An S-algebra is an S-module R with product R ∧S R −→ R which is
strictly associative and unital in MS ; R is commutative if the
obvious commutativity diagram commutes. This is stronger than the
notion of a ring spectrum in which the associativity and unital
conditions only hold in DS .
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Let R be a commutative S-algebra. An R-module is an S-module
with product R ∧S M −→ M which is strictly associative and unital.
The category of R-modules MR has a strictly associative and unital
tensor product that sends M and N to M ∧R N and passing to the
derived homotopy category DR. An R-algebra is an R-module A with
a product A∧R A −→ A that is strictly associative and unital in MR.
A is an R-ring spectrum if it has a product A ∧R A −→ A which is
associative and unital in DR.

For a spectrum X there is a free R-module FRX ' R ∧X which is
characterized by a universal property. When R is commutative, there
is a free commutative R-algebra

PRX =
∨

k>0

R ∧X(k)/Σk

which is the analogue of a polynomial ring over a commutative ring.
The map X −→ ∗ induces an augmentation PRX −→ PR∗ = R.
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If A is a commutative R-algebra and f : X −→ A is a map, we can
form the diagram of spectra

X
f

~~~~
~~

~~
~

!!CC
CC

CC
CC

A CX

and by the universal property we get a diagram of R-algebras

PRXef
}}{{

{{
{{

{{

$$IIIIIIIII

A PRCX

The pushout of this is A ∧PRX PRCX.
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If X is a wedge of Sn’s we view the resulting R-algebra as the result
of attaching PRCX, viewed as a bunch of ‘(n + 1)-cell objects’, to A.
This allows us to define cellular and CW objects by starting with S

and inductively attaching cells.

For example, given a prime p, using p : S0 −→ S0 ' S we have
A = S ∧PRS0 PRCS0. This is a commutative S-algebra and
π0A = Fp. When p = 2, this is a substitute for the Moore spectrum
M(2) which is not a commutative ring spectrum. There is a Künneth
spectral sequence

E2
p,q = TorS∗[x](pS∗, S∗) =⇒ πp+qA,

where pS∗ = S∗ = π∗S, x has degree 0 and acts on pS∗ through
multiplication by p.
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A cellular p-local commutative S-algebra R is nuclear if its
(n + 1)-skeleton R[n+1] is defined inductively starting with R[0] = S

and using a map kn : Kn −→ R[n] from a finite wedge of n-spheres
which satisfies the condition

(3.1) ker[kn∗ : πnKn −→ πnR[n]] ⊆ p · πnKn,

analogous to that of (1.1), and then forming

R[n+1] = R[n] ∧PSKn
PSCKn.

We will sketch a theory of nuclear and minimal atomic commutative
S-algebras analogous to the one for spectra. A central ingredient is a
suitable homology theory defined on pairs of commutative S-algebras
B/A (i.e., S-algebras A, B together a morphism A −→ B).
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4 Topological André-Quillen theory

Let A be a commutative S-algebra and let B be a commutative
A-algebra. Then (assuming these are q-cofibrant) there is a functor

hCA Ã DB ; B 7−→ ΩB/A.

This has various good properties. For example, if C is a commutative
B-algebra, there is a cofibration sequence of C-modules

ΩB∧AC/C ∧B C −→ ΩB/A −→ ΩC/A.

Also, as B ∧A C-modules there are equivalences

ΩB∧AC/C ' ΩB/A ∧A C, ΩB∧AC/A ' ΩB/A ∧A C ∨B ∧A ΩC/A.

For a spectrum X,

ΩPRX/R ' (PRX) ∧X, ΩR/PRX ' R ∧X.
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Topological André-Quillen homology and cohomology of B/A with
coefficients in a B-module M are defined by

TAQn(B/A; M) = πn(ΩB/A ∧B M),

TAQn(B/A; M) = πn(FB(ΩB/A,M)).

If A and B are connective and k = A0 = B0, there is an
Eilenberg-Mac Lane object Hk which is a commutative B-algebra.
For an k-module N we define

HAQn(B/A; N) = πn(ΩB/A ∧B HN),

HAQn(B/A; N) = πn(FB(ΩB/A,HN)).

When N = k we define

HAQn(B/A) = HAQn(B/A;k),

HAQn(B/A) = HAQn(B/A;k).
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For a connective B-algebra with C0 = k there is a long exact sequence

· · · −→ HAQk(B/A;N) −→ HAQk(C/A;N) −→ HAQk(C/B;N)

−→ HAQk−1(B/A; N) −→ · · ·
and a similar long exact sequence for cohomology.

Some interesting examples are provided by Basterra & Mandell. Let
X be connective spectrum and let Ω∞X −→ BO be an infinite loop
map with associated Thom spectrum T . Then

ΩT/S ' T ∧X.

For example, ΩMU/S ' MU ∧ Σ2ku and HAQk(MU/S) = Hk−2(ku).

Computations of topological André-Quillen homology for cellular
S-algebras can be done in a similar way to cellular homology of CW
complexes. Our next results contain the crucial observations required
for this.
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Theorem 4.1. For any n,

HAQk(PASn/A) = HAQk+1(A/PASn) =




k = A0 if k = n,

0 otherwise.

Corollary 4.2. If R is a connective CW commutative S-algebra then
R[n] −→ R[n+1] induces a map HAQk(R[n]/S) −→ HAQk(R[n+1]/S)
which is an isomorphism if k < n and an epimorphism if k = n.
Furthermore there is an exact sequence

0 → HAQn+1(R[n+1]/S) −→ HAQn+1(S/PSKn)

−→ HAQn(R[n]/S) −→ HAQn(R[n+1]/S) → 0

in which
HAQn+1(S/PSKn) ∼= πnKn.
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We also have a commutative diagram with exact columns which is
analogous to (2.1).

(4.1)

0
y

πn+1R[n+1]
θn+1−−−−→ HAQn+1(R[n+1]/S;Fp)y

y
πn+1ΣKn

epi−−−−→ HAQn+1(R[n+1]/R[n];Fp)y
y

πnR[n] −−−−→
θn

HAQn(R[n]/S;Fp)

Using these ideas we are led to analogues of our results for minimal
atomic and nuclear S-modules.
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