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§1 Introduction
This article concerns completed cohomology theories and the topology of the

spaces which represent them. Our principal interest is in those given by the
Johnson-Wilson spectra E(n) [10] and their In-adic completions Ê(n) (see be-
low), but many of our arguments apply also to a much wider class of theories,
such as complex K-theory and its p-adic completion, or elliptic cohomology and its
supersingular completion, as defined in [1].

To each standard cohomology theory, E∗(−) say, that we consider here, there
are representing Ω-spectra, i.e., sets of H-spaces {Er; r ∈ Z} with natural isomor-
phisms (of groups)

Er(X) ∼= [X,Er],

where [X,Er] denotes the set of homotopy classes of maps from the space X to
Er. The suspension isomorphism Er(X) ∼= Er+1(ΣX) becomes in translation a
homotopy equivalence Er ' ΩEr+1, and the loop sum operation in ΩEr+1 defines
the H-space product in Er. Such spaces in an Ω-spectrum are naturally very rich
in structure (even more so if the original cohomology theory has products) and this
often means that they are of considerable geometric use.

Let us suppose E∗ is an Ω-spectrum representing a cohomology theory E∗(−),
and Ê∗ represents some completed version of the theory, Ê∗(−) say. Then Ê∗(−)
may have superior properties to E∗(−) by virtue of its completion, but it will almost
certainly be harder to understand the topology of the spaces Êr than that of the
corresponding spaces Er as the former are likely to be so much larger. Now suppose
L∗(−) is some standard cohomological functor; in this paper we set up a notion
of continuous L-cohomology, L∗c(−), a variation on L∗(−) which forms a suitable
tool for studying completed Ω-spectra. It will allow us to combine the desirable
properties of the completed Ω-spectrum with the calculational advantages of the
uncomplete one. As an application, we show how our theory in the case of the
spectra Ê(n) can be used to discuss problems on the Morava K-theory of extended
powers K(n)∗(Dp(X)).

Recall that the Brown-Peterson spectrum BP has coefficient ring

BP∗ = Z(p)[v1, v2, v3, . . . , vr, . . .],

where the element vr lies in dimension 2(pr − 1). The BP -module ring spec-
trum E(n) has coefficients

E(n)∗ = Z(p)[v1, v2, . . . , vn−1, vn, v−1
n ].

We write In for the usual ideal (p, v1, . . . , vn−1) of E(n)∗. In [3], an In-adical-
ly complete version of this spectrum is constructed. Written Ê(n), it has as its
coefficient ring the inverse limit

Ê(n)∗ = lim
k

E(n)∗/Ik
n.
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In [2] and [4] a tower of spectra

(1.1) K(n) = E(n)/In ←− · · · ←− E(n)/Ik
n ←− E(n)/Ik+1

n ←− · · ·

is constructed, with (E(n)/Ik
n)∗ = E(n)∗/Ik

n. Each E(n)/Ik
n is a module spectrum

over both E(n) and Ê(n). The homotopy inverse limit of this tower is Ê(n) itself
and the fibre of each map E(n)/Ik+1

n −→ E(n)/Ik
n is a finite product of even

suspensions of copies of the Morava K-theory spectrum K(n).
The In-adically complete spectrum Ê(n) has appeared in several different con-

texts and there are many reasons to view it as a more central object than E(n)
itself.

This tower of spectra was of importance in the work of the second author on the
Morava K-theory of extended powers K(n)∗(Dp(X)) (see [7], [8]). If K(n)odd(X)
is trivial then the tower (1.1) shows that all elements of K(n)∗(X) lift to Ê(n)∗(X)
and also, if X is finite, to E(n)∗(X). We used the cohomology of the spaces in
the Ω-spectrum for E(n) to describe K(n)∗(Dp(X)) for such X. In this paper
we extend those results to include many infinite dimensional spaces X by using
the analagous terms in the Ω-spectrum for Ê(n) and our continuous cohomology
theories, in this case continuous Morava K-theory, K(n)∗c(−). In particular, these
calculations would conjecturally include the classifying space of a finite group (see
[5]).

The paper is arranged as follows. In §2 we describe a certain pro-category
and set up our concept of continuous cohomology theories. In §3 we compute the
continuous Morava K-theory of the pro-spaces corresponding to the spaces in the
Ω-spectra of the E(n)/Ik

n and indicate how much of our work would go through
on replacing E(n) by an arbitrary Landweber exact spectrum (for example, that
representing complex K-theory or elliptic cohomology). This calculation allows us
to describe K(n)∗(Dp(X)) for any space X with K(n)∗(X) of finite rank over K(n)∗
and which satisfies K(n)odd(X) = 0. This is done in §4 where we also explain how
in many cases the finite rank assumption can be abandoned. The calculations of
§§3 and 4 are all at an odd prime p. In a sense this completes the work of [7]; we
demonstrate elsewhere [9] what happens in the rather different situation where X
has both even and odd dimensional Morava K-theory. We conclude by discussing
in §5 a general method for constructing cellular models for infinite loop spaces.
Applying this to the particular cases we are concerned with here, i.e., the spaces in
the Ω-spectra for E(n), E(n)/Ik

n and Ê(n), we show that much of the cohomological
structure we compute in §3 has close underlying geometric analogues.

One moral of the present paper is that there is a close relationship between
the (co)homology theories associated to Ê(n) and K(n)c. We expect that a sys-
tematic study of the whole structure associated to the In-adic tower and In-nil
pro-subcategory of the K(n)-local category would be of great interest; the case
of n = 1 (corresponding to p-local K-theory) has been investigated by A. K. Bous-
field and others.

It is also possible that the unstable structure associated to pro-systems of K(n)-
nilpotent spaces (i.e., spaces X with K(n)∗(X) nilpotent) and their continuous
Morava K-theory may be investigated from the perspective of Galois cohomology
or its generalisations as described in Shatz [16]. Indeed, the use of ‘continuous’
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cohomology functors applied to pro-systems seems ubiquitous in studying K(n)-
local phenomena. We hope to return to this in future work.

§2 Continuous cohomology theories
Let PS be the category of inverse systems of spaces

(2.1) X0 f0

←− X1 f1

←− X2 f2

←− X3 ←− · · ·

indexed by the natural numbers. A morphism ψ: {Xk} −→ {Y k} will be a set of
strict maps {ψk: Xk −→ Y k} defined for sufficiently large k and compatible with
the maps f i of the inverse systems. Homotopies and cofibres will be defined term
by term, as for spaces. Let PCW be the subcategory of PS consisting of inverse
systems of CW complexes and cellular maps.
Let L∗(−) be a cohomology theory.
Definition 2.2 For X = {Xk} an object in PS, define the continuous L-cohomol-
ogy of X to be the colimit

L∗c(X ) = colim
k

L∗(Xk).

Proposition 2.3 This defines a cohomology theory on PS. It does not, however,
satisfy the wedge axiom.
Proof All the Eilenberg-Steenrod axioms follow immediately from the definition.
L∗c(−) is clearly a functor on PS, invariant under homotopy. Colimits over N
preserve exactness and hence we have the long exact sequence of a cofibration;
excision holds since it does so for each term in the direct system. The wedge axiom
fails as a product of colimits is not in general the same as a colimit of products. ¤
Remark 2.4 Suppose the cohomology theory L∗(−) is multiplicative. Then our
definition of L∗c(−) means that there is an induced product on L∗c(X ) for X ∈ PS.
Remark 2.5 If we identify the space X with the constant diagram, X say,

X
1←− X

1←− X
1←− X ←− · · · ,

regarded as an object in PS, then L∗c(X) will be identical to L∗(X).
Definition 2.6 If X = {Xk} is an object of PCW, write C∗(Xk;A) for the cellular
cochain complex of Xk with coefficients in A. Then define the continuous cellular
cochain complex of X as the colimit

C∗c(X ; A) = colim
k

C∗(Xk; A).

As homology commutes with colimits, we immediately get
Proposition 2.7 For X ∈ PCW, H∗

c (X ;A) = H(C∗c(X ; A)). ¤
Remark 2.8 Suppose G = lim Gk is a profinite group. Let A be an abelian group
with compatible Gk-action for all k. Then the classifying spaces of the Gk give an
object in PS, say BG,

BG0 ←− BG1 ←− BG2 ←− BG3 ←− · · · .
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If we take L∗(−) = H∗(−; A), then H∗
c (BG; A) recovers the profinite group cohom-

ology theory of [16].
Remark 2.9 For X = {Xk} an object in PCW we have an Atiyah-Hirzebruch
spectral sequence (AHSS) for continuous L-cohomology,

(2.10) E∗,∗
2 = H∗

c (X ; L∗) =⇒ L∗c(X ).

We filter the inverse system (2.1) by the inverse systems of m skeleta

(X0)m
f0

←− (X1)m
f1

←− (X2)m
f2

←− (X3)m ←− · · ·

and apply the functor L∗c(−). The resulting E1-term is given by

Ep,q
1 = colim

k
Cp(Xk; Lq) = Cp

c(X ;Lq)

as usual. Each Er-term is then identified as the colimit of the Er-terms in the
spectral sequences

(2.11) E2 = H∗(Xk; L∗) =⇒ L∗(Xk).

In particular, the convergence of (2.10) now follows from that of (2.11) for suffi-
ciently large k: we have the identification of the E2-term as claimed.

Alternatively, the Atiyah-Hirzebruch spectral sequence can be set up for a
general object in PS by mapping the inverse system of spaces into the Postnikov
tower for the representing spectrum.
Remark 2.12 We have set up a rather ad hoc definition of continuous cohomology,
suitable for the items we wish to study. We wonder whether there might be a more
systematic approach to this concept which places it in a more orthodox homotopy
theoretic framework: for example, how might a corresponding continuous homology
theory be defined?

§3 The continuous cohomology of the In-adic tower
For a spectrum E let us write E∗ = {Er; r ∈ Z} for the corresponding Ω-

spectrum, where the space Er represents the cohomology group Er(−). We write
Ê(n)r for the element of PS given by the spaces in the In-adic tower

(E(n)/I1n)r ←− (E(n)/I2n)r ←− (E(n)/I3n)r ←− · · · .

In §5 we give an explicit cellular construction of these spaces, and so of Ê(n)r as an
element of PCW, but the actual construction is irrelevant to the arguments of this
section.
Theorem 3.1 The algebras K(n)∗c(Ê(n)r) are nilpotent free for r even, equivalently,
for these r, the Frobenius map x 7→ xp is a monomorphism.

We prove this by examining the continuous Fp cohomology of Ê(n)r and relating
it to the cohomology of E(n)r. Let us first define some notation. As all this section
is in characteristic p, we shall suppress writing Fp whenever possible: thus, H∗(X)
denotes H∗(X;Fp), while Hom(A) for an Fp-vector space A indicates its linear
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dual. In the case of A an Fp Hopf algebra, TorA will denote the graded Tor group
TorA(Fp,Fp). This latter object will arise in our work as follows. For an Ω-spectrum
E∗, the homologies of Er and Er+1 are linked by the Rothenberg-Steenrod spectral
sequence (RSSS)

E2
∗∗ = TorH∗(Er) =⇒ H∗(E′r+1),

where E′r+1 denotes the connected component of the basepoint in Er+1. This
spectral sequence is induced by filtering E′r+1 = BEr by bar degree.

Let us recall some results about H∗(E(n)r) from [8]. We showed that this is a
polynomial or exterior algebra if r is even or odd, respectively, and pointed out that
although the cohomology algebras H∗(E(n)′r) for even r were not polynomial, they
were nilpotent free. To see this, recall that in [8] we considered E(n)r as a colimit of
spaces {BP〈n〉r−2i(pn−1)} as i →∞, the maps being those inducing multiplication
by vn in homotopy. It suffices to note that the Verschiebung V : H∗(BP〈n〉′s) −→
H∗(BP〈n〉′s) (dual to the Frobenius in cohomology) is epimorphic for sufficiently
small values of s (since by [17] H∗(BP〈n〉′s) is bipolynomial for s small).

We also demonstrated that the Hopf ring map

τ
E(n) :H

R
∗ (E(n)∗) −→ H∗(E(n)∗)

is an isomorphism (see [8] or [14] for Hopf ring notation); thus H∗(E(n)∗) is gen-
erated (as a Hopf ring) by H0(E(n)∗) plus the homology image of the complex
orientation map CP∞ −→ E(n)2.

Let us write φk for the E(n)-module map E(n) −→ E(n)/Ik
n which induces

the quotient by Ik
n on coefficients.

Definition 3.2 Say that a homomorphism H∗(E(n)r) −→ Fp is continuous if it
factors through the homomorphisms

φk
∗: H∗(E(n)r) −→ H∗((E(n)/Ikn)r)

for all sufficiently large k. Write Homc(H∗(E(n)r)) for the set of all continuous
homomorphisms.

Theorem 3.3 As Hopf algebras, H∗
c (Ê(n)r) ∼= Homc(H∗(E(n)r)).

(Compare with the standard idea that the continuous functions on a space are
equivalent to the continuous functions on its completion.)

Corollary 3.4 H∗
c (Ê(n)r) is isomorphic to a subring of H∗(E(n)r). Hence the ring

H∗
c (Ê(n)r) has no nilpotent elements if r is even.

Proof of (3.4) We have identified H∗
c (Ê(n)r) as a subring of Hom(H∗(E(n)r)) =

H∗(E(n)r). The result follows from the above remarks on H∗(E(n)r) for r even.¤
Proof of (3.1) This is now a simple application of the Atiyah-Hirzebruch spectral
sequence

H∗
c (Ê(n)r;K(n)∗) =⇒ K(n)∗c(Ê(n)r).

For r even the E2-term is entirely even dimensional and so the spectral sequence
collapses. ¤
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Proof of (3.3) First note that it is sufficient to show that

(3.5) Homc(H∗(E(n)r)) = colim
k

Hom(H∗((E(n)/Ikn)r))

since colim
k

Hom(H∗((E(n)/Ikn)r)) = colim
k

H∗((E(n)/Ikn)r) = H∗
c (Ê(n)r). In fact,

we show that the equivalences (3.5) are induced by the maps φk: the φk naturally
define a map

colim
k

Hom(H∗((E(n)/Ikn)r)) −→ Homc(H∗(E(n)r))

and this is to be the isomorphism in (3.5).
We prove (3.5) by induction on the dimension, carrying along also a second

inductive hypothesis, namely

(3.6)
⋂

k

Ker(φk
∗) = 0.

The hypotheses hold in dimension zero by direct calculation: both sides of
(3.5) are equal to colim

k
Hom(Fp[(E(n)/Ik

n)∗=r]). Now suppose that (3.5) and (3.6)

both hold for all r and in all dimensions less than m.
Consider the dual RSSS’s

Hom(TorH∗((E(n)/Ikn)r)) =⇒Hom(H∗((E(n)/Ikn)′r+1))(3.7)

Hom(TorH∗(E(n)r)) =⇒Hom(H∗(E(n)′r+1)).(3.8)

The colimit over k of (3.7) gives a spectral sequence

(3.9) colim
k

Hom(TorH∗((E(n)/Ikn)r)) =⇒ colim
k

Hom(H∗((E(n)/Ikn)′r+1)).

The maps φk give us a morphism of spectral sequences, φ∗ say, from (3.9) to (3.8).
Lemma 3.10 The spectral sequence homomorphism φ∗ induces a monomorphism
of E2-terms whose image is

Homc(TorH∗(E(n)r)) ⊂ Hom(TorH∗(E(n)r)),

where the topology on TorH∗(E(n)r) is that induced by the kernels of the homomor-
phisms

(φk
∗)∗: TorH∗(E(n)r) −→ TorH∗((E(n)/Ikn)r).

Proof of (3.10) Recall that H∗(E(n)r) is polynomial or exterior, depending on
whether r is even or odd; hence TorH∗(E(n)r) is exterior or divided power, respec-
tively, on suspensions of representatives of the ∗-indecomposables of H∗(E(n)r).
Hypothesis (3.5) shows that in dimensions less than m the set

{
φk
∗: H∗(E(n)r) −→ H∗((E(n)/Ikn)r)

}
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is a pro-epimorphism, and hence induces a pro-epimorphism of ∗-indecomposable
quotients. Meanwhile, (3.6) implies that for r even, if 0 6= x ∈ H∗(E(n)r), ∗ < m,
then for k sufficiently large, all powers of (φk)∗(x) (of dimensions less than m) will
be non-zero and so there are no transpotence terms in the E2-term of (3.9). The
lemma follows by computing Tor groups. ¤

As (3.8) collapses, the sequence (3.9) must also collapse and we can identify
colim

k
Hom(H∗((E(n)/Ikn)′r+1)) with Homc(H∗(E(n)′r+1)). This proves (3.5) for

dimensions less than m+1. Hypothesis (3.6) for dimensions less than m+1 follows
from the calculation of Tor groups and the collapsing of (3.9). This completes the
proof of (3.3). ¤
Remark 3.11 We have used only certain formal properties of the Ω-spectrum E(n),
namely that the homology algebras H∗(E(n)r) are either polynomial or exterior,
depending on the parity of r. By [6] this is a property of H∗(Er) whenever the
spectrum E represents a Landweber exact cohomology theory with coefficients free
and of countable rank over some subring of the rationals. Theorem (3.3) thus has
an analogue for any completion of a suitable Landweber exact spectrum defined
as a homotopy limit like Ê(n), for example, p-adic K-theory or the first author’s
completion of elliptic cohomology ÊllP , described in [1].
Remark 3.12 We have computed colim

k
Hom(H∗((E(n)/Ikn)r)) without actually

computing much about the individual algebras H∗((E(n)/Ikn)r). The case of k = 1,
namely Morava K-theory, has already been computed in [19]. Strictly speaking,
the algebraic object H∗((E(n)/Ikn)∗) is not a Hopf ring for k > 1 as there is no
global ◦-product, these spectra not being known to be multiplicative. There is
however a ◦-module action by elements of H∗(E(n)∗) via φk

∗, and so, following
the dubious nomenclature of this area, perhaps these objects ought to be named
Hopf modules, although it might be more accurate to refer to them as coalgebraic
modules over coalgebraic rings. We see from the proof of (3.3) that the inverse
system {H∗((E(n)/Ikn)∗); k > 0} is pro-equivalent to a set of increasing quotients
of H∗(E(n)∗) with trivial intersection of kernels, but for each individual value of k
there will be a lot of ∗-torsion in H∗((E(n)/Ikn)∗), and this gives rise to elements in
the cokernel of φk

∗: H∗(E(n)∗) −→ H∗((E(n)/Ikn)∗). If pressed for such calculations,
use might be made of Wilson’s calculations [19] for K(n) and the fibrations

∏

v∈Ik
n/Ik−1

n

(
Σ|v|K(n)∗

) −→ (E(n)/Ik+1
n )∗ −→ (E(n)/Ikn)∗

to work up the tower (1.1), but the method seems tedious and offers, at present,
little of interest.
Remark 3.13 As in [14] write HR

∗ ((E(n)/Ikn)∗) for the quotient of HR
∗ (E(n)∗)

induced by the coefficient homomorphism E(n)∗ −→ (E(n)/Ik
n)∗; thus we have

quotient homomorphisms

ψk: H∗(E(n)∗) = HR
∗ (E(n)∗) −→ HR

∗ ((E(n)/Ikn)∗).

If we give H∗(E(n)∗) the topology corresponding to the set of neighbourhoods of
the identity {Ker(ψk)} (this might be named, in Hopf ring terminology, the [In]-
adic topology), then the proof of (3.3) shows that we have an alternative description
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of H∗
c (Ê(n)r), now as homomorphisms H∗(E(n)r) −→ Fp continuous with respect

to this new topology. (That this topology is strictly different from the one before
can be deduced from the description of the Hopf ring H∗(K(n)∗) in [19]: relation
(1.1)(j) in that paper does not appear in the Hopf ring HR

∗ (K(n)∗).) Thus we have
an equivalence of Hopf corings,

H∗
c (Ê(n)∗) ∼= colim

k
Hom(HR

∗ ((E(n)/Ikn)∗)).

§4 The Morava K-theory of extended powers.

In [7] the second author defined the notion of a unitary-like embedding (ULE):
at an odd prime the space X is said to have a ULE if there is a space Y with
K(n)∗(Y ) nilpotent free (i.e., the Frobenius map x 7→ xp is a monomorphism)
together with a map e: X −→ Y inducing an epimorphism in K(n)-cohomology. We
showed that if X had a ULE then we could compute K(n)∗(Dp(X)), the Morava
K-theory of the pth extended power of X. For X = BG, the classifying space of a
group G, this amounts to a calculation of the wreath product K(n)∗(B(G o Z/p)).

The article [8] examined the existence of ULE’s for finite spaces and proved
the following, somewhat stronger, result:

Theorem 4.1 Given a finite CW complex X with K(n)odd(X) = 0, then there
exists a map e: X −→ Y , epimorphic in K(n)∗(−), with K(n)∗(Y ) a completed
polynomial algebra over K(n)∗.

In fact, the K(n)odd(X) = 0 condition is necessary as well as sufficient, owing to
the graded commutativity of the multiplication in Morava K-theory. The map e is
produced by lifting the elements of K(n)∗(X) to maps into the representing spaces
of E(n)∗(−); thus Y is constructed as a product of spaces E(n)r, with r varying
over the even integers. However, the finiteness restriction rules out a number of very
interesting spaces, for example, the classifying space of any (non-trivial) finite group
is always infinite, even though K(n)∗(BG) is of finite rank over the coefficients, [13].

We show here that those calculations extend to the case of infinite spaces X
so long as K(n)∗(X) is finitely generated over K(n)∗ and K(n)odd(X) = 0. We
use continuous Morava K-theory and the results of §3. Recall, as in (2.5), that a
general space X yields the constant inverse system, X,

X
1←− X

1←− X
1←− X ←− · · ·

and that K(n)∗c(X) = K(n)∗(X).

Theorem 4.2 Given a space X with K(n)∗(X) finitely generated over K(n)∗ and
K(n)odd(X) = 0, then there exists a morphism in PS, e:X −→ Y, epimorphic in
K(n)∗c(−) and with K(n)∗c(Y) nilpotent free.

Proof Let {xi} be a finite set of homogeneous K(n)∗ generators for K(n)∗(X),
i.e., each xi ∈ K(n)r(X) for some r = r(i). As K(n)odd(X) = 0 each xi, as a map
xi:X −→ K(n)r, lifts to maps X −→ (E(n)/Ikn)r for all k and hence gives a map
in PS

xi:X −→ Ê(n)r.
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This follows from the In-adic tower (1.1) since the fibre of each map E(n)/Ik+1
n −→

E(n)/Ik
n is a finite product of even suspensions of copies of the Morava K-theory

spectrum K(n). The map
e:X −→

∏

i

Ê(n)r(i)

given by the product of the maps xi now has the required properties by construction
and (3.1). (The product of two inverse systems of spaces {Xk} and {Y l} is defined
as the inverse system of products, {Xk × Y k}.) ¤
Definition 4.3 Let us say that the spectral sequence

H∗(BZ/p; K(n)∗(F )) =⇒ K(n)∗(E)

of the fibration F
i−→ E

i−→ BZ/p is simple if the only non-trivial differential action
involved is that of d2pn−1, operating as it must via naturality with the AHSS for
K(n)∗(BZ/p).

In [7] we showed that X having a ULE implied that the spectral sequence of
the extension

(4.4) Xp −→ Dp(X) −→ BZ/p

was simple. This result gives K(n)∗(Dp(X)) in terms of K(n)∗(X). Exactly the
same arguments can be made in the continuous case and we achieve a similar
description of K(n)∗c(Dp(X)) in terms of K(n)∗c(X). However, as K(n)∗(Z) =
K(n)∗c(Z) for Z = X or Dp(X), we have proved the following result.
Corollary 4.5 Given a space X with K(n)∗(X) finitely generated over K(n)∗ and
K(n)odd(X) = 0, then the spectral sequence of the fibration (4.4) for K(n)∗(Dp(X))
is simple. ¤
Of course this result relies on our having a continuous version of the spectral se-
quence of a fibration, but, as for the continuous AHSS, there are no problems in
deriving such a gadget.
Remark 4.6 The condition that the rank of K(n)∗(X) is finite over K(n)∗ in the
hypotheses of (4.2) and (4.5) is in many cases not really necessary. Suppose {xi; i ∈
J } is a set of K(n)∗ generators of K(n)∗(X) and that we write J = colim

s
Js where

all the Js are finite (for example, write J as the union of its finite subsets). Then
the map e in the proof of (4.2) can be replaced by the colimit

e:X −→ colim
s

∏

i∈Js

Ê(n)r(i)

which will have the required properties provided the derived functors

lim
s

t

{ ∏

i∈Js

K(n)∗((E(n)/Ikn)r(i))

}

vanish for all t > 0 and for all k sufficiently large. As the maps in the inverse system
are all epimorphisms, it seems likely that this will be the case in many instances.
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Remark 4.7 Our work shows that for spaces X satisfying certain hypotheses
(most notably the condition that K(n)odd(X) = 0) we can describe the object
K(n)∗(Dp(X)) in terms of the ring K(n)∗(X). The corresponding problem when
K(n)∗(X) has both even and odd dimensional elements is different. The case
of n = 1, i.e., the mod p K-theory of extended powers, is studied in [11]. Another
non-trivial differential is identified, related to the modulo p Bockstein in KF∗p(X).
In the case of Morava K-theory, there is a whole pyramid of non-trivial differentials
related to v

(r)
m Bocksteins, m < n and r in a certain range, depending on m. These

Bocksteins are, of course, related to those described in [4] as connecting maps in
the tower of fibrations (1.1). We discuss this in [9].

§5 The geometry of infinite loop spaces
In this section we discuss a method for constructing explicit cellular models

for spaces in an Ω-spectrum. In particular, we shall be concerned with those rep-
resenting E(n) and E(n)/Ik

n. These constructions rely on Milgram’s work [12] on
the classifying space of a topological group and are basically the geometric point of
view behind the construction of the cup product map in [15]. Although somewhat
theoretical, we believe they shed light on the nature of the relationships between
the infinite loop spaces we have been considering.

As before, we write E∗ = {Er; r ∈ Z} for an arbitrary Ω-spectrum. We begin
by describing the method of construction for such E∗.

First note that by the very definition of an Ω-spectrum we have relationships
Er = ΩEr+1. Hence BEr = E′r+1 where BEr is the classifying space of Er and
E′r+1 denotes the connected component of the basepoint in Er+1. The whole space
Er+1 can thus be recovered as

Er+1 = BEr × π0(Er+1).

Recall that π0(Er+1) = Er+1(point) = E−r−1.
In [12], Milgram shows that given an H-space X with a CW structure, with

respect to which the product is cellular, then a cellular construction of the classifying
space BX is given by the bar construction on the cells of X. Thus BX is composed
out of cells labelled [e1| . . . |eu], where ei is a cell of X and

(5.1) dim[e1| . . . |eu] = u +
u∑

i=1

dim ei.

The cell [e1| . . . |eu] is said to have bar degree u.
Construct models for Er inductively, as follows. Take the 0-skeleton for each

Er as a set of points in one to one correspondence with the group π0(Er), the
product structure corresponding to the loop sum operation in [S0; ΩEr+1]. In
general construct the t-skeleton for Er from the (t − 1)-skeleton of Er−1 by using
Milgram’s model: this is possible since (5.1) shows that all the t-cells of BEr are
given by elements [e1| . . . |eu] with dim ei < t. The cellular approximation theorem
allows us to arrange the H-space product in Er to be cellular.

This process not only builds models for the spaces Er, but also cellular rep-
resentations for maps φ:E∗ −→ F∗ out of the morphisms φ∗:E∗ −→ F∗ on coeffi-
cients.
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Of course this is just making explicit a technique used homologically in many
Hopf ring calculations to date. It is this construction that lies behind the success
of the iterated Rothenberg-Steenrod spectral sequences in such work as [6], [14],
[15], [19], etc. as well as in our §3 above.

Digressing for a moment, in the case where the H-space product on Er is
abelian for each r (that is, when E∗ is a generalised Eilenberg-MacLane spectrum),
the product on E′r+1 = BEr is determined by that on Er and is easily read off as
the shuffle product on the bar complex. This is pointed out in [12], where the ideas
above are used to sketch an inductive construction of Eilenberg-MacLane spaces.
For a general Ω-spectrum, however, the product is not abelian and fails to coincide
with the shuffle product. We are making real use of the fact that we know there
to be a product on these spaces (since they are all infinite loop spaces), and of the
cellular approximation theorem to make it cellular. In fact, the divergence of the
product on Er+1 from the shuffle product on BEr appears as non-trivial extension
problems in the E∞-term of the RSSS, familiar to all who have thought about the
∗-multiplicative properties of Hopf rings via this spectral sequence (see, for example,
[14]). On the other hand, observe the lack of non-trivial extension problems in the
the work of [18], §8, where the Fp homology of the modulo p Eilenberg-MacLane
spaces is calculated by Hopf ring methods. See [15] for more discussion of the
modulo p Eilenberg-MacLane spaces from this perspective.

Now apply this means of construction to the spectra E(n) and E(n)/Ik
n and

to the maps φk: E(n) −→ E(n)/Ik
n inducing the quotient by Ik

n on coefficients.
The following is immediate from the construction (compare with the inductive
hypothesis (3.6) and the remarks at the end of §3).

Proposition 5.2 With these constructions each map φk:E(n)r −→ (E(n)/Ikn)r is
a quotient map in the category of CW complexes. Moreover, on any given cell in
E(n)r, φk is a monomorphism for sufficiently large k.

Proof The cells in our constructions of E(n)∗ and (E(n)/Ikn)∗ are labelled by all
possible (finite) iterated bar terms of elements of the respective coefficient rings.
The maps φk are given on these cells by the corresponding coefficient homomor-
phisms. However, any element of E(n)∗ is not in the kernel of the quotient map
E(n)∗ −→ (E(n)/Ik

n)∗ for all k sufficiently large. ¤
For coefficients A write C∗(X; A) for the cellular chain complex of a CW com-

plex X. Give C∗(E(n)r; A) a topology corresponding to the In-adic topology on
the coefficient ring: a basis of open neighbourhoods of the identity is given by the
kernels of the induced homomorphism φk

∗: C∗(E(n)r;A) −→ C∗((E(n)/Ikn)r; A). In
fact, each element of this basis can be written in the form A{Uk}, k = 1, 2, . . .
where the Uk is a set of formal differences of cells in E(n)r. Note that the topol-
ogy is Hausdorff by (5.2). Our CW construction gives an equivalence between the
continuous cochain complex C∗c(E(n)r; A) = colim

k
C∗((E(n)/Ikn)r; A) and the set

of continuous maps C∗(E(n)r;Z) −→ A, where A is given the discrete topology.

Corollary 5.3 H∗
c (Ê(n)r;Fp) = H(Homc(C∗(E(n)r;Fp))). ¤

This result gives the following perspective on the results of §3. Firstly, we have
a continuous universal coefficient theorem for E(n)r,

Homc(H∗(E(n)r;Fp)) = H(Homc(C∗(E(n)r;Fp))),
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and secondly, it explains the relationship between this topology on H∗(E(n)r;Fp)
and the [In]-adic topology defined in the remark (3.13): the iterated RSSS calcu-
lation for H∗(E(n)∗;Fp) and standard identification of Hopf ring elements in the
spectral sequence (analagous to the one in [14] for H∗(MU∗;Fp)) shows that every
x ∈ Ker(ψk) has a representative in the open set Fp{Uk} ⊂ C∗(E(n)∗;Fp) (see
(3.13) for the definition of ψk).
Remark 5.4 The same iterated bar construction gives a CW model for each space
Ê(n)r. This is a CW complex whose set of n cells and attaching maps are given
by the inverse limit of the sets of n cells and attaching maps of the models for
(E(n)/Ikn)r. The completion map E(n)∗ −→ Ê(n)∗ induces an embedding of our
model of E(n)r in our model of Ê(n)r.

As far as the application of our work in §4 goes, it would have sufficed to
compute the Hopf ring for Ê(n) and, provided K(n)∗(Ê(n)2r) was nilpotent free,
proceed along the lines of [8] without any need for K(n)∗c(−). Unfortunately, it
is not clear how to set about computing the cohomology of a general homotopy
inverse limit.

In [6] we showed that if the Ω-spectrum E∗ represented a Landweber exact
theory with homotopy free over some subring R of the rationals, then each space Er,
after p-localisation, was the direct limit of products of Wilson spaces B(p, n), the
irreducible H-spaces that the spaces in the Ω-spectrum for BP factor into, [17], the
maps in the direct system being inclusions of subproducts. One might hope that as
Ê(n) also gives rise to a Landweber exact theory (see [3]), the spaces Ê(n)r could
be expressed perhaps as a simple inverse limit of finite products of Wilson spaces,
the maps in the inverse system being projections. An inspection of the requirements
of the homotopy of such spaces seems to indicate that no such nice description could
exist: examining π0(−), for example, it would require that the p-adic integers, Zp,
be written as an inverse limit of copies of the p-local integers Z(p).

However, combining the remark (5.4) and the description of E(n)r as a colimit
of finite products of Wilson spaces, we arrive at the following result:

Proposition 5.5 The spaces Ê(n)r in the Ω-spectrum for Ê(n) are the inverse
limits of finite products of cellular quotients of Wilson spaces. ¤

Using the iterated bar construction of this section for the Wilson spaces (they
all arise as terms in certain Ω-spectra), this decomposition of Ê(n)r can be made
more explicit.
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