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We will define a notion of cobordism generalizing that of Quillen:

• D. G. Quillen, Elementary proofs of some results of cobordism
theory using Steenrod operations, Adv. in Math. 7 (1971),
29–56.

Details appear in

• C. Özel, On the Complex Cobordism of Flag Varieties Associated
to Loop Groups, PhD thesis, University of Glasgow (1998).

• A. Baker & C. Özel, Complex cobordism of Hilbert manifolds
with some applications to flag varieties of loop groups, Glasgow
University Mathematics Department preprint no. 98/37,
http://www.maths.gla.ac.uk/∼andy/dvi-ps.html

1



Slide 3

1 Cobordism of Fredholm maps

A manifold will mean a separable smooth manifold locally modelled
on a separable Hilbert space.

Definition 1.1 A smooth map f : X −→ Y between manifolds is
Fredholm if for each x ∈ X, dfx : TxX −→ Tf(x)Y is a Fredholm
operator. The index of f at x ∈ X is then defined by

index fx = dim ker dfx − dim coker dfx.

The function X −→ Z given by x 7−→ index dfx is locally constant,
hence continuous.
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Definition 1.2 Suppose that f : X −→ Y is a proper Fredholm map
with even index at each point. Then f is an admissible complex
orientable map if there is a smooth factorization

f : X
f̃−→ ξ

q−→ Y,

where q : ξ −→ Y is a finite dimensional smooth complex vector
bundle and f̃ is a smooth embedding endowed with a complex
structure on its normal bundle ν(f̃).

A complex orientation for a Fredholm map f of odd index is one for
the map (f, ε) : X −→ Y × R given by (f, ε)(x) = (f(x), 0) for every
x ∈ X. Then for x ∈ X, index (f, ε)x = (index fx)− 1 and the finite
dimensional complex vector bundle ξ in the smooth factorization will
be replaced by ξ × R −→ Y × R.
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Suppose that f is an admissible complex orientable map with a
factorisation f̃ . As the map f is Fredholm and ξ is a finite
dimensional vector bundle, f̃ is Fredholm. Then

index f̃ = index f − dim ξ.

There is an obvious notion of isotopy of such factorizations which
defines an equivalence relation. There is also a notion of stabilization
defining a further equivalence relation.

Definition 1.3 Two factorizations f : X
f̃−→ ξ

q−→ Y and

f : X
f̃ ′−→ ξ′

q′−→ Y are equivalent if ξ and ξ′ can be embedded as
subvector bundles of a vector bundle ξ′′ −→ Y such that f̃ and f̃ ′ are
isotopic in ξ′′ with isotopy compatible with the complex structure on
the normal bundles.
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Definition 1.4 Let fi : Xi −→ Y (i = 0, 1) be admissible complex
oriented maps. Then f0 is cobordant to f1 if there is an admissible
complex orientable map h : W −→ Y × R such that the maps
εi : Y −→ Y × R given by εi(y) = (y, i) for i = 0, 1, are transverse to
h and the pull-back map εi

∗h is equivalent to fi.

The cobordism class of f : X −→ Y will be denoted [X, f ].

This notion of cobordism defines an equivalence relation.

For a separable Hilbert manifold Y , Ud(Y ) denotes the set of
cobordism classes of the admissible complex orientable proper
Fredholm maps of index −d. U∗(Y ) is a graded group under the
addition defined by disjoint union. The empty set defines 0. For
every Y there is a distinguished element 1 = [Y, IdY ] ∈ U0(Y ).
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If f : X −→ Y is an admissible complex orientable Fredholm map of
index r and g : Y −→ Z is an admissible complex orientable
Fredholm map with index s, then g ◦ f : X −→ Z is an admissible
complex orientable map with index r + s.

There is push-forward (or Gysin) map

g∗ : Ud(Y ) −→ Ud−s(Z)

g∗[X, f ] = [X, g ◦ f ],

which is defines a homomorphism of graded groups.

This gives covariance with respect to proper Fredholm maps to our
functor.

Slide 8

2 Transversality and contravariance

Proposition 2.1 Let f : X −→ Y be an admissible complex
orientable map and g : Z −→ Y a smooth map transverse to f . Then
the pull-back map

g∗f : Zu
Y
X −→ Z

is an admissible complex orientable map, where u
Y

denotes the smooth

pullback or transverse intersection.

We would like to know that given such a pair of maps (perhaps with
g also proper Fredholm) there exists an approximation f ′ to f

transverse to g. It appears that this may not always exist! If Y and
Z are finite dimensional then it is well known that such transverse
approximations do exist and can be taken to be cobordant to f .
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A similar difficulty applies to the existence of internal cup products
Ur(Y )× Us(Y ) −→ Ur+s(Y ) which ought to be defined by

[W, g] ∪ [Z, h] = ∆∗[W × Z, g × h],

where ∆: Y −→ Y × Y is the diagonal.

The volume

• Global Analysis, Proc. Symp. Pure Math. 15 (1970), 213–222.

contains many seemingly related results on infinite dimensional
transversality but none appear to be suitable for our needs. An
example of what is proved there is the following result of F. Quinn.

Theorem 2.2 Let f : X −→ Y be a Fredholm map and g : M −→ Y

an inclusion of a finite-dimensional submanifold. Then there is an
approximation g′ of g in C∞(M, Y ) with the fine topology such that
g′ is transverse to f .
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Another result following from work therein is the following which
establishes contraviance with respect to the class of Sard functions of
Quinn’s paper.

Theorem 2.3 Let X,Y, Z be infinite dimensional smooth separable
Hilbert manifolds, f : X −→ Y an admissible complex orientable map
and g : Z −→ Y a Sard function. Then the cobordism class of the
pull-back Zu

Y
X −→ Z only depends on the cobordism class of f .

Hence there is a group homomorphism g∗ : Ud(Y ) −→ Ud(Z) given by

g∗[X, f ] = [Zu
Y
X, g∗(f)].
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3 Euler classes for finite dimensional

bundles

It turns out that despite the difficulties with transversality mentioned
above, there are Euler classes for finite dimensional complex vector
bundles in U∗( ). Let ξ −→ Y be such a bundle of dimension n. Then
the zero section i : Y −→ ξ defines a cobordism class
i∗1 = [Y, i] ∈ U2n(ξ). When Y is finite dimensional we have
χ(ξ) = i∗i∗1, however we need to ensure that the right hand side is
meaningful.

It turns out that separable Hilbert manifolds possess enough
partitions of unity hence many global sections of bundles exist and
are Sard functions. The following result of Quinn shows that i∗i∗1
does indeed exist.
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Theorem 3.1 Let U be an open set in separable infinite dimensional
Hilbert space H and let f : X −→ Y be a proper Fredholm map
between separable infinite dimensional Hilbert manifolds X and Y .
Then the set of maps transverse to f is dense in the closure of Sard
function space S(U, Y ) in the C∞ fine topology.

We also use the Open Embedding Theorem of Eells & Elworthy in
proving this.

Theorem 3.2 Let X be a smooth manifold modelled on the separable
infinite dimensional Hilbert space H. Then X is diffeomorphic to an
open subset of H.
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The following projection formula holds.

Theorem 3.3 Let f : X −→ Y be an admissible complex orientable
Fredholm submersion and let π : ξ −→ Y be a finite dimensional
smooth complex vector bundle. Then

χ(ξ) ∪ [X, f ] = f∗χ(f∗ξ).
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4 The relationship between U-theory and

MU-theory

Let X be a separable Hilbert manifold and recall Quinn’s
Theorem 2.3. Then for each proper smooth map f : M −→ X where
M is a finite dimensional manifold, there is a pullback
homomorphism f∗ : U∗(X) −→ U∗(M) = MU∗(M). If we consider all
such maps into X, then there is a unique homomorphism
ρ : U∗(X) −→ lim←−

M−→X

MU∗(M), where the limit is taken over all such

maps from finite dimensional manifolds. The following conjectures
seem reasonable and are consistent with examples.
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Conjecture 4.1 Let X be a separable Hilbert manifold.

A) The natural homomorphism ρ : U∗(X) −→ lim←−
M−→X

MU∗(M) is

surjective.

B) If Uev(X) = 0 or Uodd(X) = 0, the natural homomorphism
ρ : U∗(X) −→ lim←−

M−→X

MU∗(M) is surjective.

C) If MUev(X) = 0 or MUodd(X) = 0, the natural homomorphism
ρ : U∗(X) −→ lim←−

M−→X

MU∗(M) is surjective.

We hope that surjectivity can be replaced isomorphism, but do not
have any examples to support this.
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5 Some examples

Let H be a separable complex Hilbert space and suppose that there
is an increasing sequence of finite dimensional subspaces Hn with
dim Hn = n so that H∞ =

⋃
n>1 is dense in H. Then the projective

space P(H) is a separable Hilbert manifold containing P(H∞). We
have

P(H) = U(H)/U(H1
⊥)×U(H ′)

where H1
⊥ is the orthogonal complement of H1. By Kuiper’s

Theorem, U(H) and U(H) are contractible, hence the inclusion
P(H∞) −→ P(H) is an equivalence of classifying spaces for
S1 ∼= U(H1).
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Theorem 5.1 The restriction map

ρ : U∗(P(H)) −→ MU∗(P(H))

is surjective. More generally, the restriction maps

ρ : U∗(Grr(H) −→ MU∗(Grr(H))

are surjective.

To prove this we may use the fact that for each n > 1, the orthogonal
complement Hn

⊥ of Hn has a projective space projective space which
is a proper Fredholm subspace of P(H) of index −2n defining a
cobordism class [P(Hn

⊥), i] ∈ U2n(P(H)) restricting to
xn ∈ MU2n(CP∞) ∼= MU2n(P(H∞)).

Slide 18

6 Schubert calculus in complex

cobordism for loop groups

Bressler & Evens generalized ideas of classical Schubert calculus to
complex cobordism. For a compact, conected semisimple Lie group G

with maximal torus T they described MU∗(G/T ) in terms of certain
Bott–Samelson resolutions of the Schubert cells of the complex flag
space G/T ∼= GC/B where B is a Borel subgroup containing T . The
Schubert cells are indexed by the Weyl group WG.

For the loop group LG there is a similar description of the cell
structure of the complex flag space LG/T ∼= LGC/B̃, where B̃ is a
Borel subgroup. This time the cells are indexed by the Affine Weyl
group ŴG.
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There are Bott–Samelson resolutions which are iterated CP1-bundles
over LG/T . Thus for each cell Cw (w ∈ ŴG) there is a map

LGC×eB Pα1 ×eB Pα2 ×eB · · · ×eB Pα`(w)/B̃ −→ LGC/B̃ ∼= LG/T

representing an element of U2`(w)(LG/T ). Here Pα is the parabolic
subgroup containing B̃ associated to the simple root α and
w = rα1 · · · rα`(w) is a reduced presentation in terms of fundamental
reflections rα; we have Pα/B̃ ∼= CP1.

There are also analogues of the Bernstein–Gelfand–Gelfand operators
Aα associated to simple roots and defined by

Aα = πα
∗πα∗,

defined in terms of the projection in the CP1-bundle

πα : LG/T ∼= LGC/B̃ −→ LGC/Pα.
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Using work of Pressley & Segal we also have

Theorem 6.1 The restriction map

ρ : U∗(LG/T ) −→ MU∗(LG/T )

is surjective.
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