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Abstract. Let p denote an odd prime. We show that the spectrum [E(n), the In-adic completion of
Johnson and Wilson’s E(n), admits a unique topological A∞ structure compatible with its canonical

ring spectrum structure. Furthermore, the canonical morphism of ring spectra [E(n) −→ K(n) admits
an A∞ structure whichever of the uncountably many A∞ structures of A. Robinson is imposed upon
K(n), the n th Morava K-theory at the prime p.

We construct an inverse system of A∞ module spectra over [E(n)

· · · −→ E(n)/Ik+1
n −→ E(n)/Ik

n −→ · · · −→ E(n)/In = K(n)

for which
holim←−

k

E(n)/Ik
n ' [E(n).

§0 Introduction.
Recently, A. Robinson has described a theory of A∞ ring spectra, their module spectra and

the associated derived categories (see [9], [10], [11], [12]). As a special case, in [12] he showed that
at an odd prime p the n th Morava K-theory spectrum K(n) admits uncountably many distinct
A∞ structures compatible with its canonical multiplication.

The principal result of the present work is to show that Ê(n), the (Noetherian) In-adic com-
pletion of the spectrum E(n) defined by D. C. Johnson and W. S. Wilson, admits a unique
topological A∞ structure compatible with its canonical ring spectrum structure; moreover, the
canonical morphism of ring spectra Ê(n) −→ K(n) can be given the structure of an A∞ morphism
whichever of Robinson’s A∞ structures we take.

As an application, we construct an inverse system of A∞ module spectra over Ê(n)

· · · −→ E(n)/Ik+1
n −→ E(n)/Ik

n −→ · · · −→ E(n)/In = K(n)
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for which
holim←−

k

E(n)/Ik
n ' Ê(n).

For each k ≥ 0 we have π∗
(
E(n)/Ik

n

) ∼= E(n)∗/Ik
n as a module over Ê(n)∗. Associated to this is

a spectral sequence for each spectrum X, converging to Ê(n)
∗
(X) and whose E1 term is a direct

sum of copies of K(n)∗(X) with differentials constructed from certain “Bockstein” operations
(this was first observed to the author by U. Würgler).

It is the author’s contention that these results support the view that Morava K-theory K(n)∗( )
is best thought of as “Ê(n) modulo In”, and that Ê(n) is in many regards more fundamental.
This is analogous to the classical case of p-local and mod p cohomology. For more on this see §4
of [3].

I would like to thank Alan Robinson and Urs Würgler for sharing their insights and enthusiasm,
and commenting on versions of this paper.

We refer the reader to the books of Adams [1] and Ravenel [8] for all background material and
otherwise unexplained notation.

§1 A∞ structures on topological spectra.
Let C be category. Then an object T ∈ C is said to be a topological (or topologised) object

in C if the functor C ( , T ) takes values in the category of topological spaces TopSp. If T1, T2

are such topological objects, we say that a morphism ϕ ∈ C (T1, T2) is continuous if the induced
natural transformation

ϕ : C ( , T1) −→ C ( , T2)

is a natural transformation of TopSp valued functors. Clearly, the collection of topological
objects and continuous morphisms forms an overcategory CTop of C.

For example, if C = Groups is the category of groups, then a topological object G is a
topological group, as can be seen by considering the morphism set Groups (Z, G). An even
more basic example is provided by Sets, the category of sets, in which the topological objects
are the topological spaces! This can be seen by making use of the one point set.

Now consider the homotopy category of spectra, hSpectra. Of course, we must here fix
on a particular version for this and we prefer to use that one constructed in [13] for technical
reasons. Thus we obtain the homotopy category of topological spectra, hSpectraTop. Now for a
topological spectrum T ∈ hSpectra we can also view T as an object of the category of spectra
Spectra; given two such topological spectra T1 and T2 we say that a map of spectra θ : T1 −→
T2 ∈ Spectra is a continuous map of spectra if the homotopy class of θ is a continuous morphism
of spectra, i.e. is in hSpectraTop (T1, T2). We can form the category of such topological spectra
and continuous maps as an overcategory SpectraTop of Spectra. Notice that the canonical
functor Spectra −→ hSpectra maps SpectraTop onto hSpectraTop. We will often use the
notation

(T2)∗c(T1) = hSpectraTop(T1, T2),

where ∗ indicates the usual grading on morphisms in hSpectra.
Now suppose that E is a ring spectrum, which is also a topological spectrum. Then we say

that E is a topological ring spectrum if the structure maps are continuous maps of spectra. We
clearly have a related notion of topological module spectra over such topological ring spectra.

In [9], [10], [11] and [12], a theory of A∞ ring spectra and their module spectra was described.
We claim that the whole of that work can be applied to the category of topological ring spectra
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to give a theory of A∞ topological ring spectra and topological module spectra. We leave the
details to the reader. We observe however that the definitions of the An structure maps make
use of maps of spectra of form

Kn n E(n) −→ E

where we take the Stasheff cell Kn as a discretely topological object in Spectra and similarly
for the sphere Sn.

Assuming that such a theory works satisfactorily, we obtain the following results based upon
[12,§1].

Let E be a topological ring spectrum and assume that E∗(E) is flat as a left or right E∗
module. Then there are two natural equivalences of cohomology theories

(1.1) (E ∧ E)∗( ) ∼= E∗(E)⊗E∗ E∗( )

defined using the two E∗ module structures on E∗(E). Now we can topologise E∗(E) in two
ways as a topological E∗ module, by decreeing that under either of the left or right units E∗

ηL−→
E∗(E)

ηR←− E∗, the images of open ideals in E∗ generate the open ideals in E∗(E). This gives the
theory (E ∧E)∗( ) the structure of a topologically valued cohomology theory in two distinct but
canonically isomorphic ways; similarly, E ∧ E inherits two distinct but isomorphic topological
structures. In the case of E = Ê(n) which we will consider later, these are actually equal, but
this is false in general.

Now assume further that

(1.2) E∗
c

(
E(k)

) ∼= Hom E∗
(
E∗(E)⊗k, E∗

)

where Hom denotes E∗ homomorphisms continuous with respect to the right hand topology
on E∗(E)⊗k. We have the following result obtained by modifying details in [12], in particular
[12,Theorem 1.11].

Theorem (1.3). If E has a topological An−1 structure for n ≥ 4, then the obstruction to
extending the underlying topological An−2 structure to an An structure is a certain element of
the continuous Hochschild cohomology group

HHn,3−n (E∗(E), E∗)

which vanishes if and only if such an extension exists.

The following related result is obtained from a modification of [12,Theorem 1.14] applied to
the identity map E −→ E; unfortunately, the published version of that result is incorrect and
care needs to be taken in using it. Following discussions with the referee of an earlier version of
the present paper and Alan Robinson, we have

Theorem (1.4). Suppose that E has a given topological A∞ structure. If all the continuous
Hochschild cohomology groups

HHm,2−m (E∗(E), E∗)

vanish for m ≥ n, then there is a unique topological A∞ structure extending the underlying An−2

structure.

In the examples which we will consider in this paper, the relevant Hochschild groups in (1.3)
and (1.4) vanish, hence we will have no obstructions to obtaining A∞ structures and these will
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be unique. This contrasts with the situation for Morava K-theory K(n) dealt with in [12] where
although A∞ structures exist because the obstruction groups of (1.3) are zero, all of the elements
in

HHm,2−m (K(n)∗(K(n)),K(n)∗) 6= 0

are required to parametrise the extensions from Am−2 to Am structures– this leads to uncountably
many distinct A∞ structures.

§2 The spectrum Ê(n).
Recall that for each prime p and n > 0, there is a multiplicative, complex oriented, cohomology

theory E(n)∗( ) on the category of finite CW spectra CWf , for which the coefficient ring is

(2.1) E(n)∗ = v−1
n BP∗/(vk : k > n)

and by definition

(2.2) E(n)∗( ) = E(n)∗ ⊗BP∗ BP ∗( )

where the tensor product is taken with respect to the obvious module structures. In the above,
we denote by vk ∈ BP2(pk−1) the kth Araki generator , uniquely specified by the requirement that

(2.3) [p]BP (X) =
BP∑

0≤k

(
vkXpk

)

and agreeing with the more commonly used Hazewinkel generators modulo p.
We can define a completed version of the theory E(n)∗( ) by

(2.4) Ê(n)
∗
( ) = lim←−

r
E(n)∗( )/Ir

nE(n)∗( ).

From [2] we have the following facts.

Proposition (2.5). The functor Ê(n)
∗
( ) defines a multiplicative, complex oriented cohomology

theory on CWf , taking values in the category of finitely generated, complete topological modules
over Ê(n)∗. Moreover, this theory is uniquely (up to equivalence) representable by a commutative
topological ring spectrum Ê(n), and hence admits a unique (up to canonical natural equivalence)
extension to the full stable category hSpectra.

The coefficient ring Ê(n)∗ is the Noetherian completion of E(n)∗ with respect to the graded
maximal ideal In = (vk : 0 ≤ k < n), and is therefore flat over E(n)∗ by [6]– this is the essential
idea in the proof. We also have

Ê(n)
∗
( ) = Ê(n)∗ ⊗BP∗ BP ∗( )

= Ê(n)∗ ⊗v−1
n BP∗ v−1

n BP ∗( ).

A fundamental property of this cohomology theory (on hSpectra) is that it is totally determined
by its restriction to CWf . This is the import of the following crucial result.
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Proposition (2.6). Let F ∗( ) be a cohomology theory on CWf , represented by the spectrum

F . Let Φ: F ∗( ) −→ Ê(n)
∗
( ) be a natural transformation. Then there is a unique morphism of

spectra F −→ Ê(n) inducing Φ.

Again the proof appears in [2] and depends upon the fact that (continuous) inverse limits of
linearly compact modules are linearly compact and have vanishing higher derived functors of lim←−.

Notice that for any spectrum Z = colim−→
α

Zα where Zα ∈ CWf we have

Ê(n)∗(Z) ∼= colim−→
α

Ê(n)∗ (Zα)

∼= colim−→
α

Ê(n)∗ ⊗E(n)∗ E(n)∗ (Zα) .

From this we can deduce the important

Lemma (2.7). There is an isomorphism of topological Ê(n)∗ bimodules

Ê(n)∗
(
Ê(n)

) ∼= Ê(n)∗ ⊗E(n)∗ E(n)∗(E(n))⊗E(n)∗ Ê(n)∗.

Now recall from [7] that

(2.8) E(n)∗(E(n)) = E(n)∗ (tk : 1 ≤ k)

where the generators tk satisfy polynomial relations over E(n)∗ of form

(2.9) tp
n

k ≡ vpk−1
n tk mod In.

Here we abuse notation and use In to denote the ideal in E(n)∗(E(n)) generated by the image
of In / E(n)∗ under either of the left or right units ηL, ηR which coincide as In is an invariant
ideal in E(n)∗. Notice that E(n)∗(E(n)) is generated as a module over E(n)∗ by the elements

tr1
1 tr2

2 . . . trd

d

with 0 ≤ rk ≤ pn − 1 for all k. Similarly, Ê(n)∗(E(n)) is generated over Ê(n)∗ by the same
elements, and Ê(n)∗(Ê(n)) is topologically generated by these elements. However, it is not clear
if these are free modules over the stated rings. Instead they are flat modules over the rings E(n)∗
and Ê(n)∗ respectively. To see this we reproduce the following argument from [7,remark 3.7].

Let E = E(n) or Ê(n). Then by [4], the ring E∗ is flat on the category of finitely presented
BP∗(BP ) comodules. Hence we have for any module M∗ over E∗, the following sequence of
isomorphisms (of left E∗ modules):

E∗(E)⊗E∗ M∗ ∼= (E∗(BP )⊗BP∗ E∗)⊗E∗ M∗
∼= (E∗ ⊗BP∗ BP∗(BP ))⊗BP∗ M∗
∼= E∗ ⊗BP∗ (BP∗(BP )⊗BP∗ M∗).
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Now as the BP∗ module BP∗(BP ) ⊗BP∗ M∗ is an extended BP∗(BP ) comodule (and hence a
colimit of finitely presented BP∗(BP ) comodules), the flatness of E∗ and the freeness of BP∗(BP )
over BP∗ implies that for s > 0,

Tors,∗
E∗ (E∗(E),M∗) ∼= Tors,∗

BP∗ (E∗, BP∗(BP )⊗BP∗ M∗) = 0.

Thus we have established the flatness of E∗(E). Of course this argument is equally valid for any
algebra E∗ over BP∗ satisfying the conditions required for Landweber’s Exact Functor Theorem
to apply. We can easily modify this argument for the case of Ê(n)∗(E(n)).

Of course, Ê(n)∗
(
Ê(n)

)
is a left topological Ê(n)∗ module with a second topology inherited

from the right hand factor of Ê(n), which happens to agree with the left hand topology! This
common topology is not Hausdorff ; indeed, the intersection

⋂
r

Ir
nÊ(n)∗

(
Ê(n)

)

contains infinitely In divisible elements and is a summand. An analogous construction worth
considering is Zp⊗Z(p) Zp, which has similar features. Despite this seeming pathology we will be

able to make use of Ê(n)∗
(
Ê(n)

)
in a universal coefficient type result.

Using the above result that Ê(n)∗(Ê(n)) is flat over Ê(n)∗, we see that the functor

Ê(n)∗(Ê(n))⊗
Ê(n)∗

Ê(n)
∗
( ) ∼= Ê(n)∗(Ê(n))⊗E(n)∗ E(n)∗( )

is a cohomology theory on CWf , represented by Ê(n) ∧ Ê(n). Similarly, we have

Ê(n)∗(Ê(n)
∧m

) ∼= Ê(n)∗(Ê(n))⊗m,

where the tensor power is defined over the ring Ê(n)∗.
We have

Theorem (2.10). Let F be a topological module spectrum over Ê(n) such that for each Z ∈
CWf , F ∗(Z) is a linearly compact Ê(n)∗ module. Then there is an isomorphism

F ∗c (Ê(n)) ∼= Hom
Ê(n)∗

(
Ê(n)∗

(
Ê(n)

)
, F∗

)

where Hom denotes topological homomorphism.

Proof. By methods of [2], a continuous natural transformation (on CWf )

θ : Ê(n)
∗
( ) −→ F ∗( )

determines a unique (up to natural equivalence) morphism of spectra θ : Ê(n) −→ F , and this
must be continuous. Moreover, such a morphism determines an Ê(n)∗ module homomorphism
which is the composite

Ê(n)∗
(
Ê(n)

)
θ∗−→ Ê(n)∗ (F )

∼=−→ π∗
(
Ê(n) ∧ F

)
−→ π∗ (F ) = F∗
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defined using the module structure.
Conversely, a continuous homomorphism h∗ : Ê(n)∗

(
Ê(n)

)
−→ F∗ determines a continuous

natural transformation h : Ê(n)
∗
( ) −→ F ∗( ) as the composite

Ê(n)
∗
( )

∼=−→
(
S0 ∧ Ê(n)

)∗
( ) ē−→

(
Ê(n) ∧ Ê(n)

)∗
( )

∼=−→ Ê(n)∗
(
Ê(n)

)
⊗

Ê(n)∗
Ê(n)

∗
( )

1⊗h−−→ Ê(n)
∗
( )⊗

Ê(n)∗
F∗

∼=−→ Ê(n)
∗
( )⊗

Ê(n)∗
F ∗(S0)

−→ F ∗
( ∧S0

) ∼=−→ F ∗( ).

Here the last map uses the external multiplication coming from the Ê(n) module structure on
F . This proves the theorem. ¤

More generally we have

Theorem (2.11). There is an isomorphism

Ê(n)
∗
c(Ê(n)

∧m
) ∼= Hom

Ê(n)∗

(
Ê(n)∗

(
Ê(n)

)⊗m

, Ê(n)∗

)
.

The proof is similar to that of (2.10) and uses our earlier remark that Ê(n)∗(Ê(n)) is flat over
E(n)∗ on the category of E(n)∗(E(n)) comodules. Of course, this verifies (1.2) for Ê(n).

§3 Topological A∞ structures on Ê(n).
The principal goal of the present section is to prove the following result.

Theorem (3.1). The ring spectrum Ê(n) has a unique equivalance class of A∞ structures com-
patible with its canonical ring spectrum structure. Moreover, the natural morphism of ring spectra
Ê(n) −→ K(n) is an A∞ morphism for any of the A∞ structures on K(n) compatible with the
canonical ring spectrum structure on the latter.

The proof of this will follow from (1.3) and (1.4) together with the fact that certain continuous
Hochschild cohomology groups vanish.

Theorem (3.2). The following continuous Hochschild cohomology groups are as stated:

HHr,∗
(
Ê(n)∗

(
Ê(n)

)
, Ê(n)∗

)
=





Ê(n)∗ if r = 0,

0 otherwise

and

HHr,∗
(
Ê(n)∗

(
Ê(n)

)
,K(n)∗

)
=

{
K(n)∗ if r = 0,

0 otherwise,



8 ANDREW BAKER

where in the second equation Hochschild cohomology is taken with respect to the discrete topology
on K(n)∗ and hence agrees with the ordinary version.

To compute such groups, we must first recall that the continuous Hochschild cochains in this
case are given by

Ck,∗
(
Ê(n)∗

)
= Hom ∗

Ê(n)∗

(
Ê(n)∗

(
Ê(n)

)⊗k

, Ê(n)∗

)
(3.3)

= lim←−
r
Hom ∗

Ê(n)∗

(
Ê(n)∗

(
Ê(n)

)⊗k

, Ê(n)∗/Ir
n

)

= lim←−
r

Hom∗
E(n)∗/Ir

n

(
Ê(n)∗

(
Ê(n)

)⊗k

/Ir
n, Ê(n)∗/Ir

n

)

= lim←−
r

Ck,∗ (E(n)∗/Ir
n) .

Observe that each projection

Ck,∗ (
E(n)∗/Ir+1

n

) −→ Ck,∗ (E(n)∗/Ir
n)

is surjective and hence
lim←−

r

1 Ck,∗ (E(n)∗/Ir
n) = 0.

By results of [5, Part I Chap 3] we have an exact sequence for each k of the form

0 → lim←−
r

1 HHk−1,∗ (
E(n)∗

(
E(n)

)
/Ir

n, E(n)∗/Ir
n

) −→ HHk,∗
(
Ê(n)∗

(
Ê(n)

)
, Ê(n)∗

)

−→ lim←−
r

HHk,∗ (
E(n)∗

(
E(n)

)
/Ir

n, E(n)∗/Ir
n

) → 0

We will now prove

Lemma (3.4). For each r ≥ 1, we have the following Hochschild cohomology groups:

HHk,∗ (
E(n)∗

(
E(n)

)
/Ir

n, E(n)∗/Ir
n

)
=

{
E(n)∗/Ir

n if k = 0,

0 otherwise.

Proof. We will require a version of the infinite dimensional Hensel’s Lemma of [2]. In fact, we
only need a very simple case, namely that where the equations each involve a single variable; we
make do with a modification of the argument used in that earlier work.

Recall from (2.8) that
E(n)∗ (E(n)) = E(n)∗(tk : k ≥ 1)

where the tk satisfy relations
fk(t) = 0

with fk(X) ∈ E(n)∗[Xk : k ≥ 1] a polynomial satisfying

(3.5) fk(X) ≡ vnXpn

k − vpk

n Xk mod In.
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Thus, the sequence t = (ti)i≥1 in E(n)∗ (E(n)) is a zero modulo In of the sequence of polynomials
g = (gj)j≥1 where

(3.6) gj(X) = vnXpn

j − vpj

n Xj .

Now notice that the derivative matrix of g has the form

(3.7) dg ≡




−vp
n 0 0 . . .

0 −vp2

n 0 . . .

0 0 −vp3

n . . .
...

...
...

. . .


 mod In.

Now define a sequence (of sequences) (sm)m≥1 by

s1 = t

sm+1 ≡ sm − dg(t)−1g(sm) mod Im+1
n(3.8)

where

dg(t)−1 =




−v−p
n 0 0 . . .

0 −v−p2

n 0 . . .

0 0 −v−p3

n . . .
...

...
...

. . .


 .

It is easy to verify that for each m ≥ 1,

g(sm) ≡ 0 mod Im
n

and that we have thus define a Cauchy sequence of sequences in E(n)∗ (E(n)) with respect to
the In-adic topology. Of course, this topology is neither complete nor Hausdorff so the sequence
does not have a limit!

Now for each k ≥ 1 we can consider E(n)∗ (E(n)) /Ik
n which is complete and Hausdorff with

respect to the In-adic topology (in fact it is discrete) and hence the above procedure gives a
sequence with limit term sk and this is a simultaneous zero of the polynomials gj . Notice that
we have sk = (sk,i)i≥1 with

sk,i ≡ ti mod In

and hence the elements si = sk,i can be taken as algebra generators in place of the ti.
We now see that there is an isomorphism of algebras over E(n)∗/Ik

n,

(3.9) E(n)∗ (E(n)) /Ik
n
∼=

⊗

j≥1

[
(E(n)∗/Ik

n)× (E(n)∗/Ik
n)[Sj ]/(Spn−1

j − vpj−1
n )

]
.

Here, in each tensor product factor the augmentation onto E(n)∗/Ik
n sends the (ring) summand

of the form E(n)∗(Sj) to 0 and is the identity on the summand of the form E(n)∗/Ik
n.

Just as in [12] we have

(3.10) HH∗,∗
(
E(n)∗ (E(n)) /Ik

n, E(n)∗/Ik
n

)
= E(n)∗/Ik

n

with all terms in bidegrees not of form (0, ∗) being 0.
This completes the proof of Lemma (3.3), and Theorem (3.1) follows from this. ¤
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§4 Some discrete module spectra over Ê(n).
We now turn our attention to the construction of certain module spectra over Ê(n), both as

a demonstration of the usefulness of the techniques and because we will use these spectra in [3].
The simplest example is provided by K(n) which we already know is an A∞ algebra spectrum
over Ê(n) (see (3.2)), hence is a module spectrum. Let ϕ1: Ê(n) ∧ K(n) −→ K(n) denote
the A∞ product map. We will need some information on the spectrum REnd

Ê(n)
(K(n)) =

RHom
Ê(n)

(K(n),K(n)) of [10]. We will determine the homotopy of this spectrum using a
spectral sequence of [10].

Recall the Koszul complex of K(n)∗ as a module over Ê(n)∗:

K 〈K(n)∗〉∗,∗ = Ê(n)∗ (e0, e1, . . . , en−1)
ε−→K(n)∗

where ek ∈ K 〈K(n)∗〉1,2(pk−1) is an exterior generator, the differential ∂ is given by

∂(ek) = vk

and ε is the reduction of the augmentation map given by

ε(ek) = 0

ε(u) = u ∈ Ê(n)∗/In = K(n)∗ if u ∈ Ê(n)∗.

Thus, we can calculate
Ext∗,∗

Ê(n)∗
(K(n)∗, K(n)∗)

as the cohomology of the complex whose rth term is

Hom∗
Ê(n)∗

(
K 〈K(n)∗〉r,∗,K(n)∗

)

with trivial differential δ = ∂∗. So we have

(4.1) Ext∗,∗
Ê(n)∗

(K(n)∗,K(n)∗) = K(n)∗{εi1i2...ir : 0 ≤ i1 ≤ i2 ≤ . . . ≤ ir ≤ n− 1}

where for each sequence 0 ≤ j1 ≤ j2 ≤ . . . ≤ jr we have

εi1i2...ir (ej1ej2 · · · ejr ) =
{ 1 if jk = ik for each k,

0 otherwise,

thus defining a K(n)∗ basis.
Now recall from [13] that there is spectral sequence

(4.2) Es,t
2 (K(n),K(n)) = Ext−s,−t

Ê(n)∗
(K(n)∗,K(n)∗) =⇒ πs+t

(
REnd

Ê(n)
(K(n))

)

which does converge here because modules over Ê(n)∗ have finite homological dimension (always
less than or equal to n). We will show that this has trivial differentials.
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Theorem (4.3). The natural morphism of spectra

REnd
Ê(n)

(K(n)) −→ Spectra (K(n),K(n))

induces a monomorphism

π∗
(
REnd

Ê(n)
(K(n))

)
−→ K(n)∗ (K(n)) .

and the spectral sequence E∗,∗r (K(n),K(n)) collapses from E2 onwards.

Proof. The spectrum Ê(n)∧K(n) is a left A∞ module spectrum over Ê(n) and the multiplication
map ϕ1: Ê(n) ∧K(n) −→ K(n) is a morphism of A∞ module spectra over Ê(n), thus it induces
a morphism of spectral sequences

(4.4)

Es,t
2 (K(n),K(n)) > πs+t

(
REnd

Ê(n)
(K(n))

)

ϕ∗1

y
y

Es,t
2

(
Ê(n) ∧K(n),K(n)

)
> K(n)−s−t (K(n))

– here the second spectral sequence has

Es,t
2

(
Ê(n) ∧K(n),K(n)

)
= Ext−s,−t

Ê(n)∗

(
Ê(n)∗ (K(n)) , K(n)∗

)

and converges to

πs+t

(
RHom

Ê(n)

(
Ê(n) ∧K(n),K(n)

)) ∼= πs+t (Spectra (K(n),K(n)))(4.5)

∼= K(n)−(s+t) (K(n))

as described in [10] and [11] (this is just a universal coefficient type spectral sequence).
Now consider the free Ê(n)∗ algebra

Γ∗ = Ê(n)∗(t
′
k : k ≥ 1)

subject to relations of the form

t′k
pn

= vpk−1
n t′k.

Observing that
K(n)∗ ⊗Ê(n)∗

Γ∗ ∼= K(n)∗(E(n))

we see that the Koszul resolution K 〈K(n)∗〉∗,∗ −→ K(n)∗ gives rise to a free Ê(n)∗ resolution

Γ∗ ⊗Ê(n)∗
K 〈K(n)∗〉∗,∗ −→ Γ∗ ⊗Ê(n)∗

K(n)∗.
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We also have that

Ê(n)∗(K(n)) ∼= K(n)∗(Ê(n))(4.6)
∼= K(n)∗(E(n))

= K(n)∗(tk : k ≥ 1)
∼= Γ∗ ⊗Ê(n)∗

K(n)∗.

It is now easy to see that

Extr,∗
Ê(n)∗

(
Ê(n)∗ (K(n)) , K(n)∗

) ∼= Hom
Ê(n)∗

(
Γ∗, Extr,∗

Ê(n)∗
(K(n)∗, K(n)∗))

)
.

Now recall from [14] that we have

(4.7) K(n)∗ (K(n)) = K(n)∗ (tk : k ≥ 1)⊗ E (a0, a1, . . . , an−1)

where tp
n

k = vpk−1
n tk and ak is exterior of degree |ak| = 2pk − 1. Clearly ϕ∗1 induces a monomor-

phism of E2 terms, since it visibly maps an element

h ∈ Ext∗,∗
Ê(n)∗

(K(n)∗,K(n)∗)

to the element

h̃(x) = ε(x)h ∈ Hom
Ê(n)∗

(
Γ∗,Ext∗,∗

Ê(n)∗
(K(n)∗,K(n)∗)

)

where ε : Γ∗ −→ K(n)∗ is the Ê(n)∗ algebra augmentation determined by

ε(t′k) = 0 k ≥ 1.

Hence, all that remains to do is to show that the second spectral sequence has trivial differentials
from E2 on.

From (4.7) we see that

K(n)∗ (K(n)) ∼= HomK(n)∗ (K(n)∗ (K(n)) ,K(n)∗)

and it is straightforward to show that the associated graded object of K(n)∗ (K(n)) is isomorphic
to the E2 term of the second spectral sequence, which must therefore collapse. ¤

We will use the last result to construct a spectrum E(n)/I2
n with good properties. In the

case n = 1, we are simply constructing E(1)/(p2) but in the general case we obtain much more
information than is be available from alternative methods.

Theorem (4.8). For 0 ≤ j ≤ n− 1, let δj :K(n) −→ Σ2pj−1K(n) be any map of spectra which
is a morphism of A∞ modules over Ê(n) and is detected by the element

εj ∈ Ext1,2(pj−1)

Ê(n)∗
(K(n)∗,K(n)∗).



A1 STRUCTURES ON SOME SPECTRA RELATED TO MORAVA K-THEORIES 13

Then there is a cofibre sequence of A∞ module spectra over Ê(n),
∨

0≤j≤n−1

Σ2pj−1K(n) −→ M(δ0, δ1, . . . , δn−1) −→ K(n)

with cofibre map

K(n)
W

0≤j≤n−1 δj−−−−−−−−→ Σ2pj−1K(n)

and
π∗ (M(δ0, δ1, . . . , δn−1)) ∼= Ê(n)∗/I2

n

as an Ê(n)∗ module.

We will now assume we have such a sequence δ0, δ1, . . . , δn−1 and denote the spectrum
M(δ0, δ1, . . . , δn−1) by E(n)/I2

n.
More generally, we can iteratively define a sequence of spectra E(n)/Ik

n for which

π∗
(
E(n)/Ik

n

) ∼= E(n)/Ik
n

and having good properties. To see this we choose a minimal resolution of the Ê(n)∗ module
E(n)/Ik

n,

Pk
∗∗ −→ E(n)/Ik

n −→ 0

for which

Pk
0 ∗ = Ê(n)∗

and

Pk
1 ∗ = Ê(n)∗

{
e(r0,r1,... ,rn−1) : 0 ≤ ri and

n−1∑

i=0

ri = k

}

with differential
∂ e(r0,r1,... ,rn−1) = vr0

0 vr1
1 · · · vrn−1

n−1 .

We can also assume that Ker ∂: Pk
1 ∗ −→ Pk

0 ∗ lies in InPk
1 ∗. Now forming

Hom
Ê(n)

(
Pk
∗ ∗, K(n)∗

)

and taking the cohomology with respect to ∂∗ gives

Ext∗,∗
Ê(n)∗

(
E(n)/Ik

n,K(n
)
∗).

The dual classes ε(r0,r1,... ,rn−1) where

ε(r0,r1,... ,rn−1)

(
e(r0,r1,... ,rn−1)

)
=

{
1 if si = ri ∀i,
0 otherwise
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are then cocycles representing a K(n)∗ basis for Ext 1. A careful inspection of the spectral
sequences for π∗

(
RHom

Ê(n)

(
E(n)/Ik

n,K(n)
))

and K(n)∗
(
E(n)/Ik

n

)
shows that these elements

are non-zero infinite cycles in both. Hence we can form a cofibre sequence of A∞ module spectra
over Ê(n), ∨P

i ri=k

Σ2d(r0,r1,... ,rn−1)K(n) −→ E(n)/Ik+1
n −→ E(n)/Ik

n

where d(r0, r1, . . . , rn−1) =
∑

i ri(pi − 1). Moreover in homotopy this realises the extension of
Ê(n)∗ modules

Ik
n/Ik+1

n −→ E(n)∗/Ik+1
n −→ E(n)∗/Ik

n.

We incorporate state this into the next theorem.

Theorem (4.9). For each k ≥ 1, there is a cofibre sequence of A∞ module spectra over Ê(n),
∨P
i ri=k

Σ2d(r0,r1,... ,rn−1)K(n) −→ E(n)/Ik+1
n −→ E(n)/Ik

n

which in homotopy realises the following extension of modules over Ê(n)∗:

Ik
n/Ik+1

n −→ E(n)∗/Ik+1
n −→ E(n)∗/Ik

n.

Notice that we have

π∗
(
RHom

Ê(n)

(
Ê(n), E(n)/Ik

n

)) ∼= E(n)∗/Ik
n

since Ê(n)∗ is free over itself; furthermore, the generators can be taken to be compatible under
the natural maps E(n)/Ik+1

n −→ E(n)/Ik
n. We can now deduce

Theorem (4.10). On the category CWf , the functor

lim←−
k

(
E(n)/Ik

n

)∗
( )

is a cohomology theory which is a continuous module theory over Ê(n)∗, uniquely (up to equiva-
lence) representable by the topological spectrum

holim←−
k

E(n)/Ik
n.

The canonical continuous natural transformation

Ê(n)
∗
( ) −→ lim←−

k

(
E(n)/Ik

n

)∗
( )

is an equivalence of functors, induced by an equivalence of topological module spectra over Ê(n).

The proof uses the above together with results from [2].
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We end by remarking that the above sequence of spectra and cofibrations gives rise to a
spectral sequence for each spectrum X whose E1 term has the form

Es ∗
1 =

⊕
αs

K(n)∗(X),

with E2 term obtained as the cohomology with respect to certain sums of “Bockstein operations”
⊕
αs

K(n)∗(X) −→
⊕
αs+1

K(n)∗(X),

and which converges to Ê(n)
∗
(X). The existence of such a spectral sequence was pointed out

to the author by Urs Würgler, and we return to it in joint work [3], where we show that the
boundary morphisms can be explicitly constructed so as to yield derivations in cohomology.

Concluding remarks.
In the above we have restricted attention to the ring spectrum Ê(n); we can also use our

results to give an A∞ structure on ̂v−1
n BP , the Artinian completion of v−1

n BP , constructed in
[2]– this can be made consistent with the two morphisms of ring spectra constructed in [2],

Ê(n) −→ ̂v−1
n BP −→ Ê(n)

being morphisms of A∞ ring spectra. We do not prove this here since we feel that there should be
a more generally applicable result encompassing other examples such as BP −→ MU(p) whereas
our present proof is rather ad hoc. We hope to return to this in future work.

The results of §4 are used in [3], and we have also applied them, together with results from
[11], to construct various interesting A∞ ring spectra. For example, the subalgebra

K(n)∗
(
Q0, Q1, . . . , Qn−1

) ⊂ K(n)∗(K(n))

can be realised as the homotopy ring of an A∞ ring spectrum, as also can

K(n)∗ (a0, a1, . . . , an−1) ⊂ K(n)∗(K(n))

(see [14]).
Finally, we remark that A. Robinson’s general theory of A∞ module spectra assures us that

there are Künneth and Universal Coefficient spectral sequences associated to module spectra over
Ê(n) which promise to be of great use in future calculations.
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