An undergraduate approach to Lie theory

Andrew Baker, Glasgow

Glasgow, 12/11/1999

1 Smooth manifolds and Lie groups

A continuous $g: V_1 \longrightarrow V_2$ with $V_k \subseteq \mathbb{R}^{m_k}$ open is called *smooth* if it is infinitely differentiable. If g is a homeomorphism $g: V_1 \longrightarrow V_2$, it is called a *diffeomorphism* if g and g^{-1} are both smooth.

Let M be a separable Hausdorff topological space.

Slide 2

Definition 1 A homeomorphism $f: U \longrightarrow V$ where $U \subseteq M$ and $V \subseteq \mathbb{R}^n$ are open subsets, is called an n-chart for U.

If $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ is an open covering of M and $\mathcal{F} = \{f_{\alpha} : U_{\alpha} \longrightarrow V_{\alpha}\}$ is a collection of charts, then \mathcal{F} is called an atlas for M if, whenever $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the function

$$f_{\beta} \circ f_{\alpha}^{-1} \colon f_{\alpha}(U_{\alpha} \cap U_{\beta}) \longrightarrow f_{\beta}(U_{\alpha} \cap U_{\beta})$$

is a diffeomorphism.

Slide 3

Definition 2 A smooth map $h: (M, \mathcal{U}, \mathcal{F}) \longrightarrow (M', \mathcal{U}', \mathcal{F}')$ is a continuous map $h: M \longrightarrow M'$ such that for each pair α, α' with $h(U_{\alpha}) \cap U'_{\alpha'} \neq \emptyset$, the composite map

$$f'_{\alpha'} \circ h \circ f^{-1}_{\alpha} \colon f_{\alpha}(h^{-1}U'_{\alpha'}) \longrightarrow V'_{\alpha'}$$

Slide 4

is smooth. Such a map is a diffeomorphism if it is a homeomorphism which has a smooth inverse.

$$\begin{array}{c} f_{\alpha}(h^{-1}U'_{\alpha'}) \xrightarrow{f'_{\alpha'} \circ h \circ f_{\alpha}^{-1}} V'_{\alpha'} \\ f_{\alpha}^{-1} \\ h^{-1}U'_{\alpha'} \xrightarrow{h} h(U_{\alpha}) \cap U'_{\alpha} \end{array}$$

Definition 3 A Lie group is a smooth manifold equipped with smooth maps $\mu: G \times G \longrightarrow G$, inv: $G \longrightarrow G$ for which (G, μ, inv) is a group. A Lie homomorphism is a smooth map $h: G \longrightarrow G'$ which is a group homomorphism. A Lie isomorphism is a Lie homomorphism that is also a diffeomorphism. A subgroup H of G which is a submanifold is called a Lie subgroup denoted $H \leq G$. As important examples, consider $\operatorname{GL}_n(\mathbb{R}) = \{A \in \operatorname{M}_n(\mathbb{R}) : \det A \neq 0\}, \dim \operatorname{GL}_n(\mathbb{R}) = n^2,$ $\operatorname{SL}_n(\mathbb{R}) = \{A \in \operatorname{M}_n(\mathbb{R}) : \det A = 1\} \subseteq \operatorname{GL}_n(\mathbb{R}), \dim \operatorname{SL}_n(\mathbb{R}) = n^2 - 1,$ $\operatorname{GL}_n(\mathbb{C}) = \{A \in \operatorname{M}_n(\mathbb{C}) : \det A \neq 0\}, \dim \operatorname{GL}_n(\mathbb{C}) = 2n^2,$ $\operatorname{SL}_n(\mathbb{C}) = \{A \in \operatorname{M}_n(\mathbb{C}) : \det A = 1\} \subseteq \operatorname{GL}_n(\mathbb{C}), \dim \operatorname{SL}_n(\mathbb{C}) = 2n^2 - 2.$

Definition 4 A matrix group is a closed subgroup of some $GL_n(\mathbb{R})$.

All of the above are examples of real matrix groups, since there are smooth embeddings $\operatorname{GL}_n(\mathbb{R}) \longrightarrow \operatorname{GL}_n(\mathbb{C}) \longrightarrow \operatorname{GL}_{2n}(\mathbb{R})$. Other examples are

Slide 6

Slide 5

$$O(n) = \{A \in \operatorname{GL}_n(\mathbb{R}) : A^T A = I\},$$

$$SO(n) = \{A \in O(n) : \det A = 1\},$$

$$U(n) = \{A \in \operatorname{GL}_n(\mathbb{C}) : A^* A = I\},$$

$$SU(n) = \{A \in U(n) : \det A = 1\}.$$

Theorem 5 Every matrix group $G \leq \operatorname{GL}_n(\mathbb{R})$ is a Lie subgroup.

Corollary 6 The exponential map restricted to the Lie algebra of a matrix group G maps into G, $\exp: \mathfrak{g} \longrightarrow G$, and is a local diffeomorphism at the identity, hence $\dim G = \dim \mathfrak{g}$.

The above examples have the following dimensions. $\dim O(n) = \dim SO(n) = \binom{n}{2}, \dim U(n) = n^2, \dim SU(n) = n^2 - 1.$ Moreover, $\mathfrak{o}(n) = \mathfrak{so}(n) = \operatorname{Sk-Sym}_n(\mathbb{R})$ $(n \times n \text{ real skew-symmetric matrices}),$ $\mathfrak{u}(n) = \operatorname{Sk-Herm}_n(\mathbb{C})$ $(n \times n \text{ complex skew-hermitian matrices}),$ $\mathfrak{su}(n) = \operatorname{Sk-Herm}_n^0(\mathbb{C})$ $(n \times n \text{ complex skew-hermitian matrices of trace 0}).$

Let $\mathbb{k} = \mathbb{R}, \mathbb{C}$. For an $n \times n$ matrix A,

$$|A|| = \sup_{|\mathbf{x}|=1} |A\mathbf{x}|.$$

Then for any A, the series

Slide 8

Slide 7

$$\sum_{k \ge 0} \frac{1}{k!} A^k$$

is absolutely convergent since $\|A^k\|/k!\to 0$ as $k\to\infty.$ Hence we can define the exponential function

exp:
$$M_n(\mathbb{k}) \longrightarrow GL_n(\mathbb{k}); \quad \exp(A) = \sum_{k \ge 0} \frac{1}{k!} A^k.$$

Given a matrix group $G \leq \operatorname{GL}_n(\mathbb{R})$ we can differentiate a curve $\alpha \colon (-\varepsilon, \varepsilon) \longrightarrow G$ and define

$$\alpha'(t) = \lim_{h \to 0} \frac{1}{h} \left(\alpha(t+h) - \alpha(t) \right)$$

whenever this limit exists. If $\alpha'(t)$ is defined for all $t \in (-\varepsilon, \varepsilon)$ then α is said to be *differentiable*. In particular we can define the *tangent space* to G at $A \in G$ by

$$T_A G = \{ \alpha'(0) : \alpha \text{ differentiable } G, \ \alpha(0) = A \}.$$

Then $T_A G$ is a real vector subspace of $M_n(\mathbb{R})$. Also, $\mathfrak{g} = T_I G$ is closed under the Lie bracket operation [X, Y]. Left multiplication by A gives a linear isomorphism $T_I G \longrightarrow T_A G$.

When A, B commute,

$$\exp(A + B) = \exp(A)\exp(B).$$

Also the function

$$\alpha \colon \mathbb{R} \longrightarrow \operatorname{GL}_n(\mathbb{k}); \quad \alpha(t) = B \exp(tA)$$

Slide 10

 $\alpha'(t) = \alpha(t)A, \quad \alpha(0) = B.$

is the unique solution of the differential equation

Moreover, for every A, the *derivative* of exp at A is the linear map

 $\operatorname{dexp}_A \colon \operatorname{M}_n(\mathbb{R}) \longrightarrow \operatorname{M}_n(\mathbb{R}); \quad X \longmapsto \lim_{h \to 0} \frac{1}{h} \left(\exp(A + hX) - \exp(A) \right)$ which is actually an isomorphism, so exp is everywhere a local

diffeomorphism.

Slide 9

Theorem 7 If $U, V \in M_n(\mathbb{R})$, the following identities are satisfied. $\exp(U+V) = \lim_{r \to \infty} \left(\exp((1/r)U) \exp((1/r)V)\right)^r$; [Trotter Product Formula] $\exp([U,V]) =$ $\lim_{r \to \infty} \left(\exp((1/r)U) \exp(((1/r)V) \exp(-(1/r)U) \exp(-((1/r)V))\right)^{r^2}$.

[Commutator Formula]

Slide 11

Slide 12

2 Maximal tori in compact connected Lie groups

A *torus* is a compact connected abelian Lie group. It can be shown that every torus is isomorphic to some

$$\mathbb{T}^r = \mathbb{R}^r / \mathbb{Z}^r \cong (S^1)^r = S^1 \times \dots \times S^1.$$

If G is a Lie group then a maximal torus in G is a torus $T \leq G$ in G which is not contained in any other torus in G.

Theorem 8 Let G be a compact connected Lie group. If $g \in G$, there is an $x \in G$ such that $g \in xTx^{-1}$, i.e., g is conjugate to an element of T. Equivalently,

$$G = \bigcup_{x \in G} xTx^{-1}.$$

Corollary 9 Every maximal torus in G is a maximal abelian

subgroup.

Corollary 10 If $T, T' \leq G$ are maximal tori then they are conjugate in G, i.e., there is a $y \in G$ such that $T' = yTy^{-1}$.

Corollary 11 Let G be a compact, connected matrix group. Then the exponential map $\exp: \mathfrak{g} \longrightarrow G$ is surjective.

A key idea in proving these is

Proposition 12 Every torus T has a topological generator, i.e., there is an element $t \in T$ with $\langle t \rangle$ dense in T.

Let

$$U = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} : x, y, x \in \mathbb{R} \right\}, \quad N = \left\{ \begin{bmatrix} 1 & 0 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} : n \in \mathbb{Z} \right\} \triangleleft U.$$

Slide 14

Slide 13

The Heisenberg group H = U/N is a 3-dimensional Lie group with an exact sequence

 $1 \to T \longrightarrow H \longrightarrow \mathbb{R} \times \mathbb{R} \to 1,$

where $T\cong\mathbb{T}$ is central and contained in the commutator subgroup.

Proposition 13 Every Lie homomorphism $\varphi \colon H \longrightarrow \operatorname{GL}_n(\mathbb{R})$ has non-trivial kernel.

References

Slide 15

- [1] M.L. Curtis, Matrix Groups, Springer-Verlag (1984).
- [2] R. Howe, Very basic Lie theory, Amer. Math. Monthly 90 (1983), 600–623; correction in 91 (1984), 247.
- [3] S. Sternberg, Group Theory and Physics, Cambridge University Press (1994).