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Invariants for finite dimensional groups
in vertex operator algebras associated to
basic representations of affine algebras

Andrew Baker & Hirotaka Tamanoi

Abstract. We investigate the invariant vertex operator subalgebras of the
vertex operator algebras associated with the A, D, E series of simply laced root
lattices and the related affine algebras. We also discuss certain generalized

Casimir operators which may be related to the action of a central extension
of the Lie algebra of differential operators on the circle introduced by Kac̆,
Radul et al. One motivation for this work lies in work on elliptic genera by

the second author, while work of Dong and Mason provides a more algebraic
setting for such calculations.

Introduction.
Vertex operator algebras have been the focus of considerable attention from

various viewpoints and for numerous reasons relating to their appearance in di-
verse parts of mathematics. Even the most familiar examples may still generate
interesting questions. One developing application of vertex operator algebras is
to the theory of elliptic genera as described by the second author [9,10], where
attention is focused on certain vertex operator (super)-algebras on which compact
Lie groups act by automorphisms, the objects of geometric interest being the in-
variant vertex operator subalgebras. This suggests the problem of computing such
invariant vertex operator subalgebras and understanding the decomposition of the
original vertex operator algebra as a module over this.

Our original goal in this work was to carry out such calculations for the familiar
cases of vertex operator algebras associated with the affinizations of finite dimen-
sional simply laced Lie algebras. However, after circulating a draft of some of our
work we became aware of work of Kac̆ and Radul [7] in which some of our results
had already appeared; also in [2], Dong, Li and Mason proved a conjecture that we
had made, thus confirming that decompositions over the invariant vertex operator
subalgebras have interesting algebraic properties in very general circumstances.

In this paper we give calculational details for the vertex operator algebras
associated with the A,D,E series of simply laced root lattices and the related affine
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algebras. In future work, we hope to relate the ‘generalized Casimir operators’ to
the (projective) action of the differential operators on the circle discussed in [5,7].

The authors would like to thank the EU and IHES for support while this work
was carried out. We would also like to thank Chongying Dong and Geoff Mason
for helpful advice.

§1 Some general recollections.
Let L denote a finite rank lattice with symmetric, even integral valued positive

definite inner product ( , ): L×L −→ Z. According to [4], there is a vertex operator
algebra V(L) = (V(L)∗,Y,1, ω) which provides a model for the basic representation
of a certain untwisted affine Kac̆–Moody algebra ĝ which is the affinization of a finite
dimensional real Lie algebra g whose roots may be viewed as elements of L. We
record some facts about this vertex operator algebra, most of which can be found
in [4] (see in particular 8.7.13, 8.7.20 and corollary 8.6.3). Recall that as part of
the structure of V(L) we have an action of the Virasoro algebra vir, with generators
Ln (n ∈ Z) together with the central generator C (acting by scalar multiplication).
The following omnibus result contains useful basic properties of the action of g on
V(L).

Proposition 1.1.

1. The action of g ⊆ ĝ on V (L) commutes with the action of vir, i.e.,

[Ln, x] = 0 (n ∈ Z, x ∈ g).

In particular, we have

xω = xL−21 = L−2x1 = 0 (x ∈ g).

2. The action of g is compatible with the natural Hermitian structure on V(L),
in the sense that its elements act as Hermitian operators.

3. The action of g on V(L) integrates to an action of a compact connected Lie
group G with Lie algebra g.

4. The action of each g ∈ G on V(L) commutes with the vertex operator Y in
the sense that

Y(gv, z) = gY(v, z)g−1 g ∈ G, v ∈ V (L)

and g fixes the vacuum and conformal vectors. Hence, G acts by automor-
phisms of the vertex operator algebra V(L).

Corollary 1.2. The invariant subspace V(L)G supports the structure of a
vertex operator subalgebra of V(L),

V(L)G = (V(L)G∗ ,Y,1, ω).

§2 The case of A1.
When L is the root lattice of SU(2),

A1
∼= {n

√
2 : n ∈ Z},

the basic representation of ̂su(2) gives a particularly important example of a vertex
operator algebra, V = V(A1). This time, the Lie group acting is of course SU(2),
which acts unitarily on V. We will describe the invariant vertex operator algebra
VSU(2).
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There are several ways to determine the action of SU(2) on V. We proceed as
follows. Let h, e, f be generators for the complexification sl(2) of su(2), satisfying
the usual relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

The Cartan subalgebra of the affinization ̂su(2) is the 3-dimensional abelian subal-
gebra ĥ = C{h, c, d}. We could determine the character of the basic representation
on ĥ using the Kac̆ character formula, however, it is perhaps more instructive to
use a direct approach. This involves explicitly describing the action of h on V;
from [4] we have

V = C{A1} ⊗ S(h−)
where

h = R{h}, h− = C⊗
R

h[t−1]

and S(W ) denotes the symmetric algebra on the C-vector space W . The action of
h is given by

h · (ekα ⊗ v) = kα(h)ekα ⊗ v = 2kekα ⊗ v
where α denotes the generator of A1 such that α(h) = 2. If T ⊆ SU(2) denotes the
torus generated by exponentiating ih = Rih, we have for exp(2πith) ∈ T ,

exp(2πith) · (ekα ⊗ v) = e2πitkα(h)ekα ⊗ v = e4πitkekα ⊗ v.

We can ignore the generator c which acts by multiplication by 1. The action of d is

d · (ekα ⊗ v) = (k2 + deg v)(ekα ⊗ v),

where the later term refers to the natural grading on S(h−) induced from decreeing
the grading of ht−k to be k. On the subalgebra C{h, d}, this gives

dimq V =
∑
m∈Z

qm
2
z2m

ϕ(q)
,

where ϕ(q) =
∏
n>1(1− qn), qk indexes the occurrences of the character (h, d) 7−→

(0, k) and z` indexes the number of occurrences of (h, d) 7−→ (`, 0).
Now the irreducible finite dimensional representations of su(2) are the Wm

(m > 0), of dimension m+ 1. These have characters

charWm = zm + zm−2 + · · ·+ z2−m + z−m.

For m > 1, we have the formula

charW2m = charW2m−2 + z2m + z−2m,

and hence,

charq V =

∑
m>0

qm
2
(charW2m − charW2m−2)

ϕ(q)−1.

Rearranging this, we have

charq V =

∑
m>0

charW2m(1− q2m+1)qm
2

ϕ(q)−1.
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Thus, for each irreducible W2m there is a subspace V[2m] with graded dimension

dimq V[2m] =
(2m+ 1)(1− q2m+1)qm

2

ϕ(q)
.

Since the actions of vir and SU(2) commute, each V[2m] is a highest weight module
for vir. In fact, writing v[2m] for an element of V[2m] satisfying the two conditions

ev[2m] = 0,

Lkv
[2m] = 0 k > 1,

we can consider the vir-submodule V2m generated by v[2m]. Then by [8] (end of
Chap. 6), V2m is irreducible and

V[2m] ∼= W2m ⊗V2m,

dimq V2m =
qm

2
(1− q2m+1)
ϕ(q)

.

Notice that the invariant vertex operator algebra VSU(2) = V[0] = V0 has graded
dimension

dimq VSU(2) =
(1− q)
ϕ(q)

≡ 1 (mod q2),

hence dim VSU(2)
1 = 0. Moreover, each V2m is an irreducible module over VSU(2)

(since it is irreducible over vir).
To construct highest weight vectors for SU(2) which are also highest weight

vectors with respect to the Virasoro algebra vir, hence generators over VSU(2), we
proceed as follows. It is easily checked that for each k > 0, the element ekα = ekα⊗1
satisfies

e · ekα = 0 and h · ekα = 2kekα.
Hence, ekα is a highest weight vector for a copy of the irreducible W2k. Since
this irreducible first occurs in weight k2 with multiplicity 1, ekα must be a highest
weight vector for vir. But then all of the elements

fr · ekα (r = 0, . . . , k)

are weight vectors for SU(2) and highest weight vectors for vir. The totality of
vectors obtained this way accounts for the ‘singular vectors’ with respect to vir
described in [8], lemma 6.1, at least for even values of m. Later, we will show that
this procedure also works for other cases.

§3 The case of SU(`+ 1).
In this section we will generalize the results for SU(2) to SU(` + 1), using the

following result found in [6].

Proposition 3.1. (see [6], exercise 12.17). Let L be a root lattice of type A`

(` > 1), D` (` > 4) or E` (` = 6, 7, 8). Then if g is the associated simple Lie algebra,
as a g-module, the graded vector space V(L) has occurrences of the representation
W (λ) for λ ∈ L+ with multiplicity given by the q-series∑

m>0

(multλ V(L)m)qm = ϕ(q)−`q(λ|λ)/2
∏
α∈

◦
∆+

(
1− q(λ+ρ̄|α)

)
.
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Here L+ is the set of roots which are also dominant weights for g and ρ̄ is half the
sum of all the positive roots, also characterised by the requirement that (ρ̄ | αi) = 1
for each positive simple root αi.

In this section we use the case of A
(1)
` . The result we require says the following

for the basic representation of ̂su(`+ 1), whose highest weight is Λ0 satisfying

Λ0(h) = Λ0(d) = 0 and Λ0(c) = 1.

Then for any weight λ viewed as a character of the standard Cartan subalgebra

ĥ = h⊗
R

C⊕ Cc⊕ Cd ∼= C
`+2,

if λ(c) = λ(d) = 0 and λ(h) ∈ R, there is a unique irreducible module for su(`+ 1)
with highest weight λ. Provided 0 6 λ(A`) ⊆ Z, this integrates to a unitary
representation of SU(` + 1); we label this representation W (λ). It is easy to see
that for the basic representation W (Λ0), constructed as a vertex operator algebra
in [4], the only such weights that can occur in W (Λ0) viewed as an su(`+1)-module
are also in the root lattice A`. We denote the set of all dominant roots by A

+
` .

In the case under consideration, recall that A` is the free Z-module with basis
{α1, . . . , α`} where the αi are the positive simple roots. Thus we are interested in
evaluating the series in Proposition 3.1 for weights of the form

λ =
∑

16i6n

riαi (ri > 0).

We also have
◦
∆+ = {αr + αr+1 + · · ·+ αr+s−1 : 1 6 r 6 r + s− 1 6 `} ,

ρ̄ =
1
2

∑
α∈

◦
∆+

α,

(ρ̄ | αi) = 1,

and

(αi | αj) =


2 if i = j,
−1 if |i− j| = 1,

0 otherwise.

To determine the invariants under the action of SU(`+1), we take λ = 0 and obtain

dimq V(A`)SU(`+1) =
∑
m>0

(mult0 V(A`)m)qm

= ϕ(q)−`
∏
α∈

◦
∆+

(
1− q(ρ̄|α)

)
= ϕ(q)−`

∏
s·α∈

◦
∆+

(
1− qlen s

)
= ϕ(q)−`

∏
16s6`

(1− qs)`−s+1
,
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where we use the notation

s = (s1, . . . , s`),

len s =
∑

16i6`

si,

α = (α1, . . . , α`),

s ·α =
∑

16i6`

siαi.

In the case where ` = 1, we recover our earlier result. Notice that

dimq V(A`)SU(`+1) ≡ 1 + q2 (mod q3),

hence dim V(A`)
SU(`+1)
1 = 0 and dim V(A`)

SU(`+1)
2 = 1, implying that V(A`)

SU(`+1)
2

is spanned by the conformal vector ω.
For a general positive weight λ, we have∑

m>0

(multλ V(A`)m)qm = ϕ(q)−`q(λ|λ)/2
∏
α∈

◦
∆+

(
1− q(λ+ρ̄|α)

)
.

For a general positive weight λ we have the following:

Theorem 3.2. For the positive weight λ =
∑

16i6` riαi, the multiplicity of the
W (λ) in V(A`) is given by∑
m>0

(multλ V(A`)m)qm = ϕ(q)−`q(λ|λ)/2
∏∏
16s6`

16t6`−s+1

(
1− qt+rs+rs+t−1−rs−1−rs+t

)
,

where
1
2

(λ | λ) =
∑

16i6`

r2
i −

∑
16i6`−1

riri+1.

Proof. For each α ∈
◦
∆+ with

α = αs + αs+1 · · ·+ αs+t−1 (1 6 s 6 `, 1 6 t 6 `− s+ 1),

we have

(λ+ ρ̄ | α) = (λ | α) + t

= t+ 2(rs + · · ·+ rs+t−1)− (rs−1 + · · ·+ rs+t−2)− (rs+1 + · · ·+ rs+t)
= t+ rs + rs+t−1 − rs−1 − rs+t,

where we set r0 = 0 = r`+1. The calculation of (λ | λ)/2 is straightforward. �

We may write V(A`)
[λ]
∗ for the summand of V(A`) corresponding to the irre-

ducible W (λ); this decomposes as

V(A`)
[λ]
∗ = W (λ)⊗

C

V(A`)λ∗

where V(A`)λ∗ denotes the highest weight V(A`)SU(`+1)-submodule generated by a
highest weight vector for SU(`+ 1).
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Now we exhibit a highest weight vector for su(` + 1) in the lowest occurrence
of the irreducible W (λ) with λ ∈ A

+
` , i.e., in weight (λ | λ)/2. Consider eλ = eλ⊗1

which has this weight; it is certainly a weight vector since for h ∈ h,

h · eλ = λ(h)eλ.

Now for any α ∈
◦
∆+, eα = eα(−1) and

Y(eα, z) = E−(−α, z)E+(−α, z)zαeα =
∑
r∈Z

eα(r)z−r−1,

which implies that
Y(eα, z)eλ = E−(−α, z)z(α|λ)eλ+α,

which has no terms in negative powers of z. Hence eα · eλ = 0 which means that eλ

is a highest weight vector. From eλ we can produce a basis of weight vectors for a
copy of the irreducible W (λ), each of which generates a module over V(A`)SU(`+1).

§4 The case of D`.
In this section, we give the character of the invariant vertex operator subalgebra

for the case of D` (` > 3) for which the associated compact group is Spin(2`).
Actually, we could equally well use SO(2`) since all weights occurring are again in
the root lattice. Again we use Proposition 3.1. First we recall some relevant facts.

Viewing D` as a subgroup of R
`, equipped with the standard orthonormal basis

{e1, . . . , e`}, the simple roots are

αi = ei − ei+1 (1 6 i 6 `− 1), α` = e`−1 + e`.

The set of positive roots is

∆+ = {ei − ej , ei + ej : 1 6 i < j 6 `}.

The following identities hold for elements of ∆+:

ei − ej = αi + αi+1 + · · ·+ αj−1,

ei + ej = αi + αi+1 + · · ·+ αj−1 + 2(αj + αj+1 + · · ·+ α`−2) + α`−1 + α`.

Also,

(αi | αj) =


2 if i = j,
−1 if |i− j| = 1 and {i, j} 6= {`− 1, `},
−1 if {i, j} = {`− 2, `},

0 otherwise.
Hence for positive roots λ =

∑
16k6` rkαk in D` and α =

∑
16k6` skαk, we have

1
2

(λ | λ) =
∑

16k6`

r2
k −

∑
16k6`−2

rkrk+1 − r`−2r`,

(λ | α) = 2
∑

16k6`

rksk −
∑

16k6`

(rksk+1 + rk+1sk)− (r`−2s` + r`s`−2),

(ρ̄ | α) =
∑

16k6`

sk.
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Also, if 1 6 i < j 6 `, then

(ρ̄ | ei − ej) = j − i,
(ρ̄ | ei + ej) = j − i+ 2(`− 1− j) + 2 = 2`− i− j.

For s in the range 1 6 s 6 2`−3, the solutions of 2`− i−j = s in this range are
determined by the values of i in the range 1 6 i < 2`− s− i 6 ` which is equivalent
to {

max{`− 2t+ 1, 1} 6 i 6 `− t if s = 2t− 1 is odd,
max{`− 2t, 1} 6 i 6 `− t− 1 if s = 2t is even.

In the first case, there are ` − t solutions when t > `/2, and t solutions when
t 6 (`− 1)/2. In the second case, there are `− t− 1 solutions when t > `/2 and t
solutions when t 6 (`− 1)/2. Notice that the ranges of values of t are

{
1 6 t 6 `− 1 if s = 2t− 1 is odd,
1 6 t 6 `− 2 if s = 2t is even.

From all of this, we deduce the following.

Theorem 4.1. The graded dimension of the Spin(2`)-invariants in V(D`) is
given by

dimq V(D`)Spin(2`) = ϕ(q)−`(1− q2`−3)
∏

16r6`−1

(1− qr)`−r

×
∏

16r6(`−1)/2

(1− q2r−1)r(1− q2r)r
∏

`/26r6`−2

(1− q2r−1)`−r(1− q2r)`−r−1.

In particular,

dimq V(D`)Spin(2`) ≡ 1 + q2 (mod q3),

implying dimq V(D`)
Spin(2`)
1 = 0 and dimq V(D`)

Spin(2`)
2 = 1.

§5 The case of E`.
Similar considerations apply to the case of the root lattices E6, E7 and E8.

We record only the dimensions of the invariant vertex operator subalgebras for
each E`, obtained using the symbolic algebra programme Maple with the aid of
J. Stembridge’s package Root Systems and Finite Coxeter Groups.
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Theorem 5.1. For ` = 6, 7, 8, the graded dimensions of the E(`)-invariants in
V(E`) are given by

dimq V(E6)E(6) = (1− q)6(1− q2)5(1− q3)5(1− q4)5(1− q5)4(1− q6)3

(1− q7)3(1− q8)2(1− q9)(1− q10)(1− q11)ϕ(q)−6

≡ 1 + q2 + q3 + 2q4 + 3q5 + 6q6 + 7q7 + 13q8 (mod q9),

dimq V(E7)E(7) = (1− q)7(1− q2)6(1− q3)6(1− q4)6(1− q5)6(1− q6)5

(1− q7)5(1− q8)4(1− q9)4(1− q10)3(1− q11)3

(1− q12)2(1− q13)2(1− q14)(1− q15)

(1− q16)(1− q17)ϕ(q)−7

≡ 1 + q2 + q3 + 2q4 + 2q5 + 5q6 + 5q7 + 10q8 (mod q9),

dimq V(E8)E(8) = (1− q)8(1− q2)7(1− q3)7(1− q4)7(1− q5)7(1− q6)7

(1− q7)7(1− q8)6(1− q9)6(1− q10)6(1− q11)6

(1− q12)5(1− q13)5(1− q14)4(1− q15)4(1− q16)4

(1− q17)4(1− q18)3(1− q19)3(1− q20)2(1− q21)2

(1− q22)2(1− q23)2(1− q24)(1− q25)(1− q26)

(1− q27)(1− q28)(1− q29)ϕ(q)−8

≡ 1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 4q7 + 8q8 (mod q9).

§6 Weight spaces in abelian intertwining algebras associated to dual
lattices.

In [1], the notion of vertex operator algebra was extended to that of an abelian
intertwining algebra. In particular, associated to a positive definite integral lattice
L with dual lattice L

0 is an abelian intertwining algebra Ṽ(L) which is the direct
sum

Ṽ(L) =
⊕

α∈L0/L

Ṽ(α)

of the irreducible modules Ṽ(α) where Ṽ(0) = V(L). The formula of Proposition 3.1
can then be generalized.

Proposition 6.1. Let L be a root lattice of type A` (` > 1), D` (` > 4) or E`

(` = 6, 7, 8). If g is the associated simple Lie algebra, then the graded vector space
Ṽ(L) is naturally a graded g-module, and for each λ ∈ L

0+ (the set of dominant
weights for g) the associated finite dimensional highest weight representation W (λ)
occurs with multiplicity given by the q-series∑

m>0

(multλ Ṽ(L)m)qm = ϕ(q)−`q(λ|λ)/2
∏
α∈

◦
∆+

(
1− q(λ+ρ̄|α)

)
.

For L = A1, we have L
0 = (1/2)A1 and so for each dominant weight λ =

(2k−1)ω (1 6 k ∈ Z) where ω is the fundamental weight satisfying (ω | α) = 1, the
SU(2)-irreducible with highest weight λ occurs only in the summand Ṽ((1/2)α+A1)
and ∑

m>0

(mult(2k−1)ω Ṽ(A1)m)qm =
q(2k−1)2/4(1− q2k)

ϕ(q)
.
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We leave the details of other cases to the interested reader.

§7 The structure of the invariants as a module over the Virasoro
algebra.

By the commutativity of the action of G with the Virasoro algebra vir generated
by the conformal vector ω, the invariant subvertex operator algebra V(L)G is a vir-
submodule. In the case L = A1, it is even cyclic over vir, but for L = A`,D`,E`
in general this is not so. It may be that under the action of the universal central
extension of the Lie algebra of differential operators on the circle discussed in [5,7],
these modules are irreducible or cyclic. In §8 we discuss certain operators which
may be related to this action. We hope to return to this question in future work.

§8 Constructing invariant elements using generalized Casimir opera-
tors.

We assume that g is a finite dimensional simple Lie algebra over C. Then the
affinization ĝ has the following description. As a complex vector space,

ĝ = g[t, t−1]⊕ Cc⊕ Cd.

We set g(n) = gtn ⊆ ĝ and x(n) = xtn for x ∈ g. The bracket for elements
x(m), y(n) ∈ g[t, t−1] is given by

[x(m), y(n)] = [x, y](m+ n) +m(x | y)δm+n,0c,

where ( | ) is a non-degenerate invariant symmetric bilinear form for g (for example,
the Killing form). If x = x(0) ∈ g, then [x(0), y(n)] = [x, y](n). Also, c is central
and [d, x(n)] = nx(n).

Now recall that for two irreducible modules P,Q of g, we have

Homg(P,Q) ∼= (Q⊗ P ∗)g ∼=
{

C if P ∼= Q,
0 otherwise,

where P ∗ denotes the C-dual of P . In particular, for m,n ∈ Z, the two g-modules
g(m), g(−n) are irreducible and indeed canonically isomorphic to the adjoint mod-
ule g itself. Hence,

Homg(g(m), g(−n)) ∼= (g(−n)⊗ g(m)∗)g ∼= C,

where the ‘identity’ map x(m) 7−→ x(−n) is the natural choice of generator. Using
the canonical invariant inner product 〈 , 〉 on ĝ for which

〈x(r), y(s)〉 = (x | y)δr+s,0,

we have an identification

g(m)∗ ∼= g(−m); 〈x(m), 〉 ←→ x∗(−m),

where we use the isomorphism induced by ( | ),

g∗ ∼= g; (x | )←→ x∗.

Choosing a basis {xi} for g, we may express the element of g(−n)⊗ g(−m) corre-
sponding to the identity in C as

Ω(m,n) =
∑
i

xi(−n)⊗ x∗i (−m).
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If {xi} is an orthonormal basis with respect to ( | ), then

Ω(m,n) =
∑
i

xi(−n)⊗ xi(−m).

For a ĝ-module M , we may view Ω(m,n) as determining an operator

z 7−→
∑
i

xi(−n)xi(−m)z.

The Ω(m,n) are ‘generalized Casimir operators’ in the sense of the following result
which is verified by a modification of the usual proof for Casimir operators.

Proposition 8.1. For a ĝ-module M , v ∈ M , 0 6 m,n ∈ Z and x ∈ g, we
have

xΩ(m,n) · v = Ω(m,n)x · v.

If module M is the basic representation of ĝ, then there is an associated vertex
operator algebra; moreover, when g is simply laced (i.e., g is in one of the series
A`, D` or E`) we are in one of the situations considered earlier and the basic
representation can be constructed as a Fock space as described in [4]. In this case
we set

ω(m,n) = Ω(m,n) · 1.
It turns out that

1
4
ω(1, 1) = ω,

the conformal vector. In general, the elements ω(m,n) will be referred to as ‘gen-
eralized conformal elements’.

We recall some standard facts about the invariant bilinear form ( | ) for a real
simple Lie algebra g. For a Cartan subalgebra h, the root space decomposition

gC = hC ⊕
⊕
α∈

◦
∆+

(gα ⊕ g−α)

is in fact a decomposition into mutually orthogonal subspaces of the form h and
(gα ⊕ g−α). Furthermore, the spaces gα and g−α are dually paired and conjugate
to each other, i.e.,

g−α ∼= g∗α
∼= ḡα.

By choosing ( | ) suitably, we can ensure that for each root α there are elements
hα ∈ h and eα ∈ gα such that

[eα, e−α] = ihα, (eα | e−α) = 1.

If we choose an orthonormal basis {hi} for h (on which ( | ) can be assumed positive
definite), then we obtain a basis for g of the form

B = {hi} ∪ {eα, e−α : α ∈
◦
∆+}

Using this basis, we obtain the following expression for the operator Ω(m,n) when
m,n > 1,

Ω(m,n) =
∑
i

hi(−n)hi(−m) +
∑
α∈

◦
∆+

(eα(−n)e−α(−m) + e−α(−n)eα(−m))
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We will use vertex operators to calculate the generalized conformal elements
ω(m,n). Recall from [4] that in V(L),

Y(α, z) = E−(−α, z)E+(−α, z)zαeα,

for α ∈ L. Here

E−(γ, z) = exp

−∑
k>1

γ(−k)zk/k

 ,

E+(γ, z) = exp

∑
k>1

γ(k)z−k/k

 ,

and for m > 1, γ(m) is the derivation satisfying

γ(m) · (eβ1β2(−n)) =
{
m(γ | β2)eβ1 if m = n,
0 otherwise.

To calculate eα(k), we recall that

Y(α, z) =
∑
k∈Z

eα(k)z−k−1.

Consider the generating functions (as series in z and w)

Y(α, z) Y(−α,w) =
∑
r,s∈Z

eα(−r)e−α(−s)zr−1ws−1

Y(−α, z) Y(α,w) =
∑
r,s∈Z

e−α(−r)eα(−s)zr−1ws−1.

Summing these and applying the result to the vacuum vector 1 gives

[Y(α, z) Y(−α,w) + Y(−α, z) Y(α,w)] · 1 =∑
r∈Z

16s

[eα(−r)e−α(−s) + e−α(−r)eα(−s)] · 1 zr−1ws−1,

since 1 is a highest weight vector for ĝ. We may calculate the left hand side of the
last equation using the formal expansion

(1− wz−1)−n =
∑
k>0

(
−n
k

)
wkz−k

for n ∈ Z, together with the following identity which holds for λ, µ ∈ C,

exp(λα(k)z−k/k) · exp
(
µα(−k)wk/k

)
= exp

(
λµ(α | α)wkz−k/k + µα(−k)wk/k

)
.
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We obtain

[Y(α, z) Y(−α,w) + Y(−α, z) Y(α,w)] · 1 =

z−(α|α)
[
E−(−α, z)E+(−α, z)

]
· exp

−∑
k>1

α(−k)wk/k


+ z−(α|α)

[
E−(α, z)E+(α, z)

]
· exp

∑
k>1

α(−k)wk/k


= z−(α|α)(1− wz−1)−(α|α)

exp

∑
m>1

α(−m)zm/m

 exp

−∑
k>1

α(−k)wk/k


+ exp

−∑
m>1

α(−m)zm/m

 exp

∑
k>1

α(−k)wk/k


Subtracting the term 2z−(α|α)(1− wz−1)−(α|α), we obtain an expression involving
terms of non-zero degree from the symmetric algebra

S(h−) ∼= e0 ⊗ S(h−) ⊆ C{L} ⊗ S(h−),

which is easily verified to be symmetric in z and w. On summing over α ∈
◦
∆+ and

using the fact that the action of h(−k) (k > 1) is by multiplication, we obtain an
expression for ∑

m,n>1

(ω(m,n)− hi(−n)hi(−m))zn−1wm−1.
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