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Introduction

This work explores some connections between the elliptic cohomology of classifying spaces

for finite groups, Virasoro equivariant bundles over their loop spaces and Moonshine for finite

groups. Our motivation is as follows: up to homotopy we can replace the loop group LBG by

the disjoint union
⨿

[γ]BCG(γ) of classifying spaces of centralizers of elements γ representing

conjugacy classes of elements in G. An elliptic object over LBG then becomes a compatible

family of graded infinite dimensional representations of the subgroups CG(γ), which in turn

defines an element in J. Devoto’s equivariant elliptic cohomology ring Eℓℓ∗G. Up to localization

(inversion of the order of G) and completion with respect to powers of the kernel of the

homomorphism Eℓℓ∗G −→ Eℓℓ∗{1}, this ring is isomorphic to Eℓℓ∗(BG), see [5, 6]. Moreover,

elliptic objects of this kind are already known: for example the 2-variable Thompson series

forming part of the Moonshine associated with the simple groups M24 and the Monster M.

Indeed the compatibility condition between the characters of the representations of CG(γ)

mentioned above was originally formulated by S. Norton in an Appendix to [21], independently

of the work on elliptic genera by various authors leading to the definition of elliptic cohom-

ology (see the various contributions to [17]). In a slightly different direction, J-L. Brylinski

[2] introduced the group of Virasoro equivariant bundles over the loop space LM of a simply

connected manifold M as part of his investigation of a Dirac operator on LM with coefficients

in a suitable vector bundle. Our suggested definition of an elliptic object (= equivariant bundle

over a not necessarily simply-connected space) starts from this, and builds in additional structure

suggested by Moonshine. We propose it as only provisional, for while it fits in well with Devoto’s

construction, the localization which this requires suggests that, even in the very special case of

X = BG, further refinement will be necessary to obtain a geometric definition of an elliptic-like

cohomology theory.

The following example may help the reader to follow our general construction. Accepting for

the moment that up to completion and localization a class in Eℓℓeven(BG) is represented by an

infinite dimensional bundle over the loop space LBG, restriction to the subspace of constant

loops defines a map Eℓℓ∗(BG) −→ K∗(BG)((q)). The image of the representation ring R(G)

in the coefficients of the power series ring on the right is dense, giving a privileged position to

representations whose characters satisfy a modularity condition. The 1-dimensional Thompson

series of [4, 21, 32] are certainly of this type. For the Mathieu group M24 we have a particularly
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simple construction, starting with the Dedekind η-function,

η(τ) = q1/24
∞∏
r=1

(1− qr).

For an arbitrary group element g ∈M24 ⊆ S24 representing a conjugacy class [g], decompose g

as (1)j1 · · · (r)jr with j1 + 2j2 + · · ·+ rjr = 24, a product of disjoint cycles. Write

ηg(τ) = η(τ)j1η(2τ)j2 · · · η(rτ)jr =
∑
n

ag(n)q
n,

where q = e2πiτ . In particular,

η1(τ) = η(τ)24 = ∆.

As [g] runs through all possible conjugacy classes, and writing ωn(g) = ag(n), we see that

Ωn(τ) =

∞∑
n=1

ωnq
n

becomes a Thompson series. That the class functions ωn(g) are actually characters follows from

the identification of the product
∏∞

r=1(1 − qr)−1 with the formal character of the symmetric

algebra on V q + V q2 + V q3 + · · · , where V is the natural permutation representation module.

This is a special case of the construction in §4 below; its defect is that the representation Ω is

inhomogeneous, i.e., the characters are modular forms of varying weight. For the record,

the weight of ηg(τ) =
1

2
(number of cycles in g),

while the level equals the product of the lengths of the longest and shortest cycles in the

decomposition. The variation in the level is to be expected, and arises naturally in Devoto’s

description of Eℓℓ∗Z/p(point), see [6], section 2.3. However, the variation of the weight is more

serious. We avoid it by replacing Ω by another Thompson series Θ/Ω, for which the components

of the graded character all have weight zero, that is are modular functions. Here we have

Θ(τ) =
∑
n

θnq
n,

where θn is a permutation representation associated with an action on a suitable lattice L. This

extension of the construction is explained below in §5. For the special case of a finite simple

group such as M24 see [21], section 6.

In terms of centralizers the construction outlined above yields representations (or flatly graded

bundles) for pairs (1, g). The extension to pairs (h, g), at least for the group M24, is contained

in [24, 25], and we return to it in the last section. We restrict ourselves to elements of odd

order, for which the representation module Θ/Ω does not have to be modified in order to satisfy

the ‘genus zero’ condition required by Moonshine. This is very much in the spirit of elliptic

cohomology, which in the form in which we discuss it, is localized away from the prime 2. Indeed

it is interesting to ask whether the construction of the ‘correct’ modular forms for all conjugacy

classes of commuting pairs of elements has anything to do with the extension of the definition

of the homology theory Eℓℓ∗ to the prime 2 by means of a spectrum closely related to that of

connective K-theory, see [15].
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For the reader’s convenience, we summarise the content of each section of this paper as

follows.

§1 Recollection of Devoto’s definition of equivariant elliptic cohomology.

§2 Eℓℓ∗(BG) and families of flat bundles.

§3 Modification of J. Brylinski’s definition of an equivariant Virasoro bundle to allow for

non-trivial fundamental groups.

§4 Examples drawn from [2] following a suggestion of G. Segal [29].

§5 Combination of our Brylinski-motivated construction with lattices. This can be thought

of as the abstract formulation of some of the work of Mason.

§6 We show how the construction of §5 ties in with the work of Devoto, that is how an

elliptic system in the sense of G. Mason is really an element in the zero-th elliptic

cohomology group of the classifying space BG.

We refer to the excellent works of Hirzebruch et al. [9], Landweber [17, 18], Landweber,

Ravenel & Stong [19] and Segal [29] for background details on elliptic genera and elliptic cohom-

ology. For work on the elliptic cohomology of classifying spaces of finite groups and equivariant

elliptic cohomology, see Hopkins, Kuhn & Ravenel [11, 12, 10, 16] and Devoto [5, 6].

We would like to thank C. Athorne, N. Kuhn, G. Mason, J. McKay, J. Morava, R. Steiner

and H. Tamanoi for help and advice. We would also like to acknowledge the financial support

of the EPSRC, EU, ETH and Isaac Newton Institute.

1. Equivariant elliptic cohomology and classifying spaces for finite groups

Recent work of Devoto [5, 6] provides equivariant versions of elliptic cohomology (of level 2)

for finite groups of odd order. This work includes a completion theorem identifying the elliptic

cohomology of BG. It seems plausible that, even without a geometric model for elliptic cohom-

ology, Devoto’s work can be extended to cover the case of a level 1 version for arbitrary finite

groups. Because of this we restate his results in a form anticipating such an extension. We

could however restrict attention to groups of odd order and replace the full modular group by

the congruence subgroup Γ0(2). We therefore denote by Γ whichever of these groups SL2(Z) or
Γ0(2) is being used. We will give a brief description of Devoto’s results in a form suitable for our

use, making the assumption that the extensions above are valid. We may return to the validity

of this assumption in future work. For details of the level 1 version of elliptic cohomology

see Landweber, Ravenel & Stong [19] and Baker [1]; although still unpublished, the influential

preprint of Hopkins, Kuhn & Ravenel [11] also provides an important background to our work.

Throughout, G will denote a finite group and we set

∥G∥ =

3|G| if Γ = SL2(Z),

|G| if Γ = Γ0(2).

There is a G-equivariant cohomology theory EℓℓG( ) defined on the category of finite G-CW

complexes, and possessing the following properties.
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Let

TG = {(γ1, γ2) ∈ G2 : γ1γ2 = γ2γ1},

and

h = {τ ∈ C : im τ > 0}.

There is an action of Γ×G on the product space TG× h given by

(A, γ) · (γ1, γ2, τ) =
(
γγd1γ

−b
2 γ−1, γγ−c

1 γa2γ
−1,

aτ + b

cτ + d

)
,

where A =

(
a b

c d

)
∈ Γ and γ ∈ G.

The coefficient ring Eℓℓ∗G = Eℓℓ∗G(point) is concentrated in even degrees and Eℓℓ2kG (k ∈ Z) is
the group of all holomorphic functions F : TG×h −→ C satisfying the following four conditions.

Dev-1 For A ∈ Γ and (γ1, γ2) ∈ TG,

F (A · ((γ1, γ2), τ)) = (cτ + d)−2kF ((γ1, γ2), τ).

Dev-2 For (γ1, γ2) ∈ TG, the function F ((γ1, γ2), ) : h −→ C is a modular form for some

congruence subgroup Γ′ ⊆ Γ (we can assume that Γ0(|G|) ⊆ Γ′), with a q-expansion at each

cusp of the form ∑
−∞≪r

ar/|G|(γ1, γ2)q
r/d0|G|,

where qr/N = e2πir/N , ar/|G|(γ1, γ2) ∈ Z[1/||G||, ζ|G|] and d0 ∈ N is a constant depending only

on the function F .

Dev-3 The functions ar/|G| are class functions on TG in the sense that for (γ1, γ2) ∈ TG and

γ ∈ G,

ar/|G|(γγ1γ
−1, γγ2γ

−1) = ar/|G|(γ1, γ2).

Dev-4 the functions ar/|G| are ‘Galois invariant’ in the sense that for any t ∈ Z prime to |γ2|,
we have

ar/|G|(γ1, γ
t
2) = σtar/|G|(γ1, γ2),

where σt is the unique automorphism of the ring Z[1/||G||, ζ|γ2|] for which

σt(ζ|γ2|) = ζt|γ2|.

For each γ1, the q-expansion coefficient functions ar/|G|(γ1, ) are actually rational virtual

characters on the centralizer CG(γ1), and thus lie in the rationalized representation ring Q ⊗
R(CG(γ1)). Integrality results of Katz [14] imply that there is a non-zero integer N for which

Nar/|G|(γ1, ) ∈ R(CG(γ1)).

Devoto also proves a completion result that gives a description of Eℓℓ∗(BG) in terms of the

equivariant theory Eℓℓ∗G( ), namely

(1.1) Eℓℓ∗(BG)[1/|G|] ∼= Êℓℓ∗G,
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where the right hand side is the completion with respect to IG = ker ε : Eℓℓ∗G −→ Eℓℓ∗[1/|G|],
the kernel of the augmentation map corresponding to the inclusion of the trivial group into G.

In §6 we will make use of Devoto’s work to identify certain objects as elements of Eℓℓ∗(BG).

2. Some free loop spaces of the classifying space of a finite group

Let G be a finite group. It is well known that BG and EG can be expressed as unions of

finite dimensional smooth manifolds. For example, by considering the permutation action of G

on itself, G can be identified as a subgroup of either O(|G|) or U(|G|); thus we can take EG

to be a union of finite dimensional Stiefel manifolds with smooth free G action and BG as the

union of the orbit spaces. We will now consider the topology of the space LBG of free smooth

loops in BG in detail. The following is probably well known, but still seems worth describing

in detail.

We will begin by identifying the homotopy type of LBG. Let b0 ∈ BG be a chosen basepoint.

We will write T f−→ BG if f ∈ LBG, and T f−→
0

BG if f ∈ ΩBG = Ωb0BG, the subspace of loops

based at b0.

For each α ∈ G, define a subspace of the space of all smooth paths in a universal free

contractible G space EG,

LαEG = {p : R −→ EG : p(t+ 1) = αp(t)∀t ∈ R} ,

and let

LGEG =
⨿
α∈G
LαEG.

An element p ∈ LαEG is determined by its values on the unit interval [0, 1], and we will

sometimes identify LαEG with the space of suitably differentiable maps

LαEG = {p : [0, 1] −→ EG : p(1) = αp(0)} .

There is a free left action of G on LGEG given by

(γ · p)(t) = γp(t).

Under this action, γ ∈ G maps LαEG into Lγαγ−1EG; hence the centralizer CG(α) acts upon

LαEG. The quotient space LGEG/G may be identified with the free loop space LBG. In fact,

each space LαEG can be seen to be contractible using the following explicit contraction which

was pointed out to us by Richard Steiner. Given a based contraction H : [0, 1] × EG −→ EG

for which H(0, x) = x and H(1, x) = e0 (the base point of EG),

Hα : [0, 1]× LαEG −→ LαEG;

Hα(t, p)(s) =


H(t, p(s)) if 0 6 s+ t 6 1,

H

(
1− s, αH

(
s+ t− 1

s
, α−1 · p(s)

))
if 1 6 s+ t 6 2.

By the universality of EG, there are G-equivariant maps LαEG −→ EG × {α}, and thus a

G-equivariant map P −→ EG×G, where the left G-action on the codomain is given by

(e, α) · γ = (γe, γαγ−1).
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On passing to quotients this gives

(2.1) LBG ∼= LGEG/G ≃ EG×
G
Gc.

It follows from this description that the connected components of LBG are indexed on the set

of conjugacy classes of G, and the component corresponding to the class [α] containing α ∈ G

has the homotopy type of

EG×
G
[α] ∼= EG×

G
G/CG(α) ∼= BCG(α).

We will write L[α]BG for this component. Given a choice of representative α for a conjugacy

class [α], the space LαEG is a universal cover of L[α]BG, and the projection LαEG −→ L[α]BG
is a principal CG(α)-bundle. We associate to the latter the bundle

LαEG ×
CG(α)

G −→ L[α]BG

with fibre G and equivalent to the pullback of EG −→ BG along the projection L[α]BG −→ BG.

Thus for any G-space F , the associated bundle EG×G F −→ BG pulls back to the bundle

LαEG ×
CG(α)

F −→ L[α]BG,

with structure group CG(α). All of this depends upon the choice of element α in the conjugacy

class [α].

The double loop space L2BG = Map(T2,BG) can be analyzed in a similar fashion. We

identify L2BG with the iterated mapping space L(LBG), and write its elements in the form

F ( , ), from which we may derive the functions T −→ LBG given by z 7−→ F (z, ) and

z 7−→ F ( , z). The analogues of the LαEG are the spaces

L2α,βEG =
{
F : R2 −→ EG : F (x+ 1, y) = αF (x, y), F (x, y + 1) = βF (x, y), ∀x, y ∈ R

}
defined for all pairs (α, β) ∈ G2 with β ∈ CG(α). These spaces can be combined into the disjoint

union over all such commuting pairs,

L2GEG =
⨿
α,β

L2α,βEG.

Under the evident action of G on the latter space, γ ∈ G maps L2α,βEG onto L2γαγ−1,γβγ−1EG.

Also the contractible space L2α,βEG is preserved by the group CG(α, β) = CG(α)∩CG(β) which

acts freely on it, hence the quotient L2α,βEG/CG(α, β) is homotopy equivalent to the classifying

space BCG(α, β).

There is a natural action of (Diff+)2 = Diff+ ×Diff+ on L2BG given by

((Φ1,Φ2) · F )(z, w) = F (Φ−1
1 (z),Φ−1

2 (w)).

We will modify this by defining a 2-parameter family of actions of the diffeomorphism group

Diff+.

For each pair of coprime integers r, s, there is a copy of the circle

Tr,s =
{
(u, v) ∈ T2 : us = vr

}
⊆ T2.

6



For each (z, w) ∈ T2, there is also the translate

(z, w)Tr,s =
{
(u, v) ∈ T2 : usz−s = vrw−r

}
⊆ T2.

Now choose any pair of integers r′, s′ so that det

(
r s

r′ s′

)
= 1. If we base the circle (z, w)Tr,s

at its unique point (z0, w0) which also lies on the circle Tr′,s′ , we can identify the standard circle

T with (z0, w0)Tr,s by using the map (depending on r, s, r′, s′)

Ψ: T
∼=−→ (z0, w0)Tr,s; t 7−→ (z0t

r, w0t
s).

For a given pair r, s, the circles of the form (z0, w0)Tr,s (where (z0, w0) runs through the circle

Tr′,s′) partition T2.

Each Φ ∈ Diff+ acts on T2 via its action on each circle (z0, w0)Tr,s using the identification

with T; thus Φ(Ψ(t)) = Ψ(Φ(t)). This yields an action of Diff+ on T2 which respects the

partition above. The choices in this definition turn out to be unimportant, since for any other

complementary circle through (1, 1) used to base the circles parallel to Tr,s, the associated

actions of Diff+ are conjugate in the full diffeomorphism group by a Dehn twist generated

by the pair associated to a homology cycle of the circle Tr,s. More generally, any element

A ∈ SL2(Z) gives rise to an R-linear isomorphism on R2 which induces an orientation preserving

diffeomorphism ΘA of T2 = R2/Z2. Then we find that the images under A, ATr,s and ATr′,s′

are also circles yielding a partition of T2; associated to this is a conjugate action of Diff+ and

a fixed point set in L2BG, diffeomorphic to LBG.

Associated to this action of Diff+ is another action on the space L2BG for which

(Φ · F )(u, v) = F (Φ−1(u, v)).

This action has fixed point set

L2r,sBG = {F : F (trz, tsw) = F (z, w) ∀ t, z, w ∈ T} .

An element F ∈ L2r,sBG is determined by its values on the set z = 1, and moreover we have

F (1, ζsrw) = F (1, w) for every w. Hence the function defined on R by the formula

x 7−→ F (1, e2πix)

has period 1/r. By evaluating the first variable at 1, we can identify this fixed point set with

the single loop space LBG. Explicitly, we have

L2r,sBG ∼= LBG; F ←→ (z 7−→ F (1, z1/r)).

Similarly, the function

x 7−→ F (e2πix, 1)

has period 1/s, and by evaluating the second variable at 1, we can make a further identification

with the space LBG given by

L2r,sBG ∼= LBG; F ←→ (z 7−→ F (z1/s, 1)).

We will work with the first of these from now on.
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Notice that any F ∈ L2r,sBG satisfies the functional equation

F (u, vζ−s
r ) = F (u, v),

where ζr = exp(2πi/r). On choosing an integer s′ for which s′s ≡ −1 (mod r), we have

F (u, vζr) =F (u, v(ζ−s′
r )s) = F (u, v).

Similarly,

F (uζs, v) =F (u, v).

Thus we can view elements of L2r,sBG as G-equivalence classes of maps F̃ : R2 −→ EG for which

there exist elements α, β ∈ G satisfying the equations

F̃ (x+ 1/s, y) = αF̃ (x, y), F̃ (x, y + 1/r) = βF̃ (x, y).

Notice that for such a map F̃ together with α, β as above, the relation αβ = βα must hold,

since after factoring out by the action of G we obtain a map into BG from the torus formed by

identifying opposite sides of the rectangle [0, 1/s]× [0, 1/r]. The formulæ

F̃ (x+ 1, y) = F̃ (x+ r(1/s), y) = αsF̃ (x, y),(2.2)

F̃ (x, y + 1) = F̃ (x, y + s(1/r)) = βsF̃ (x, y),(2.3)

show that the holonomy along each of the unit lengths parallel to the two axes is αs and βr

respectively.

3. Virasoro equivariant vector bundles over non-simply connected spaces

In this section we extend work of Brylinski [2] to a notion of Virasoro equivariant bundle

which includes the case of a loop space LX where X is path connected but not necessarily

simply connected. Our primary motivation is to give a definition which applies to the case of a

classifying space for a finite group BG, and we are not sure whether this is ‘correct’ for more

general cases. However, there are connections with Segal’s notion of ‘elliptic object’ described

in [29], section 6. The following discussion is modelled on that for the case of X = BG in §2.
The free loop space LX has components indexed on the conjugacy classes in the fundamental

group Π = π1(X,x0), where x0 is a chosen base point. If X̃ denotes the universal cover of X,

for each α ∈ Π we have the space

LαX =
{
p : R −→ X̃ : p(t+ 1) = αp(t)∀t ∈ R

}
and the disjoint union

LΠX =
⨿
α

LαX.

There is a free action of the fundamental group Π upon LΠX given by (γ · p)(t) = γp(t) for

γ ∈ Π, under which LαX is mapped into Lγαγ−1X by γ. From this we deduce that CΠ(α) acts

freely upon the space LαX whose quotient LαX/CΠ(α) may be identified with the component

L[α]X of LX consisting of loops which lift to paths in X̃ having holonomy in the conjugacy

class of α (which we denote by α).
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Similar constructions work for the double loop space, giving spaces P2
α,β(X) defined for all

α, β ∈ Π with β ∈ CΠ(α), and also their disjoint union P2(X). Here the centralizer CΠ(α, β) =

CΠ(α) ∩ CΠ(β) acts freely upon L2α,βX.

Now let ζ −→ LX be a k-Hilbert bundle, i.e., a vector bundle locally modelled on a Hilbert

space H over the field k. If H is infinite dimensional then we may need to insist on further

conditions, for example to ensure the existence of partitions of unity, as is done in [2]. We

assume that this bundle has an associated principal bundle, say Q −→ LX, with structure

group G acting on H by isometries. We will require some further conditions on ζ.

Conditions 3.1.

VB-1 There is an action of the Virasoro algebra virk on ζ covering the action of diffk associated

to the natural action of Diff+ on LX.

VB-2 On each component L[α]X of LX there is a bundle decomposition

ζ|L[α]X
∼=
⊕̂
r

ξ[α],r,

where the sum is over rational numbers r and each ξ[α],r −→ L[α]X is the eigenbundle for L0

for the eigenvalue −r, and is the finite dimensional flat bundle vector bundle associated to a

finite dimensional representation W ξ
α,r of CΠ(α).

VB-3 There are lower bounds r[α] ∈ Q and d[α] ∈ N for the indexing r and the denominators

appearing in Condition 3.1 VB-2.

We will say that ζ is admissible if all the requirements of Condition 3.1 are satisfied; if all of

these hold except for Condition 3.1 VB-3, then we will say that ζ is unboundedly admissible.

Given an admissible bundle as above, we can define the character of ξ by

charq ξ =
∑
r∈Z

χCΠ(α)W
ξ
α,rq

r,

where χGW denotes the character of the G-representation W and qr = e2πirτ is viewed as

a function on h. This generalizes the standard notion of graded dimension for graded vector

spaces [7] which we will also use.

We might specify similar conditions on a Hilbert bundle over the double loop space of X

using the full diffeomorphism group of the torus T2. However, we will restrict attention to

conditions on the action of Diff+ and diffk related to the fixed point spaces L2r,sX obtained as

fixed point sets of the ‘diagonal’ actions of the diffeomorphism group Diff+ obtained by acting

on the circles of rational slope s/r suitably based. This is described in detail for the case of

X = BG in §2. In particular we recall that L2r,sX ∼= LX under the pairing

F ←→ (z 7−→ F (1, z1/r)).

Thus for any Hilbert bundle ζ −→ L2X, there is a family of bundles{
ζr,s −→ L2r,sX

}
,
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where r, s range over coprime pairs, obtained by restricting to the sets L2r,sX and then transporting

across to LX. Notice that each restriction of ζ to a set of the form L2r,sX admits an action of

the diffeomorphism group Diff+ and hence of the Lie algebras diffR and virR.

A Hilbert bundle ζ −→ L2X is admissible (respectively unboundedly admissible) if for each

pair of coprime integers r, s, the bundle ζr,s is admissible (respectively unboundedly admissible)

over LX.

Now let M be a connected oriented smooth manifold, together with an oriented d-dimensional

bundle ξ −→ M equipped with a Riemannian structure, a Spin structure and a compatible

connection ∇. We also assume that the characteristic class
1

2
p1(ξ) in H4(BG;Z) is 0. For the

significance of this in terms of Spin-like structures on the loop space see [26].

If Π = π1(M) and M̃ is the universal cover of M (viewed as a free left Π-space), then for

α ∈ Π we define a set of smooth maps by

LαM̃ = {f : R −→ M̃ : f(t+ 1) = αf(t) ∀t ∈ R}.

The fundamental group Π acts freely on the disjoint union
⨿

α LαM̃ , and

LM =

(⨿
α

LαM̃

)
/Π =

⨿
[α]∈A

LαM̃/CΠ(α),

where A is the set of conjugacy classes of Π and the coproduct is taken over a complete set of

representatives for elements of A.

Let q : P −→M denote the given Spin bundle of ξ, with structure group Spin(d). We denote

the holonomy group of q with respect to the connection ∇ and a chosen base point x0 ∈M , by

Hol(M) = Hol∇(M) ⊆ Spin(d).

In general, Hol(M) is neither connected nor closed (see the recent work of Wilking [33]). The

closure H = Hol(M) has identity component which will be denoted H0. There is a surjection

of groups Π −→ Π = H/H0, with finite image since Spin(d) is compact.

Let H̃ be the pullback group in the diagram

H̃ −−−−→ Πy y
H −−−−→ Π

whose vertical arrows have kernel H0. If h ∈ H̃ (respectively h ∈ H) we denote the image of h

in Π (respectively Π) by [h].

For each α ∈ Π, we can use the connection∇ to define the holonomy of f ∈ LαM̃ , hol(f) ∈ H,

for which

hol(f)H0 = α ∈ Π.

Let

Pα = {F : R −→ P : qF ∈ LαM and F (t+ 1) = hol(qF )F (t)},

which is the total space of a principal fibration q̃ : Pα −→ LαM whose fibre over f is{
g(t)F (t) : g : R −→ H and g(t+ 1) = hol(f)g(t) hol(f)−1

}
10



for any given element F ∈ q̃−1(f), and thus the structure group is

LfH =
{
g : R −→ H : g(t+ 1) = hol(f)g(t) hol(f)−1

}
.

In particular, this contains the constant functions

H ∩ LfH = {h ∈ H : hol(f)h = hhol(f)}.

For f, g ∈ LαM , the groups LfH and LgH are of course isomorphic.

Now suppose that we have a projective representation V of the affine Lie algebra ŝpin(d)

which we assume integrates to a completion V̂ carrying a projective representation of the loop

group LSpin(d) with some level ℓ, say. We may follow Brylinski [2] in defining a bundle ξαV over

each space LαM . For an open set U ⊆ LαM , the sections on U are taken to be

Γ(ξαV , U) = MapLfHoDiff+
R
(Pα, V ),

the space of LfH oDiff+
R -equivariant maps. Here the group is the semi-direct product of LfH

with the group of orientation preserving, quasi-periodic diffeomorphisms of the line,

Diff+
R = {φ : R −→ R : φ invertible, φ(0) = 0, φ(t+ 1) = φ(t) + 1 for all t ∈ R}.

By construction, such a bundle is automatically vir-equivariant in the sense of Brylinski, since

we can now interpret the Virasoro algebra vir as densely contained in the Lie algebra of a central

extension of Diff+
R . The L0-eigenspaces give rise to the natural grading on V and these are dense

in V̂ . Moreover, each grading Vr gives rise to finite dimensional bundle with structure group

Spin(d). Such bundles can be fitted together over all the components LαM .

A modified version ξH0,α
V of this is obtained by replacing V with the invariant subspace V H0 .

As the action of Spin(d) commutes with the action of the Virasoro algebra, the grading on V

restricts to one on V H0 . The resulting bundle has sections

Γ(ξH0,α
V , U) = MapLfHoDiff+

R
(Pα, V H0),

is still vir-equivariant and has fibre V H0 . The bundles associated to the spaces V H0
r are all

flat since the structure group is H/H0. In particular, if the original bundle is flat, this gives

an admissible bundle over LBG in the above sense. Over a component L[α]BH/H0 there is a

flat bundle with structure group which is a projective representation of CH/H0
(α). In fact, the

projective representations that occur are all associated to a fixed central extension of H/H0

by the circle T. As such extensions are classified by the finite group H2(BH/H0,Z), they all

come from central finite coverings of H/H0. When this cohomology vanishes, we have honest

representations of these centralizers. This happens when H/H0 is a non-abelian simple group.

4. Constructing Moonshine-like Virasoro equivariant vector bundles

In this section we will construct some examples of Virasoro equivariant vector bundles over

loop space LBG for a finite group G. These appear very naturally in terms of the framework

discussed above. We will also make use of constructions from [7]. These bundles are also

related to the two variable Moonshine-like constructions of Mason [20, 25], generalizing the

single variable Thompson series of Thompson [32], Conway and Norton [4] and Norton [27].
11



We will make three standing assumptions on G:

Gp-1 The cohomology group H2(BG;Z/2) is trivial.
Gp-2 The cohomology group H3(BG;Z) is trivial.
Gp-3 The cohomology group H4(BG;Z) is trivial.

The first of these conditions guarantees that any orientable representation lifts to Spin, while

the second and third force all projective representations of G to be genuine representations

and certain bundles over LBG to be admissible in the sense of §3. We could try to impose

different conditions in the examples studied, but the above are convenient as they are satisfied

by groups of particular interest, for example, the Mathieu group M23. In contrast, the integral

cohomology in dimension 4 of M24 contains both 2 and 3-torsion, although there is no 3-torsion

in dimension 3, and Gp-1 is satisfied.

Let V be a finite dimensional real representation of G, and suppose that for each γ ∈ G, the

trace of the action of γ, TrV (γ), is rational (hence an integer).

Consider the bundle ζV −→ BG whose total space is EG×G V . For any loop f : T −→ BG

or double loop F : T2 −→ BG, the pullback bundle f∗ζV −→ T (or F ∗ζV −→ T2) gives rise to

a space of smooth sections Γ(f∗ζV ,T) (or Γ(F ∗ζV ,T2)).

Let us consider in detail such a section for a loop f whose holonomy lies in a conjugacy

class [α] say. The total space of f∗ζV consist of G-equivalences classes of pairs (f̃ , v) where

f̃ : R −→ EG covers the loop f and has f(t+1) = α′ ∈ [α], and v ∈ V . The action of G is given

by

γ · (f̃ , v) = (γ · f̃ , γv).

Thus a section is given by a G-equivalence class of maps defined on R of the form

t 7−→ (f̃(t), v(t)),

where v : R −→ V is smooth, and necessarily satisfies the condition

[f̃(t+ 1), v(t+ 1)]G = [f̃(t), v(t)]G.

Hence

v(t+ 1) = αv(t).

Since α has finite order |α|, v(t+ |α|) = v(t), thus the function v has a Fourier expansion

v(t) =
∑
k∈Z

vk/|α|e
2πikt/|α|,

for vk/|α| ∈ V ⊗RC satisfying αvk/|α| = ζk|α|vk/|α|, and so

vk/|α| ∈ V α
k/|α| = {u ∈ V : αu = ζk|α|u}.

For a double loop F : T2 −→ BG, we have a similar analysis, where this time a section is a

function

(x, y) 7−→ (F̃ (x, y), v(x, y)),
12



for a smooth map v : R2 −→ V and

[F̃ (x+ 1, y), v(x+ 1, y)]G = [F̃ (x, y), v(x, y)]G,

[F̃ (x, y + 1), v(x, y + 1)]G = [F̃ (x, y), v(x, y)]G.

Thus, if F̃ (x+ 1, y) = αF̃ (x, y) and F̃ (x, y + 1) = βF̃ (x, y), we have

v(x+ 1, y) = αv(x, y), v(x, y + 1) = βv(x, y).

In terms of Fourier expansions, we have

v(x, y) =
∑
k,l∈Z

vk/|α|,l/|β|e
2πi(kx/|α|+ly/|β|)

where vk/|α|,l/|β| ∈ V ⊗RC satisfy

αvk/|α|,l/|β| = ζk|α|vk/|α|,l/|β|,(4.1)

βvk/|α|,l/|β| = ζ l|β|vk/|α|,l/|β|.(4.2)

Now consider the restriction of the latter section functor to the fixed point set L2r,sBG. As a

double loop F ∈ L2r,sBG has period 1/s in the first factor and 1/r in the second, we obtain a

Fourier series of the form

v(x, y) =
∑
k,l∈Z

vks/|α|,lr/|β|e
2πi(ksx/|α|+lry/|β|)

for vks/|α|,lr/|β| ∈ V ⊗RC satisfying

αvk/|α|,l/|β| = ζks|α|vks/|α|,lr/|β|,(4.3)

βvk/|α|,l/|β| = ζ lr|β|vks/|α|,lr/|β|.(4.4)

If F̃ is a lift of F having holonomy α along the interval of length 1/s in the x-direction and β

along the interval of length 1/r in the y-direction, then the section must satisfy the conditions

v(x+ 1/s, y) = αv(x, y),(4.5)

v(x, y + 1/r) = βv(x, y),(4.6)

which are equivalent to

αvk,l = ζks vk,l,(4.7)

βvk,l = ζ lrvk,l.(4.8)

Of course, by travelling along a unit interval in either the x or y-direction, we would get back

to the situation of Equations (4.1), (4.2), but now the holonomy would be αs or βr in place of

α or β.

We also identified the space L2r,sBG with LBG by the assignment

F ←→(z 7−→ F (1, z1/r))

13



which has inverse

f ←→((z, w) 7−→ f(z−s/rw)).

Over a loop f : T −→ BG, the fibre of the corresponding bundle consists of all maps R −→
EG×G V of the form

t 7−→

F̃ (0, t/r),
∑
j,k

vj,ke
2πikt/r


G

,

where F̃ : R2 −→ EG is a lift of F and the Fourier expansion satisfies the conditions of Equations

(4.5), (4.6). Writing vk =
∑

j vj,k, for a lift of f with holonomy γ,

γ · vk = ζkr vk.

There is an action of the Lie algebra of vector fields diffk on the bundle of sections over T
arising from the action of Diff+ on L2BG which has fixed point set L2r,sBG. In particular, the

infinitesimal rotation generator L0 acts on a section of the form described above by the rule

L0

F̃ (x, y),
∑
j,k∈Z

vj,ke
2πi(jrx+ksy)/rs

 =

F̃ (x, y),
∑
j,k∈Z

−(jr + ks)

rs
vj,ke

2πi(jrx+ksy)/rs

 ,

where

(x, y) 7−→ [F̃ (x, y), v(x, y)],

with

v(x, y) =
∑
j,k∈Z

vj,ke
2πi(jrx+ksy)/rs.

Thus the eigenspaces of L0 correspond to the rational numbers of the form (jr+ks)/rs. Notice

that the requirements of Condition 3.1 are satisfied with the possible exception of VB-3.

For simplicity, we now consider only the case where s = 1 (this case appears to cover all the

interesting situations that have appeared in algebraic settings). Equation (4.7) ensures that

sections over f ∈ LBG with a lift f̃ of holonomy α ∈ G have the form∑
k∈Z

vk/|α|z
kr

with

vk/|α| ∈ V α
k/r =

{
v ∈ V : αv = ζkr v

}
.

Since Vk/r affords a representation of CG(α), we may follow the prescription of §3, viewing

this space of sections as a bundle over LBG which on the component of loops with holonomy

conjugate to α restricts to a completed sum of flat bundles having structure group reducible to

CG(α). Moreover, these are eigenbundles for L0.

We will find it useful to assign the term appearing as coefficient of zk/r a rational grading of

k/r. We can keep track of this by a writing it as the coefficient of a power of an indeterminate q,
14



thought of as having grading 1. Thus our space of sections restricted to the component L[α]BG
is

V [α]
q =

⊕̂
k∈Z

V
[α]
k/rq

k/r

and by Equation (2.1), this is naturally thought of as lying in KU0(BCG(α))[[q, q
−1]].

We can also form the Fock space ⊗
06k6r−1
06l∈Z

S
(
V

[α]
k/rq

(lr+k)/r
)

which should be viewed as the restriction to the component L[α]BG of a Fock bundle over LBG.

This Fock bundle is related to constructions of Mason [20] and Frenkel, Lepowsky & Meurman

[7], see also Kac̆ & Raina [13] for a detailed discussion of bosonic Fock spaces with Virasoro

action.

5. Moonshine-like Virasoro equivariant vector bundles associated to a lattice

In this section we construct more Moonshine-like bundles, this time basing our constructions

on a lattice L on which the finite group G acts. We follow in some detail the notation,

terminology and results of the book of Frenkel, Lepowsky & Meurman [7]. We are also motivated

by work of Mason [20, 25].

Let L be a lattice (i.e., a free abelian group with rankL finite) equipped with a symmetric

positive definite integer valued inner product ⟨ , ⟩ : L×L −→ Z which is even in the sense that

⟨ℓ, ℓ⟩ ∈ 2Z for ℓ ∈ L. Suppose that G acts on L by orientation preserving linear isometries,

hence for ℓ1, ℓ2 ∈ L and γ ∈ G,

⟨γℓ1, γℓ2⟩ = ⟨ℓ1, ℓ2⟩ .

We set L2n = {ℓ ∈ L : ⟨ℓ, ℓ⟩ = 2n and give this set grading n; thus we have L =
⨿

n>0 L2n as

sets with G action.

Following [7], we consider a central extension

1 −→ ⟨κ⟩ −→ L̂
π−→ L −→ 1

where ⟨κ⟩ ∼= Z/2 and the associated 2-cocycle ε0 : L× L −→ ⟨κ⟩ satisfies

ε0(ℓ1, ℓ2)− ε0(ℓ2, ℓ1) = c0(ℓ1, ℓ2)

where c0 is the commutator map

c0(ℓ1, ℓ2) = ⟨ℓ1, ℓ2⟩ (mod 2).

It will be useful to have a fixed choice of section for π, say s : L −→ L̂ which we assume satisfies

s(0) = e (the identity element in L̂).

Now we can define a grading on L̂ by setting

L̂2n = {ℓ̂ ∈ L̂ : π(ℓ̂) ∈ L2n}.

Thus
∣∣∣L̂2n

∣∣∣ = 2 |L2n|. Now for each n > 0 we can form the free k-module on the elements of

L2n (respectively L̂2n) namely k[L2n] (respectively k[L̂2n]); combining these, we obtain graded

group rings k[L]∗ (resp. k[L̂]∗). Now let N∗ be a graded k[⟨κ⟩]-module; then we can form the left
15



k[L̂]∗-module k[L̂]∗⊗k[⟨κ⟩]N∗, given the usual tensor product grading. For example, we could

take k itself with the action κ · x = −x (given grading 0); we will denote this k-module by k−

and also set

k{L} = k[L̂]∗ ⊗
k[⟨κ⟩]

k−.

There is an isomorphism of k-modules

k[L]∗ ∼= k{L}; ℓ←→ s(ℓ)⊗ 1 = eℓ,

where we use a chosen section s as above. Notice that we have the relation κeℓ = −eℓ for any
ℓ ∈ L. Now we obtain action of G on k{L} from that on L by using this isomorphism.

Now let h = k⊗Z L. Then as in [7], we define S(ĥ−Z ) to be the symmetric algebra on ĥ, where

we give a homogeneous symmetric tensor of degree n grading n (this is not quite the definition

of [7] but amounts to the same thing). Of course, both of these are k[G]-modules in a natural

way. Finally, we can form the graded k[G]-module

VL∗ = k{L}∗⊗
k
S(ĥ−Z ).

Notice that as k[G]-modules, there is an isomorphism

VL∗ ∼= k[L]∗⊗
k
S(ĥ−Z ),

and the reader may well ask why we did not simply make this the definition. The point is

that there is further structure associated to VL∗ as described in [7], and in general this is not

compatible with action of G. However, there may be conditions on the action of G which force

such compatibility, and we wish to stress this possibility.

We recall from [7] the following facts about the module VL∗.

Theorem 5.1. The module VL∗ possesses an action of the Virasoro algebra virk.

We will refrain from giving precise formulæ here but refer the reader to [7] for details.

Next we will describe some Hilbert bundles having as their fibres such modules over the

Virasoro algebra. We will give a general construction related to work of G. Mason [20]. Let X

be a G-space and let V −→ X be a G-equivariant vector bundle. Thus for each x ∈ X there is

a vector space Vx and for each γ ∈ G a linear map

Vx
γ·−−→ Vγ·x.

Notice that Vx provides a linear representation of StabG(x), the stabilizer of x. If we now form

the vector bundle

EG×
G
V −→ EG×

G
X,

we can pull back over a loop f : T −→ BG and take sections. Now such a section must be a

G-equivalence class of maps of the form

t 7−→ (f̃(t), v(t))

for f̃ : R −→ EG a lift of f , a map v : R −→ V , and which satisfy the conditions

v(t+ 1) = α · v(t), f(t+ 1) = α · f(t).
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Notice that if we choose a lift f̃ then the section takes values in the restriction of V to the fixed

point set Xα. In practise we are only interested in one case which we will describe below.

As above let L be a finite rank even lattice with G acting by orientation preserving isometries.

Consider L as a G-set and form the covering space EG×G L −→ BG. Pulling back over a loop

f and taking sections we obtain G-equivalence classes of maps R −→ EG× L of the form

t 7−→ (f̃(t), ℓ),

where f̃(t+ 1) = αf̃(t) and αℓ = ℓ.

Over the component consisting of loops whose holonomy lies in a given conjugacy class [α],

we obtain a covering with fibre Lα and structure group CG(α). As each fibre is still an even

lattice we can form the fibrewise construction of the realification h = R ⊗ Lα and so obtain a

vector bundle over this component with fibre h. We may also form the Fock bundles with fibres

S(ĥ−Z ) and the tensor product with C{L}, C{L}⊗R S(ĥ−Z ). On each fibre this bundle agrees

with the module VLα∗ constructed earlier, this time with CG(α) in place of G. We have thus

constructed a Virasoro equivariant bundle over LBG with character

qrankL
α/24ΘLα/ηα(R⊗ Lα).

The normalization factor of qrankL/24 appears here since we have graded our bundle so that its

non-trivial degrees begin at 0, and the q-series ΘLα/ηα(R⊗Lα) of [20] possesses the modularity

property of Condition Dev-1.

6. Recognizing bundles in elliptic cohomology

In this section we explain how our constructions of bundles over the loop space LBG give

rise to elements of Eℓℓ∗(BG) using the work of Devoto outlined in §1. The basic idea is to note

that our bundles have characters which in effect lie in the equivariant elliptic cohomology Eℓℓ∗G
and thus in its completion Êℓℓ∗G which by Equation 1.1 agrees with Eℓℓ∗(BG).

Given an admissible bundle ξ −→ LBG, i.e., one satisfying the restrictions of Condition 3.1,

we may consider its character

charq ξ =
∑
r∈Z

χCG(α)W
ξ
[α],r.

In general we will need to multiply this by a suitable power of q to obtain a q-expansion with

the modularity requirement of Condition Dev-1, even when the remaining Conditions Dev-2,

Dev-3 and Dev-4 all hold.

Let us consider the bundle constructed in §5. This has character

qrankL
α/24θLα/ηα(R⊗ Lα)

and the series ΘLα/ηα(R ⊗ Lα) is a modular form for some congruence subgroup of SL2(Z).
Here we have the representation modules

ΘLα =
∑
06n

C[L2n]q
n,
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and

Ω(R⊗ Lα) = qrankL
α/24

∑
06n

Λnhαqn,

where ΛnV denotes the nth exterior power of the representation V . When evaluated on the

identity element, such a character yields the graded dimension of the underlying vector space,

given by a series of the form

(θLα/ηα(R⊗ Lα)) (1) =

(∑
06n

|L2n|qn
)(

q1/24
∏
16n

(1− qn)

)− rankLα

which was shown in [20] to have the required modularity properties. The remaining Conditions Dev-

2, Dev-3 and Dev-4 also hold, and thus viewed as a function on TG× h, the assignment

((α, β), τ) 7−→ (ΘLα/ηα(R⊗ Lα)) (β)

(with qr = e2πirτ ) corresponds to an element in EℓℓG, hence on passing to the completion we

obtain an element of Eℓℓ∗(BG).

By way of illustration, recall that the +1-eigenspace of a natural involution on the quotient

module Θ/Ω contributes one summand to the original monstrous moonshine module while the

other depends more on the 2-local structure of the Monster M. The restriction of Θ/Ω to the

subgroup M24 was introduced in the Introduction. Note that in this special case the lattice L

has rank 24.

In the terminology of Devoto, we have

ω((1, g), τ) = ηg(τ)

for elements g belonging to the centralizer of the identity, that is for an arbitrary conjugacy

class [g]. The generalization to an arbitrary commuting pair (h, g) is given by a rather more

complicated formula, see [20], (3.7) and (4.20). Inspection of the subgroup structure of M24

shows that up to conjugacy such commuting pairs generate subgroups of the following forms:

C2 × C2, C2 × C4, C4 × C4, C2 × C8, C2 × C6, C2 × C10, C3 × C3.

It is not hard to write down the modular forms associated to each of these. For example,

associated to C3 × C3 are the conjugacy types

C3 × C3A : ω(3A, 3A, τ) = η(3τ)8,

C3 × C3B : ω(3A, 3B, τ) = η(3τ)2η(9τ)2,

with (weight, level) being (4, 9) and (2, 27) respectively.

As we have already pointed out, the quotient Θ/Ω is needed in order to obtain a homogeneous

element associated with a class in Eℓℓ∗(BG), and this needs further modification if the ‘genus

zero’ condition for moonshine is to be satisfied. Since this last step only affects elements of even

order, it is beyond the scope of this paper.

Similar considerations using methods of [20] show that the bundles of §4 also correspond to

elliptic cohomology classes. Indeed the whole thrust of this paper has been to show that the

two variable characters introduced by Mason and Norton fit into a theory of bundles over a loop
18



space LBG, and that elliptic cohomology provides the best framework in which to discuss them.

The next task will be to describe these moonshine classes in terms of the algebraic structure

of Eℓℓ∗(BG). For the group M24 this is done in chapter 6 of [31], while partial information is

available for the groups Co0 and M. It may well be that such calculations will help explain why

moonshine is only associated with certain groups and off which properties of elliptic cohomology

it is reflected.
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