Cores of spectra and a construction of BoP

Andrew Baker (joint work with Peter May) http://www.maths.gla.ac.uk/~ajb 17th British Topology Meeting, April 2002

[23/01/2004]

References

- [BM] A. Baker & J. P. May, Minimal atomic complexes, to appear in Topology.
- [Co] G. E. Cooke, Embedding certain complexes up to homotopy type in euclidean space, Ann. of Math. 90 (1969), 144–156.
- [HKM] P. Hu, I. Kriz & J. P. May, Cores of spaces, spectra and E_{∞} ring spectra, Homology, Homotopy and Applications **3** (2001), 341–54.
 - [Pe] D. J. Pengelley, The homotopy type of MSU, Amer. J. Math. **104** (1982), 1101–1123.
 - [Pr] S. Priddy, A cellular construction of BP and other irreducible spectra, Math. Z. 173 (1980), 29–34.

Slide 2

1 Nuclear spectra and cores

All spectra are localized at a prime p > 0.

A CW spectrum X of finite type is a Hurewicz complex of dimension n_0 if it has no cells of dimension less than n_0 , one n_0 -cell and $\pi_{n_0}X \neq 0$; thus X is $(n_0 - 1)$ -connected and $H_{n_0}(X; \mathbb{F}_p) = \mathbb{F}_p$.

For Hurewicz complexes $X', X, f: X' \longrightarrow X$ is a monomorphism if f_* is an isomorphism on $\pi_{n_0}()$ and a monomorphism on $\pi_*()$.

X is *nuclear* if for each $n \ge n_0$, the (n + 1)-skeleton X_{n+1} is the mapping cone of a map $j_n : J_n \longrightarrow X_n$ from a wedge of *n*-spheres J_n for which

(1.1) $\ker(j_{n*} \colon \pi_n J_n \longrightarrow \pi_n X_n) \subseteq p \cdot \pi_n J_n.$

A monomorphism $f: X' \longrightarrow X$ is a *core* if X' is nuclear. Every such Hurewicz complex X has a core.

2 Some general results

A Hurewicz complex X of dimension n_0 is *irreducible* if every monomorphism $X' \longrightarrow X$ is an equivalence, while it is *atomic* if any map $X \longrightarrow X$ inducing an isomorphism on $\pi_{n_0}(\)$ is an equivalence. If X is atomic then it is *minimal* if every map $X' \longrightarrow X$ from an atomic Hurewicz complex X' of dimension n_0 which induces an isomorphism on $\pi_{n_0}(\)$ and a monomorphism on $\pi_*(\)$ is an equivalence.

Proposition 2.1. Let X be a Hurewicz complex.

- (i) If X is nuclear then it is irreducible and atomic.
- (ii) X is nuclear if and only if it is minimal atomic.
- (iii) If X is nuclear and $f: X' \longrightarrow X$ is a core, then f is an equivalence.

Priddy [Pr] noted that the condition of (1.1) is equivalent to triviality of the Hurewicz homomorphism $h: \pi_{n+1}X_{n+1} \longrightarrow H_{n+1}(X_{n+1}; \mathbb{F}_p)$. **Proposition 2.2 (The nuclear test).** Let X be Hurewicz of dimension n_0 satisfying the following two conditions.

(A) The Hurewicz homomorphism $h: \pi_n X \longrightarrow H_n(X; \mathbb{F}_p)$ is trivial for $n > n_0$;

Slide 3

(B) For each n, inclusion of the n-skeleton into the (n + 1)-skeleton induces an isomorphism

$$H_n(X_n; \mathbb{F}_p) \xrightarrow{\cong} H_n(X_{n+1}; \mathbb{F}_p) = H_n(X; \mathbb{F}_p).$$

In particular, this holds if the cells of X occur in dimensions differing by at least 2.

Then X is nuclear.

Conversely, if X is nuclear then condition (A) is satisfied.

3 Some examples

Example 3.1. BP is nuclear and the natural map $BP \longrightarrow MU_{(p)}$ is a core. For any core $X \longrightarrow MU_{(p)}$, $X \simeq BP$. In particular, Priddy's spectrum BP' is equivalent to BP.

Let $\zeta_3 \downarrow \mathbb{H} \mathbb{P}^\infty$ be the bundle associated to the adjoint representation of $S^3.$

Example 3.2. For the prime p = 2, $\Sigma^{\infty} \mathbb{C} \mathbb{P}^{\infty}$, $\Sigma^{\infty} \mathbb{H} \mathbb{P}^{\infty}$ and $\Sigma^{\infty} M \zeta_3$ are nuclear. At an odd prime p, there is a non-trivial splitting

$$\Sigma^{\infty} \mathbb{CP}^{\infty}_{(p)} \simeq W_{p,1} \lor W_{p,2} \lor \cdots \lor W_{p,p-1}$$

and each of the $W_{p,r}$ is nuclear.

Example 3.3. At p = 2, $\Sigma^{\infty} \mathbb{R} \mathbb{P}^{\infty}$ is atomic but not nuclear.

Corollary 3.5. The natural map $BP\langle 1 \rangle \longrightarrow ku_{(p)}$ is a core. The proof of this Theorem is more involved since $H_*BP\langle m \rangle$ is not concentrated in even degrees alone. However condition (B) of the nuclear test still holds as does condition (A). In the proof we use a modification of an folk result from [Co]. It seems likely that every core of $ku_{(p)}$ is equivalent to $BP\langle 1 \rangle$. **Lemma 3.6.** Let X be an $(n_0 - 1)$ -connected spectrum of finite type

Theorem 3.4. For $m \ge 1$, $BP \langle m \rangle$ is nuclear.

Lemma 3.6. Let X be an $(n_0 - 1)$ -connected spectrum of finite type and (D_*, ∂) be a chain complex of free abelian groups with $D_n = 0$ if $n < n_0$ and $\Phi: H_*(D_*, \partial) \xrightarrow{\cong} H_*X$. Then there is a $\varphi: X' \longrightarrow X$

from a cellular spectrum with cellular chain complex $(C_*(X', \mathbb{Z}), d)$ and a chain isomorphism $\theta \colon (D_*, \partial) \xrightarrow{\cong} (C_*(X', \mathbb{Z}), d)$ for which the composite $\varphi_* \circ \theta$ induces Φ . An analogous result holds for a p-local cellular spectrum and a chain complex of free $\mathbb{Z}_{(p)}$ -modules.

4 Pengelley's spectrum *BoP*

Pengelley [Pe] constructed an atomic spectrum BoP which is a retract of $MSU_{(2)}$ and satisfies the conditions of the nuclear test. **Proposition 4.1.** BoP is nuclear and any retraction $BoP \longrightarrow MSU_{(2)}$ is a core.

It is not clear if every core X → MSU₍₂₎ satisfies X ≃ BoP. The following observation may be important in understanding this question. The proof uses a result attributed to Barratt on Toda brackets in ko_{*}.
Lemma 4.2. Let X be a 2-local Hurewicz complex of dimension 0

Lemma 4.2. Let X be a 2-local Hurewicz complex of dimension 0 with inclusion of the bottom cell $w_0: S^0 \longrightarrow X$ and let $q: X \longrightarrow ko_{(2)}$ be a map giving a homotopy factorization $S^0 \xrightarrow{w_0} X \xrightarrow{q} ko_{(2)}$. If $\nu \in \pi_3 S^0, \sigma \in \pi_7 S^0$ satisfy $\nu x = 0 = \sigma x \in \pi_* X$ for every $x \in \pi_* X$, then $q_*: \pi_* X \longrightarrow \pi_* ko$ is an epimorphism.

Slide 6

Here is another construction of BoP. Starting with $BoP'_0 = S^0$, inductively define $BoP'_{2n} = BoP'_{2n+1}$ and a map $g'_{n+1} \colon BoP'_{2n+1} \longrightarrow ko$ by attaching a wedge of 2n-cells to BoP'_{2n-1} non-trivially as in (1.1) so that the cofibre sequence

$$J'_{2n-1} \xrightarrow{j'_{2n-1}} BoP'_{2n-1} \longrightarrow BoP'_{2n}$$

Slide 7

satisfies

$$\operatorname{im} j'_{2n-1*} = \ker(g_{n*} \colon \pi_{2n-1} BoP'_{2n-1} \longrightarrow \pi_{2n-1} ko)$$

It is straightforward to see that g'_n extends to a map g'_{n+1} . This defines a nuclear spectrum BoP' with a map $g': BoP' \longrightarrow ko$ extending the unit $S^0 \longrightarrow ko$. An application of Lemma 4.2 now gives **Lemma 4.3.** $g': BoP' \longrightarrow ko$ induces an epimorphism on $\pi_*()$.

Let $g \colon BoP \longrightarrow ko$ be the natural map.

Theorem 4.4. There exist $f: BoP \longrightarrow BoP', f': BoP' \longrightarrow BoP$ which induce isomorphisms on $\pi_0()$. Hence ff' and f'f are equivalences and $BoP \simeq BoP'$.

The following diagram may not be homotopy commutative since our proof leaves open the possibility of phantom maps obstructions; however, on applying $\pi_*()$ it yields a commutative diagram of abelian groups.

By obstruction theory there is a map $MSU_{(2)} \longrightarrow BoP'$ inducing an isomorphism on $\pi_0()$; it does not seem easy to obtain a splitting $BoP' \longrightarrow MSU_{(2)}$ for this map although from [Pe], such maps exist.