L-complete Hopf algebroids arXiv:0901.1471

Andrew Baker

Glasgow Algebra Seminar 11th February 2009

Derived functors of completion

Let (R, \mathfrak{m}) be a commutative Noetherian regular local ring and let $\mathcal{M} = \mathcal{M}_R$ be the category of left *R*-modules and $\otimes = \otimes_R$. For an *R*-module *M*, the \mathfrak{m} -adic completion is

$$M_{\mathfrak{m}} = \lim_{k} M/\mathfrak{m}^{k} M = \lim_{k} (R/\mathfrak{m}^{k} \otimes_{R} M).$$

This defines an additive functor $(-)_{\mathfrak{m}}: \mathscr{M} \longrightarrow \mathscr{M}$ which is neither left nor right exact. Instead we can define its left derived functors L_s for $s \ge 0$ as follows. Given a module \mathcal{M} , choose a projective resolution $\mathcal{P}_{\bullet} \longrightarrow \mathcal{M} \to 0$ and form the complex $(\mathcal{P}_{\bullet})_{\mathfrak{m}}$:

$$\cdots \longrightarrow (P_s)_{\mathfrak{m}} \longrightarrow (P_{s-1})_{\mathfrak{m}} \longrightarrow (P_0)_{\mathfrak{m}} \rightarrow 0.$$

Now define

$$L_s M = H_s((P_{\bullet})_{\mathfrak{m}}).$$

Then there are natural transformations

$$\mathsf{Id} \xrightarrow{\eta} L_0 \longrightarrow (-)_{\mathfrak{m}} \longrightarrow R/\mathfrak{m} \otimes_R (-).$$

where the two right hand natural transformations are epimorphic for each module, and L_0 is idempotent, *i.e.*, $L_0^2 \cong L_0$.

L-complete modules

Can assume R is complete, $R_{\mathfrak{m}} = R$. A module M is L-complete if $M \cong L_0 M$. Get a full subcategory $\widehat{\mathscr{M}} \subseteq \mathscr{M}$ of L-complete modules. There is a symmetric monoidal product on $\widehat{\mathscr{M}}$,

 $M\widehat{\otimes}N = L_0(M \otimes N).$

- If *M* is *L*-complete then $L_s M = 0$ for s > 0.
- For any N, each $L_s N$ is L-complete.
- ▶ If *M* is finitely generated then

$$L_0 M \cong M_{\mathfrak{m}}, \quad M \otimes L_0 N \cong L_0 (M \otimes N),$$

$$R/\mathfrak{m}^k \otimes L_0 N \cong R/\mathfrak{m}^k \otimes N = N/\mathfrak{m}^k N.$$

A module has *bounded* \mathfrak{m} -*torsion* if it is annihilated by some power of \mathfrak{m} . Every such module is *L*-complete.

Nakayama Lemma: If M is L-complete, mM = M ⇒ M = 0.
M has enough projectives which are the pro-free modules F_m = L₀F for F a free module. So-flat modules are pro-free. If P is flat then L₀P = P_m and is pro-free. M has no interesting injectives since an injective would be m-divisible.

Determining the derived functors L_s

Theorem

For any module M, there is a natural short exact sequence

$$0 \to \lim_{r} \operatorname{Tor}_{s+1}^{R}(R/\mathfrak{m}^{r}, M) \longrightarrow L_{s}M \longrightarrow \lim_{r} \operatorname{Tor}_{s}^{R}(R/\mathfrak{m}^{r}, M) \to 0.$$

If $\mathfrak{m} = (u_1, \ldots, u_n)$ where the sequence u_i is regular, then there is a certain module R/\mathfrak{m}^∞ for which

$$L_s M = \operatorname{Ext}^{n-s}(R/\mathfrak{m}^\infty, M).$$

Hence $L_s = 0$ if s > n.

A filtered directed system of *L*-complete modules M_{α} has a colimit $\operatorname{colim}_{\alpha} M_{\alpha}$ in \mathscr{M} and $L_0(\operatorname{colim}_{\alpha} M_{\alpha})$ is its colimit in $\widehat{\mathscr{M}}$. The functor $\{M_{\alpha}\} \mapsto L_0(\operatorname{colim}_{\alpha} M_{\alpha})$ has left derived functors $\operatorname{colim}^{(s)}$ which can be identified by

$$\operatorname{colim}_{\alpha}^{(s)}M_{\alpha} = L_{s}(\operatorname{colim}_{\alpha}M_{\alpha}).$$

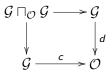
Notice that $\operatorname{colim}_{\alpha}^{(s)} = 0$ if s > n. For coproducts, we also have $\operatorname{colim}_{\alpha}^{(n)} = 0$ (Hovey).

Hopf algebroids

Let \mathscr{C} be a category with the properties required for the following to make sense. A groupoid object in \mathscr{C} , $(\mathcal{O}, \mathcal{G}, c, d, i, \mu, \gamma)$, consists of objects \mathcal{O}, \mathcal{G} and morphisms

$$\mathcal{O} \xrightarrow{i} \mathcal{G} \xrightarrow{c} \mathcal{O} \qquad \mathcal{G} \sqcap_{\mathcal{O}} \mathcal{G} \xrightarrow{\mu} \mathcal{G} \qquad \mathcal{G} \xrightarrow{\gamma} \mathcal{G}$$

satisfying the conditions of a groupoid (=small category in which all morphisms are invertible). Here we define $\mathcal{G} \sqcap_{\mathcal{O}} \mathcal{G}$ from the pullback diagram



Dually, a cogroupoid in object in $\mathscr C$ is a groupoid object in the opposite category $\mathscr C^o$.

Cogroupoids in commutative rings

Let \Bbbk be a fixed commutative ring (e.g., $\mathbb{Z})$ and let $\mathscr{C}=\mathscr{C}_\Bbbk$ be the category of commutative unital \Bbbk -algebras. The opposite category \mathscr{C}^o is the category of \Bbbk -schemes, i.e., covariant corepresentable functors

$$\operatorname{Spec}_{\Bbbk}(R,-) = \mathscr{C}(R,-)$$

for $R \in \mathscr{C}$, defined on \mathscr{C} and taking values in the category of sets. If such a functor takes values in the category of groupoids, then there are commutative rings A and Γ and morphisms

$$A \stackrel{\varepsilon}{\longleftarrow} \Gamma \stackrel{\eta_L}{\underset{\eta_R}{\longleftarrow}} A \qquad \Gamma \otimes_A \Gamma \stackrel{\psi}{\longleftarrow} \Gamma \qquad \Gamma \stackrel{\chi}{\longleftarrow} \Gamma$$

inducing the dual groupoid structure. This structure makes the pair (A, Γ) into a *Hopf algebroid* in \mathscr{C} . The tensor product is to be interpreted as the *A*-bimodule tensor product $_{\eta_R} \otimes_{\eta_L}$. If $\eta_R = \eta_L$ then (A, Γ) is a *Hopf algebra*, which is a cogroup object in \mathscr{C} , and the dual object is a group valued functor.

L-complete Hopf algebroids

We will consider objects in $\widehat{\mathscr{M}}$ which have the required structure to be cogroupoid objects. These actually lie in a subcategory of *commutative bi-ring objects*.

A commutative bi-ring object Γ is a non-unital monoid equipped with two units $\eta_L, \eta_R \colon R \longrightarrow \Gamma$ which we view as giving left and right *R*-module structures.

An *R*-biunital ring object Γ is *L*-complete if Γ is *L*-complete as both a left and a right *R*-module.

Suppose that Γ is an *L*-complete commutative *R*-bi-unital ring object which has the following additional structure:

- a *counit*: a ring homomorphism $\varepsilon \colon \Gamma \longrightarrow R$;
- ► a coproduct: a ring homomorphism $\psi \colon \Gamma \longrightarrow \Gamma \widehat{\otimes} \Gamma = \Gamma_R \widehat{\otimes}_R \Gamma$;
- an *antipode*: a ring homomorphism $\chi \colon \Gamma \longrightarrow \Gamma$.

Then Γ is an *L*-complete Hopf algebroid if

- with this structure, Γ becomes a cogroupoid object,
- ▶ if Γ is pro-free as a left (or equivalently as a right) *R*-module,
- ▶ the ideal $\mathfrak{m} \triangleleft R$ is *invariant*, *i.e.*, $\mathfrak{m}\Gamma = \Gamma \mathfrak{m}$.

We often write such a pair by (R, Γ) if the structure maps are clear.

Example 1 Take an honest Hopf algebroid (R, Γ) which is flat as an *R*-module and $\mathfrak{m}\Gamma = \Gamma\mathfrak{m}$. Then $(R, L_0\Gamma)$ is an *L*-complete Hopf algebroid.

Example 2 Let G be a profinite group acting continuously on R. Then $(R, \operatorname{Map}^{c}(G, R))$ can be given the structure of an L-complete Hopf algebroid.

Comodules

Let (R, Γ) be an *L*-complete Hopf algebroid. A (left) *comodule* over (R, Γ) is an *L*-complete *R*-module *M* with a module homomorphism map $\rho: M \longrightarrow \Gamma \widehat{\otimes} M$ which is coassociative and counital. The category of all such comodules $\widehat{\mathcal{M}}$ need not be abelian, but restricting to comodules which are finitely generated or have bounded torsion then we obtain abelian categories $\Gamma \widehat{\mathcal{M}}_{\mathrm{bt}}$ and $\Gamma \widehat{\mathcal{M}}_{\mathrm{fg}}$.

Goal Would like some kind of Jordan-Hölder type filtration for finitely generated comodules.

Prehistory (ca 1993) Did something like this for certain types of Hopf algebroids coming from pro-*p*-groups acting on power series algebras $R = \mathbb{Z}_p[[v_1, \ldots, v_{n-1}]]$. But also showed they couldn't be generalised to Landweber filtrations corresponding to the invariant ideals $(p, v_1, \ldots, v_{r-1}) \triangleleft R$.

Jordan-Hölder filtrations

A comodule M is *discrete* if each element is annihilated by some \mathfrak{m}^k ; if M is finitely generated then this implies that some \mathfrak{m}^ℓ annihilates M.

For a finitely generated discrete module, there is a filtration by subcomodules

$$M \supseteq \mathfrak{m} M \supseteq \mathfrak{m}^2 M \supseteq \cdots$$

which eventually reaches 0. The filtration quotients are comodules over the Hopf algebra $(R/\mathfrak{m}, \Gamma/\mathfrak{m}\Gamma)$ with R/\mathfrak{m} the residue field.

Theorem

If $(R/\mathfrak{m}, \Gamma/\mathfrak{m}\Gamma)$ is a unipotent Hopf algebra, then every finitely generated discrete (R, Γ) -comodule M admits a filtration by subcomodules

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{r-1} \supseteq M_r = 0,$$

where $M_k/M_{k+1} \cong R/\mathfrak{m}$. Hence R/\mathfrak{m} is the only finitely generated simple comodule.

Some examples

- (R, Map^c(G, R)) where G is a pro-p-group and char R/m = p. This comes from the standard fact that the Hopf algebra is unipotent (R/m, Map^c(G, R/m)) − equivalently, the pro-group ring R/m[[G]] is a limit of finite group rings which Artinian local rings.
- Coming from Algebraic topology: The Lubin-Tate Hopf algebroids ((E_n)₀, E_n[∨]₀E_n). These are built up from extensions of examples with pro-p-groups and unicursal Hopf algebroids. The reduced unicursal Hopf algebroids can be described in terms of Galois extensions.