

Slide 1

Andrew Baker (Glasgow) http://www.maths.gla.ac.uk/~ajb July 2001

1 Katz's ring of divided congruences

N. Katz [5] introduced a *p*-adic ring of divided congruences amongst modular forms which is closely related to the topological object $KU_0 E\ell\ell$. This ring is used to determine $E\ell\ell_* E\ell\ell$ in [1] and also proves useful in [2] for calculating the E₂-term of the Adams spectral sequence

 $\mathbf{E}_{2}^{**} = \mathrm{Ext}_{\mathcal{E}\ell\ell_{*}\mathcal{E}\ell\ell}^{**}(\mathcal{E}\ell\ell_{*}, \mathcal{E}\ell\ell_{*}) \Longrightarrow \pi_{*}S_{\mathcal{E}\ell\ell}.$

A more general version also appears in [2, 3, 4].

For a prime p > 3, let $DC = \{\sum_{r} F_r(q) : F_r \text{ a level 1 mod. form of weight } r\} \subset \mathbb{Z}[1/6]((q)),$ $DC_p = \{\sum_{r} F_r(q) : F_r \text{ a level 1 mod. form of weight } r\} \subset \mathbb{Z}_{(p)}((q)).$ Then $DC/(p) = DC_p/(p)$. There is an action of $\mathbb{Z}_{(p)}^{\times}$ on DC/(p), namely $\alpha \cdot \sum_{r} F_r(q) = \sum_{r} \alpha^r F_r(q) \quad (\alpha \in \mathbb{Z}_{(p)}^{\times}).$ This extends to a continuous action of \mathbb{Z}_p^{\times} on DC/(p). Theorem 1. There are isomorphisms of rings $KU_0 E\ell\ell \cong DC, \quad KU_0 E\ell\ell_{(p)} \cong DC_p, \quad KU_0 E\ell\ell/(p) \cong DC/(p).$

 $KU_0 E\ell\ell \cong DC$, $KU_0 E\ell\ell_{(p)} \cong DC_p$, $KU_0 E\ell\ell/(p) \cong DC/(p)$. Moreover, the actions of $\mathbb{Z}_{(p)}^{\times}$ on DC_p and \mathbb{Z}_p^{\times} on DC/(p) correspond to the actions of the K-theory Adams operations.

In his work, Katz uses a filtration on $D_p = DC/(p)$, $D_p^{(1)} \subset D_p^{(2)} \subset \cdots \subset D_p^{(r)} \subset \cdots$ for which $D_p^{(r)} = D_p^{1+p^r \mathbb{Z}_p}$, the ring of invariants with respect to the subgroup $1 + p^r \mathbb{Z}_p \leq \mathbb{Z}_p^{\times}$. **Theorem 2.** $D_p^{(r+1)}$ is a simple \mathbb{F}_p -Artin-Schreier extension of $D_p^{(r)}$ with Galois group $(1 + p^r \mathbb{Z}_p)/(1 + p^{r+1} \mathbb{Z}_p) \cong \mathbb{Z}/p = \mathbb{F}_p$. We say that B is a simple \mathbb{F}_p Artin-Schreier extension of an \mathbb{F}_p -algebra A if $B = A[t]/(t^p - t - a)$ for some $a \in A$; the Galois group Gal $(B/A) \cong \mathbb{F}_p$ consists of the p distinct A-algebra automorphisms $f(t) \longmapsto f(t+u) \quad (u \in \mathbb{F}_p)$. We also have $D_p^{(1)} = E\ell\ell_*/(p, A - 1)$, the ring of mod p modular forms of Swinnerton-Dyer and Serre. **Corollary 3.** $E\ell\ell_*/(p)[A^{-1}] \longrightarrow KU_*E\ell\ell/(p)$ is faithfully flat.

Slide 2

2 Cohomology of Artin-Schreier towers

Proposition 4. If B is a simple \mathbb{F}_p -Artin-Schreier extension of A then the p elements $(t+u)^{p-1}$ $(u \in \mathbb{F}_p)$ form a normal basis with respect to the Galois group $\operatorname{Gal}(B/A)$.

Slide 4

A sequence of such simple \mathbb{F}_p -Artin-Schreier extensions

 $A = B_1 \subset B_2 \subset \cdots \subset B_r \subset \cdots$

is called an \mathbb{F}_p -Artin-Schreier tower if there is a pro-p group G acting properly on $B = \bigcup_{r \ge 1} B_r$ with normal subgroups $G_r \triangleleft G$ for which $G_1 = G, B^{G_r} = B_r, G_r/G_{r+1} \cong \mathbb{F}_p$ and $G = \varprojlim_r G_r$.

 $\mathrm{H}^{*}_{\mathrm{c}}$ denotes continuous cohomology.

Theorem 5. For such an \mathbb{F}_p -Artin-Schreier tower,

$$\mathrm{H}^*_{\mathrm{c}}(G; B) = \varinjlim \mathrm{H}^*(G/G_r; B_r) = A.$$

r

Slide 5

The proof requires a lemma proved with a simple argument using the Lyndon-Hochschild-Serre spectral sequence.

Lemma 6. Let $A \subset B \subset C$ be a tower of commutative unital rings. Let $G \leq \operatorname{Aut}_A(C)$ be finite and $N \triangleleft G$ with $C^G = A$, $C^N = B$, and $C \cong B[N]$ as a B[N]-module. Then

$$\mathrm{H}^*(G;C) \cong \mathrm{H}^*(G/N;B).$$

3 The $E\ell\ell$ -theory ASS

We are interested in calculating the elliptic cohomology Adams E_2 -term $\operatorname{Ext}_{E\ell\ell_*E\ell\ell}^*(E\ell\ell_*, E\ell\ell_*)$. At each prime p > 3, $E\ell\ell_*$ is v_2 -periodic, so we might expect that the only chromatic layers are those for $v_0 = p$, v_1 and v_2 . This is really a consequence of a result of Hovey & Sadofsky [4] which shows that the chromatic filtration for a v_n -periodic theory stops at the *n*-th chromatic layer. We also require some 'change of rings' results.

Let (A, Γ) be a (graded) Hopf algebroid over a ring k. Given a homomorphism of commutative k-algebras $f: A \longrightarrow B$ we can form $\Sigma_f = B \otimes_A \Gamma \otimes_A B$. Then (B, Σ_f) becomes a Hopf algebroid and there is a natural morphism of Hopf algebroids $f_*: (A, \Gamma) \longrightarrow (B, \Sigma_f)$ induced by the evident algebra homomorphism $\Gamma \longrightarrow \Sigma_f$.

Let M be a left (A, Γ) -comodule. Then $f^*M = B \otimes_A M$ inherits a natural left (B, Σ_f) -comodule structure. In the next result, the key idea of using faithful flatness is due to Würgler and independently by Hopkins [4].

Theorem 7. If the algebra extension $f: A \longrightarrow B$ is faithfully flat, then for any Γ -comodule M there is a natural isomorphism

Slide 7

$$\operatorname{Ext}_{\Sigma_f}^{**}(B, f^*M) \cong \operatorname{Ext}_{\Gamma}^{**}(A, M).$$

We also need a standard homotopy invariance result. **Proposition 8.** Suppose $f, g: A \longrightarrow B$ and $H: \Gamma \longrightarrow B$ are \Bbbk -algebra homomorphisms s.t. $H \circ \eta_L = f$ and $H \circ \eta_R = g$. Then (B, Σ_f) and (B, Σ_g) are naturally equivalent and there is a natural isomorphism

 $\operatorname{Ext}_{\Sigma_{f}}^{**}(B, f^{*}M) \cong \operatorname{Ext}_{\Sigma_{g}}^{**}(B, g^{*}M)$

for any left Γ -comodule M.

We can use these results for the case $A = E\ell\ell_*/(p)[A^{-1}]$, $\Gamma = E\ell\ell_*E\ell\ell/(p)[A^{-1}]$ and $f = \eta_R \colon A \longrightarrow B = KU_*E\ell\ell/(p)$ to show that

$$\operatorname{Ext}_{E\ell\ell_*E\ell\ell}^{**}(E\ell\ell_*, E\ell\ell_*/(p)[A^{-1}]) \cong \operatorname{Ext}_{\Sigma_f}^{**}(B, B).$$

But

Slide 8

$$\mathcal{E}\ell\ell_*\mathcal{E}\ell\ell/(p)[A^{-1}] = \mathcal{E}\ell\ell_* \underset{MU_*}{\otimes} MU_*MU \underset{MU_*}{\otimes} \mathcal{E}\ell\ell_*/(p)[A^{-1}],$$
$$KU_*KU/(p) = KU_* \underset{MU_*}{\otimes} MU_*MU \underset{MU_*}{\otimes} KU_*/(p),$$

and we can obtain Σ_f either from $E\ell\ell_*E\ell\ell/(p)[A^{-1}]$ by tensoring with $KU_*E\ell\ell/(p)$ over $E\ell\ell_*/(p)[A^{-1}]$ or by tensoring $KU_*KU/(p)$ with $KU_*E\ell\ell/(p)[A^{-1}]$ over $KU_*/(p)$.

Again using 8 and 7, the second interpretation shows that

$$\begin{aligned} \operatorname{Ext}_{E\ell\ell_*E\ell\ell}^{**}(E\ell\ell_*, E\ell\ell_*/(p)[A^{-1}]) &\cong \operatorname{Ext}_{KU_*KU}^{**}(KU_*, KU_*/(p)) \\ &\cong \operatorname{Ext}_{K(1)_*K(1)}^{**}(K(1)_*, K(1)_*). \end{aligned}$$

Slide 9

In fact, a similar argument works to show that

 $\operatorname{Ext}_{\mathcal{E}\ell\ell_*\mathcal{E}\ell\ell}^{**}(\mathcal{E}\ell\ell_*, \mathcal{E}\ell\ell_*/(p)[A^{-1}]) \cong \operatorname{Ext}_{K(2)_*K(1)}^{**}(K(2)_*, K(2)_*).$

It is perhaps more illuminating to see the general version of such results.

4 A general version

Theorem 9. Let R_* be an algebra over $\mathbb{F}_{p^n} \otimes BP_*$ which is annihilated by I_n and in which there exists a unit u satisfying $v_n = u^{(p^n-1)/(p-1)}$. Then the ring

$$R_*K(n) = R_* \underset{BP_*}{\otimes} BP_*BP \underset{BP_*}{\otimes} K(n)_*$$

is a free R_* -module. Moreover, there is an exhaustive filtration of subalgebras

$$R_* = R_* K(n)^{(1)} \subset R_* K(n)^{(2)} \subset \cdots \subset R_* K(n)^{(k)} \subset \cdots \subset R_* K(n)$$

in which each extension $R_*K(n)^{(k)} \longrightarrow R_*K(n)^{(k+1)}$ is a free $R_*K(n)^{(k)}$ -module and a Galois extension of Artin-Schreier type with Galois group \mathbb{F}_{p^n} .

There is an action of the Morava stabiliser group \mathbb{S}_n under which $R_*K(n)^{(k)} = R_*K(n)_*^{\mathbb{S}_n^{[k]}}$, the fixed point set of the closed subgroup

$$\mathbb{S}_n^{[k]} = \{1 + \sum_{k \leqslant r} \alpha_r S^r : \forall r, \, \alpha_r^{p^n} = \alpha_r\} \subseteq \mathbb{S}_n.$$

Slide 11

The continuous cohomology satisfies

 $\operatorname{Ext}_{K(n)_*K(n)}^{*\,*}(K(n)_*,R_*K(n))\cong\operatorname{H}^*_{\operatorname{c}}(\mathbb{S}_n;R_*K(n))=R_*.$

References

- A. Baker, Operations and cooperations in elliptic cohomology, Part I: Generalized modular forms and the cooperation algebra, New York J. Math. 1 (1995), 39–74.
- [2] A. Baker, On the Adams E₂-term for elliptic cohomology, in *Proceedings of the 1999 Boulder Conference*, Contemp. Math. **271** (2001), 1–15.
- [3] A. Baker, On the cohomology of some Hopf algebroids and Hattori-Stong theorems, Homology, Homotopy and Applications 2 (2000), 29–40.
- [4] M. Hovey & H. Sadofsky, Invertible spectra in the E(n)-local stable homotopy category, J. London Math. Soc. 60 (1999), 284–302.

