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1 Smooth manifolds and Lie groups

A continuous g: Vi — V5 with Vi, C R™* open is called smooth if it
is infinitely differentiable. If g is a homeomorphism g: V; — V5, it is
called a diffeomorphism if g and g—! are both smooth.

Let M be a separable Hausdorfl topological space.

Definition 1 A homeomorphism f: U — V where U C M and
V CR™ are open subsets, is called an n-chart for U.

IfU ={U, : a € A} is an open covering of M and
F =A{fo: Uy — Vi } is a collection of charts, then F is called an
atlas for M if, whenever U, NUg # 0, the function

faofut: faUaNUs) — f3(Us NUp)

s a diffeomorphism.
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We will sometimes denote such an atlas by (M,U,F) and refer to it
as a smooth manifold of dimension or smooth n-manifold.

Definition 2 A smooth map h: (MU, F) — (M' U, F') is a
continuous map h: M — M’ such that for each pair o, o’ with
h(Uy) NUL, # 0, the composite map

flooho fits falh7'UL) — VL

s smooth. Such a map is a diffeomorphism if it is a homeomorphism
which has a smooth inverse.

f(l,IOhof;l
fa(h1UL) o
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Definition 3 A Lie group is a smooth manifold equipped with smooth
maps pu: G x G — G, inv: G — G for which (G, p,inv) is a group.

A Lie homomorphism 4s a smooth map h: G — G’ which is a group
homomorphism. A Lie isomorphism is a Lie homomorphism that is
also a diffeomorphism. A subgroup H of G which is a submanifold is

called a Lie subgroup denoted H < G.
Slide 5
As important examples, consider

(R) = (R) : det A # 0}, dim GL,(R) =
#(R) = {A € M,(R) : det A =1} C GL,(R), dimSL, ( ) =n?—1,
2 (C) (C) : det A # 0}, dim GL,,(C) = 2n?,

) ©) )

CL,
SL
GL,(

SL,(C :det A =1} C GL,(C), dimSL,,(C) = 2n? — 2.

Definition 4 A matrix group is a closed subgroup of some GL,,(R).

All of the above are examples of real matrix groups, since there are
smooth embeddings GL,(R) — GL,(C) — GLg2,(R). Other
examples are
O(n) ={A € GL,(R): ATA =1},
Slide 6 SO(n) ={A € O(n) : det A =1},
U(n) ={4 € GL,(C) : A*A =TI},
SU(n) ={A € U(n) : det A = 1}.

Theorem 5 Fvery matriz group G < GL,,(R) is a Lie subgroup.

Corollary 6 The exponential map restricted to the Lie algebra of a
matriz group G maps into G, exp: g — G, and is a local
diffeomorphism at the identity, hence dim G = dim g.
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The above examples have the following dimensions.

n

dim O(n) = dim SO(n) = <2>, dim U(n) = n?, dimSU(n) = n? — 1.

Moreover,
o(n) = so(n) = Sk-Sym,, (R)
(n x n real skew-symmetric matrices),
u(n) = Sk-Herm,, (C)
(n x n complex skew-hermitian matrices),
su(n) = Sk-Herm? (C)

(n x n complex skew-hermitian matrices of trace 0).

Let k =R, C. For an n x n matrix A,

[A]l = sup [Ax].

|x|=1

Then for any A, the series

is absolutely convergent since || A*||/k! — 0 as k — oco. Hence we can

define the exponential function

1
exp: My (k) — GL,(k); exp(A)= Z EAk'
k>0
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Given a matrix group G < GL,(R) we can differentiate a curve
a: (—&,6) — G and define

/(1) = Jim + (alt + h) — a(t))

whenever this limit exists. If o/(t) is defined for all ¢ € (—¢,¢) then «
is said to be differentiable. In particular we can define the tangent
space to G at A € G by

T4 G = {d/(0) : « differentiable G, a(0) = A}.

Then T4 G is a real vector subspace of M, (R). Also, g =T;G is
closed under the Lie bracket operation [X,Y]. Left multiplication by
A gives a linear isomorphism T; G — T4 G.

When A, B commute,
exp(A + B) = exp(A) exp(B).
Also the function
a: R — GL,(k); «(t) = Bexp(tA)

is the unique solution of the differential equation

Moreover, for every A, the derivative of exp at A is the linear map
1
dexpy: M, (R) — M,(R); X +— }llirr%) 7 (exp(A+ hX) —exp(A))

which is actually an isomorphism, so exp is everywhere a local
diffeomorphism.
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Theorem 7 If U,V € M, (R), the following identities are satisfied.

exp(U +V) = Tim (exp((1/r)U) exp((1/r)V))"
[Trotter Product Formula]

exp([U, V]) =

lim (exp((1/r)U) exp((1/r)V) exp(—(1/r)U) exp(~(1/r)V))"”

[Commutator Formulal]

2 Maximal tori in compact connected Lie

groups

A torus is a compact connected abelian Lie group. It can be shown
that every torus is isomorphic to some

T =R"/Z" = (S =S x --- x S*.

If G is a Lie group then a mazimal torus in G is a torus T < G in G
which is not contained in any other torus in G.

Theorem 8 Let G be a compact connected Lie group. If g € G, there
is an x € G such that g € Tz~ ', i.e., g is conjugate to an element
of T. Equivalently,
G= U xTzt
zeG
Corollary 9 Every mazimal torus in G is a mazimal abelian
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subgroup.

Corollary 10 If T,T' < G are mazimal tori then they are conjugate
in G, i.e., there is a y € G such that T" = yTy~*.

Corollary 11 Let G be a compact, connected matrix group. Then

the exponential map exp: g — G is surjective.
A key idea in proving these is

Proposition 12 Fvery torus T has a topological generator, i.e.,
there is an element t € T with (t) dense in T.

3 A Lie group that is not a matrix group

Let
1 =z =z 1 0 n

U= 0 1 y|l:xy,ze€RH, N= 01 0|:meZyp<l.
0 0 1 0 0 1

The Heisenberg group H = U/N is a 3-dimensional Lie group with an
exact sequence
1-T—H—RxR-—1,

where T' = T is central and contained in the commutator subgroup.

Proposition 13 Every Lie homomorphism ¢: H — GL,(R) has
non-trivial kernel.
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