
Slide 1

An undergraduate approach to Lie theory

Andrew Baker, Glasgow

Glasgow, 12/11/1999

Slide 2

1 Smooth manifolds and Lie groups

A continuous g : V1 −→ V2 with Vk ⊆ Rmk open is called smooth if it
is infinitely differentiable. If g is a homeomorphism g : V1 −→ V2, it is
called a diffeomorphism if g and g−1 are both smooth.

Let M be a separable Hausdorff topological space.

Definition 1 A homeomorphism f : U −→ V where U ⊆ M and
V ⊆ Rn are open subsets, is called an n-chart for U .

If U = {Uα : α ∈ A} is an open covering of M and
F = {fα : Uα −→ Vα} is a collection of charts, then F is called an
atlas for M if, whenever Uα ∩ Uβ 6= ∅, the function

fβ ◦ f−1
α : fα(Uα ∩ Uβ) −→ fβ(Uα ∩ Uβ)

is a diffeomorphism.
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We will sometimes denote such an atlas by (M,U ,F) and refer to it
as a smooth manifold of dimension or smooth n-manifold.
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Definition 2 A smooth map h : (M,U ,F) −→ (M ′,U ′,F ′) is a
continuous map h : M −→ M ′ such that for each pair α, α′ with
h(Uα) ∩ U ′

α′ 6= ∅, the composite map

f ′α′ ◦ h ◦ f−1
α : fα(h−1U ′

α′) −→ V ′
α′

is smooth. Such a map is a diffeomorphism if it is a homeomorphism
which has a smooth inverse.
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Definition 3 A Lie group is a smooth manifold equipped with smooth
maps µ : G×G −→ G, inv : G −→ G for which (G,µ, inv) is a group.

A Lie homomorphism is a smooth map h : G −→ G′ which is a group
homomorphism. A Lie isomorphism is a Lie homomorphism that is
also a diffeomorphism. A subgroup H of G which is a submanifold is
called a Lie subgroup denoted H 6 G.

As important examples, consider

GLn(R) = {A ∈ Mn(R) : det A 6= 0}, dimGLn(R) = n2,

SLn(R) = {A ∈ Mn(R) : det A = 1} ⊆ GLn(R), dimSLn(R) = n2 − 1,

GLn(C) = {A ∈ Mn(C) : det A 6= 0}, dimGLn(C) = 2n2,

SLn(C) = {A ∈ Mn(C) : det A = 1} ⊆ GLn(C), dimSLn(C) = 2n2 − 2.
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Definition 4 A matrix group is a closed subgroup of some GLn(R).

All of the above are examples of real matrix groups, since there are
smooth embeddings GLn(R) −→ GLn(C) −→ GL2n(R). Other
examples are

O(n) = {A ∈ GLn(R) : AT A = I},
SO(n) = {A ∈ O(n) : det A = 1},
U(n) = {A ∈ GLn(C) : A∗A = I},

SU(n) = {A ∈ U(n) : det A = 1}.

Theorem 5 Every matrix group G 6 GLn(R) is a Lie subgroup.

Corollary 6 The exponential map restricted to the Lie algebra of a
matrix group G maps into G, exp: g −→ G, and is a local
diffeomorphism at the identity, hence dim G = dim g.
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The above examples have the following dimensions.

dim O(n) = dim SO(n) =
(

n

2

)
, dim U(n) = n2, dimSU(n) = n2 − 1.

Moreover,

o(n) = so(n) = Sk-Symn(R)

(n× n real skew-symmetric matrices),

u(n) = Sk-Hermn(C)

(n× n complex skew-hermitian matrices),

su(n) = Sk-Herm0
n(C)

(n× n complex skew-hermitian matrices of trace 0).
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Let k = R,C. For an n× n matrix A,

‖A‖ = sup
|x|=1

|Ax|.

Then for any A, the series
∑

k>0

1
k!

Ak

is absolutely convergent since ‖Ak‖/k! → 0 as k →∞. Hence we can
define the exponential function

exp: Mn(k) −→ GLn(k); exp(A) =
∑

k>0

1
k!

Ak.
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Given a matrix group G 6 GLn(R) we can differentiate a curve
α : (−ε, ε) −→ G and define

α′(t) = lim
h→0

1
h

(α(t + h)− α(t))

whenever this limit exists. If α′(t) is defined for all t ∈ (−ε, ε) then α

is said to be differentiable. In particular we can define the tangent
space to G at A ∈ G by

TA G = {α′(0) : α differentiable G, α(0) = A}.

Then TA G is a real vector subspace of Mn(R). Also, g = TI G is
closed under the Lie bracket operation [X,Y ]. Left multiplication by
A gives a linear isomorphism TI G −→ TA G.
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When A,B commute,

exp(A + B) = exp(A) exp(B).

Also the function

α : R −→ GLn(k); α(t) = B exp(tA)

is the unique solution of the differential equation

α′(t) = α(t)A, α(0) = B.

Moreover, for every A, the derivative of exp at A is the linear map

d expA : Mn(R) −→ Mn(R); X 7−→ lim
h→0

1
h

(exp(A + hX)− exp(A))

which is actually an isomorphism, so exp is everywhere a local
diffeomorphism.
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Theorem 7 If U, V ∈ Mn(R), the following identities are satisfied.

exp(U + V ) = lim
r→∞

(exp((1/r)U) exp((1/r)V ))r ;

[Trotter Product Formula]

exp([U, V ]) =

lim
r→∞

(exp((1/r)U) exp((1/r)V ) exp(−(1/r)U) exp(−(1/r)V ))r2

.

[Commutator Formula]
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2 Maximal tori in compact connected Lie

groups

A torus is a compact connected abelian Lie group. It can be shown
that every torus is isomorphic to some

Tr = Rr/Zr ∼= (S1)r = S1 × · · · × S1.

If G is a Lie group then a maximal torus in G is a torus T 6 G in G

which is not contained in any other torus in G.

Theorem 8 Let G be a compact connected Lie group. If g ∈ G, there
is an x ∈ G such that g ∈ xTx−1, i.e., g is conjugate to an element
of T . Equivalently,

G =
⋃

x∈G

xTx−1.

Corollary 9 Every maximal torus in G is a maximal abelian
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subgroup.

Corollary 10 If T, T ′ 6 G are maximal tori then they are conjugate
in G, i.e., there is a y ∈ G such that T ′ = yTy−1.

Corollary 11 Let G be a compact, connected matrix group. Then
the exponential map exp: g −→ G is surjective.

A key idea in proving these is

Proposition 12 Every torus T has a topological generator, i.e.,
there is an element t ∈ T with 〈t〉 dense in T .
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3 A Lie group that is not a matrix group

Let

U =








1 x z

0 1 y

0 0 1


 : x, y, x ∈ R





, N =








1 0 n

0 1 0

0 0 1


 : n ∈ Z





/ U.

The Heisenberg group H = U/N is a 3-dimensional Lie group with an
exact sequence

1 → T −→ H −→ R× R→ 1,

where T ∼= T is central and contained in the commutator subgroup.

Proposition 13 Every Lie homomorphism ϕ : H −→ GLn(R) has
non-trivial kernel.
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