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Complex cobordism of Hilbert manifolds with some
applications to flag varieties of loop groups

A. Baker & C. Özel

Abstract. We develop a version of Quillen’s geometric cobordism theory for
infinite dimensional separable Hilbert manifolds. This cobordism theory has a
graded group structure under the topological union operation and has push-
forward maps for Fredholm maps. We discuss transverse approximations and
products, and the contravariant property of this cobordism theory. We define
Euler classes for finite dimensional complex vector bundles and describe some
applications to the complex cobordism of flag varieties of loop groups.

Introduction

In [17], Quillen gave a geometric interpretation of complex cobordism groups
which suggests a way of defining the cobordism of separable Hilbert manifolds. In
order that such an extension be reasonable, it ought to reduce to his construction
for finite dimensional manifolds and also be capable of supporting calculations for
important types of infinite dimensional manifolds such as homogeneous spaces of
free loop groups of finite dimensional Lie groups and Grassmannians.

In this paper, we outline an extension of Quillen’s work to separable Hilbert
manifolds and discuss its main properties. Although we are able to verify some
expected features, there appears to be a serious gap in the literature on infinite
dimensional transversality and without appropriate transverse approximations of
Fredholm and smooth maps we are unable to obtain contravariance or product
structure. However, covariance along Fredholm maps does hold as does contravari-
ance along submersions. If the relevant infinite dimensional transversality results
are indeed true then our version of Quillen’s theory may be of wider interest. A
major motivation for the present work lay in the desire to generalize to loop groups
the finite dimensional results of Bressler & Evens [2, 3], and as a sample of appli-
cations, we describe some cobordism classes for flag varieties of loop groups and
related spaces which appeared in the second author’s PhD thesis [15].

We would like to thank Jack Morava for bringing the volume ‘Global Analysis’
[9] to our attention at a crucial moment.
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1. Fredholm maps and cobordism of separable Hilbert manifolds

By a manifold, we mean a smooth manifold locally modelled on a separable
Hilbert space; see Lang [12] for details on infinite dimensional manifolds. We
begin by reviewing some facts about Fredholm maps which can be and found in
Conway [4]. Let X and Y be manifolds.

Definition 1.1. A smooth map f : X −→ Y is proper if the preimages of
compact sets are compact.

Definition 1.2. A linear operator A : U −→ V between the normed vector
spaces U and V is Fredholm if both dimkerA and dim cokerA are finite and then
index of A is defined by

index A = dimkerA− dim cokerA.

The set of Fredholm operators U −→ V will be denoted Fred(U, V ) viewed as
a subspace of space of all bounded operators L(U, V ) in the norm topology.

Proposition 1.3. Fred(U, V ) is open in L(U, V ) and the index map

index: Fred(U, V ) −→ Z

is locally constant, hence continuous.

Definition 1.4. A smooth map f : X −→ Y is Fredholm if for each x ∈ X,
dfx : TxX −→ Tf(x)Y is a Fredholm operator. For such a map, the index of f at
x ∈ X is defined by

index fx = dim ker dfx − dim coker dfx.

Proposition 1.5. The function X −→ Z given by x 7−→ index dfx is locally
constant, hence continuous.

The following results are well known and can be found in Zeidler [21].

Proposition 1.6. Let U, V, W be finite dimensional vector spaces and let X,Y
be finite dimensional smooth manifolds.

a) Then every linear operator A : U −→ V is Fredholm and

indexA = dim U − dim V.

b) Let U
A−→ V

B−→ W be a sequence of Fredholm operators. Then the com-
posite linear operator U

BA−−→ W is also Fredholm and

indexBA = indexB + index A.

c) Let f : X −→ Y be a smooth map. Then f is a Fredholm map and for
x ∈ X,

index fx = dim Xx − dim Yf(x).

Proposition 1.6 implies

Proposition 1.7. Let X
f−→ Y

g−→ Z be a sequence of Fredholm maps, where
X, Y, Z are smooth manifolds. Then the composite map X

gf−→ Z is also Fredholm
and for x ∈ X,

index(gf)x = index gf(x) + index fx.
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Definition 1.8. Suppose that f : X −→ Y is a proper Fredholm map with
even index at each point. Then f is an admissible complex orientable map if there
is a smooth factorization

f : X
f̃−→ ξ

q−→ Y,

where q : ξ −→ Y is a finite dimensional smooth complex vector bundle and f̃ is a
smooth embedding endowed with a complex structure on its normal bundle ν(f̃).

A complex orientation for a Fredholm map f of odd index is defined to be one
for the map (f, ε) : X −→ Y × R given by (f, ε)(x) = (f(x), 0) for every x ∈ X.
Then for x ∈ X, index(f, ε)x = (index fx) − 1 and the finite dimensional complex
vector bundle ξ in the smooth factorization will be replaced by ξ × R −→ Y × R.

Suppose that f is an admissible complex orientable map with a factorisation f̃
as in Definition 1.8. Since f is a Fredholm map and ξ is a finite dimensional vector
bundle, f̃ is also a Fredholm map. By Proposition 1.7 and the surjectivity of q,

index f̃ = index f − dim ξ.

Before giving a notion of equivalence of such factorizations f̃ of f , we require yet
more definitions.

Definition 1.9. Let F : X×R −→ Y a smooth map where X and Y are sepa-
rable Hilbert manifolds. Then F is an isotopy if it satisfies the following conditions.

a) For every t ∈ R, the map Ft given by Ft(x) = F (x, t) is an embedding.
b) There exist numbers t0 < t1 such that Ft = Ft0 for t 6 t0 and Ft = Ft1

for t > t1.
The closed interval [t0, t1] is called a proper domain for isotopy. Two embeddings
f : X −→ Y and g : X −→ Y are isotopic if there is an isotopy Ft : X × R −→ Y
with proper domain [t0, t1] such that f = Ft0 and g = Ft1 .

From Lang [12] we have

Proposition 1.10. The relation of isotopy between smooth embeddings is an
equivalence relation.

Definition 1.11. Two factorizations f : X
f̃−→ ξ

q−→ Y and f : X
f̃ ′−→ ξ′

q′−→ Y
are equivalent if ξ and ξ′ can be embedded as subvector bundles of a vector bundle
ξ′′ −→ Y such that f̃ and f̃ ′ are isotopic in ξ′′ and this isotopy is compatible with
the complex structure on the normal bundle. That is, there is an isotopy F such
that for all t ∈ [t0, t1], Ft : X −→ ξ′′ is endowed with a complex structure on its
normal bundle matching that of f̃ and f̃ ′ in ξ′′ at t0 and t1 respectively.

Proposition 1.10 gives

Proposition 1.12. The relation of equivalence of admissible complex orientab-
ility of proper Fredholm maps between separable Hilbert manifolds is an equivalence
relation.

This generalizes Quillen’s notion of complex orientability for maps of finite
dimensional manifolds. We can also define a notion of cobordism of admissible
complex orientable maps between separable Hilbert manifolds. First we recall some
ideas on the transversality.
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Definition 1.13. Let f1 : M1 −→ N , f2 : M2 −→ N be smooth maps between
Hilbert manifolds. Then f1, f2 are transverse at y ∈ N if

df1(Tx1M1) + df2(Tx2M2) = TyN

whenever f1(x1) = f2(x2) = y. The maps f1, f2 are said to be transverse if they
are transverse at every point of N .

Lemma 1.14. Smooth maps fi : Mi −→ N (i = 1, 2) are transverse if and only
if f1×f2 : M1×M2 −→ N×N is transverse to the diagonal map ∆: N −→ N×N .

Definition 1.15. Let f1 : M1 −→ N , f2 : M2 −→ N be transverse smooth
maps between Hilbert manifolds. The topological pullback

M1u
N

M2 = {(x1, x2) ∈ M1 ×M2 : f1(x1) = f2(x2)}
is a submanifold of M1 ×M2 and the diagram

M1u
N

M2
f2
∗f1−−−−→ M2

yf1
∗f2

yf2

M1
f1−−−−→ N

is commutative, where the map fi
∗fj is the pull-back of fj by fi.

Definition 1.16. Let fi : Xi −→ Y (i = 0, 1) be admissible complex oriented
maps. Then f0 is cobordant to f1 if there is an admissible complex orientable map
h : W −→ Y × R such that the maps εi : Y −→ Y × R given by εi(y) = (y, i) for
i = 0, 1, are transverse to h and the pull-back map εi

∗h is equivalent to fi. The
cobordism class of f : X −→ Y will be denoted [X, f ].

Proposition 1.17. If f : X −→ Y is an admissible complex orientable map
and g : Z −→ Y a smooth map transverse to f , then the pull-back map

g∗f : Zu
Y
X −→ Z

is an admissible complex orientable map with finite dimensional pull-back vector
bundle

g∗ξ = Zu
Y
ξ = {(z, v) ∈ Z × ξ : g(z) = q(v)}

in the factorization of g∗f , where q : ξ −→ Y is the finite-dimensional complex
vector bundle in a factorization of f as in Definition 1.8.

The next result was proved in [15] by essentially the same argument as in the
finite dimensional situation using the Implicit Function Theorem [12].

Theorem 1.18. Cobordism is an equivalence relation.

Definition 1.19. For a separable Hilbert manifold Y , Ud(Y ) is the set of
cobordism classes of the admissible complex orientable proper Fredholm maps of
index −d.

In the above definition, instead of proper maps, closed maps could be used for
infinite dimensional Hilbert manifolds, because of the following result of Smale [19].

Theorem 1.20. When X and Y are infinite dimensional, every closed Fredholm
map X −→ Y is proper.
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By Proposition 1.7 together with the fact that composites of proper maps are
proper, we have the following theorem.

Theorem 1.21. If f : X −→ Y is an admissible complex orientable Fredholm
map of index d1 and g : Y −→ Z is an admissible complex orientable Fredholm map
with index d2, then g ◦ f : X −→ Z is an admissible complex orientable map with
index d1 + d2.

Proof. For the complex orientation of the composition map g◦f , see Dyer [6].
¤

Let g : Y −→ Z be an admissible complex orientable Fredholm map of index r.
By Theorem 1.21, we have the push-forward (or Gysin) map

g∗ : Ud(Y ) −→ Ud−r(Z)

g∗[X, f ] = [X, g ◦ f ].

It is straightforward to verify that this is well-defined. In fact, if g′ : Y −→ Z is
a second such map cobordant to g then g′∗ = g∗; in particular, if g and g′ are
homotopic through proper Fredholm maps they induce the same Gysin maps.

The graded cobordism set U∗(Y ) of the separable Hilbert manifold Y has a
group structure given as follows. Let [X1, f1] and [X2, f2] be cobordism classes.
Then [X1, f1] + [X2, f2] is the class of the map f1 q f2 : X1 q X2 −→ Y , where
X1 q X2 is the disjoint union of X1 and X2. As in the finite dimensional theory,
the class of the empty set is the zero element and the negative of [X, f ] is itself
with the opposite orientation on the normal bundle of the embedding f̃ .

Theorem 1.22. The graded cobordism set U∗(Y ) of the admissible complex
orientable maps of Y is a graded abelian group.

If our cobordism functor U∗( ) of admissible complex orientable Fredholm maps
is restricted to finite dimensional Hilbert manifolds, it agrees Quillen’s complex
cobordism functor MU∗( ).

Theorem 1.23. If Y is a finite dimensional separable Hilbert manifold, there
is a natural isomorphism

U∗(Y ) ∼= MU∗(Y ).

2. Transversality, contravariance and cup products

We would like to define a product structure on the graded cobordism group
U∗(Y ). Given cobordism classes [X1, f1] ∈ Ud1(Y1) and [X2, f2] ∈ Ud2(Y2), their
external product is

[X1, f1]× [X2, f2] = [X1 ×X2, f1 × f2] ∈ Ud1+d2(Y1 × Y2).

We cannot necessarily define an internal product on U∗(Y ) unless Y is a finite
dimensional manifold. However, if admissible complex orientable Fredholm maps
f1 and f2 are transverse, then they do have an internal (cup) product

[X1, f1] ∪ [X2, f2] = ∆∗[X1 ×X2, f1 × f2],

where ∆ is the diagonal embedding. If Y is finite dimensional, then by Thom’s
Transversality Theorem [20], every complex orientable Fredholm map to Y has a
transverse approximation, hence the cup product ∪ induces a graded ring structure
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on U∗(Y ). The unit element 1 is represented by the identity map Y −→ Y with
index 0; note that this also element exists when Y is infinite dimensional.

The following result was proved by F. Quinn [18].

Theorem 2.1. Let f : M −→ N be a Fredholm map and g : W −→ N an
inclusion of a finite-dimensional submanifold. Then there exists an approximation
g′ of g in C∞(W,N) with the fine topology such that g′ is transverse to f .

Details on the fine topology and the space of smooth maps C∞(W,N) can be
found in Michor [13]. In this topology the derivatives of the difference function
between the function g and its approximation g′ are bounded. We would like
to interpret this approximation in the fine topology. We need some notation to
describe this situation.

Definition 2.2. Let X and Y be smooth manifolds. A k-jet from X to Y is
an equivalence class [f, x]k of pairs (f, x) where f : X −→ Y is a smooth mapping
and x ∈ X. The pairs (f, x) and (f ′, x′) are equivalent if x = x′, f and f ′ have
same Taylor expansion of order k at x in some pair of coordinate charts centered
at x and f(x) respectively. We will write Jkf(x) = [f, x]k and call this the k-jet of
f at x.

There is an equivalent definition of this equivalence relation:
[f, x]k = [f ′, x′]k if x = x′ and T k

x f = T k
x f ′ where T k is the k th tangent mapping.

Definition 2.3. For a topological space X, a covering of X is locally finite if
every point has a neighbourhood which intersects only finitely many elements of
the covering.

Approximation g′ of g in the smooth fine topology means the following. Let
{Li}i∈I be a locally finite cover of W . For every open set Li, there is a bounded
continuous map εi : Li −→ [0,∞) such that for every x ∈ Li and k > 0,

‖Jkg(x)− Jkg′(x)‖ < εi(x).

By Theorem 2.1, for a finite dimensional manifold Z, a smooth map g : Z −→ Y ,
can be deformed by a smooth homotopy until it is transverse to an admissible
complex orientable map f : X −→ Y . Thus the cobordism functor is contravariant
for any map from a finite dimensional manifold to a Hilbert manifold.

Theorem 2.4. Let f : X −→ Y be an admissible complex oriented map and
let g : Z −→ Y be a smooth map from a finite dimensional manifold Z. Then the
cobordism class of the pull-back Zu

Y
X −→ Z depends only on the cobordism class

of f , hence there is a map g∗ : Ud(Y ) −→ Ud(Z) given by

g∗[X, f ] = [Zu
Y
X, g′∗(f)],

where g′ is an approximation of g which is transverse to f .

Proof. Suppose that f : X −→ Y be an admissible complex orientable map.
By Theorem 2.1, there exists an approximation g0 : Z −→ Y of g which is transverse
to f . We will show that g∗0 [X, f ] depends only on the cobordism class [X, f ].

Assume that f : X −→ Y and f ′ : X ′ −→ Y are cobordant and that g1 : Z −→
Y is another approximation of g is transverse to f ′. Then there is an admissible
complex orientable map h : W −→ Y × R such that εi : Y −→ Y × R given by



COMPLEX COBORDISM OF HILBERT MANIFOLDS 7

εi(y) = (y, i) for i = 0, 1, is transverse to h and the pull-back map ε∗0h is equivalent
to f and ε∗1h is equivalent to f ′. So,

W u
Y×R

Y = {(w, y) : h(w) = (y, 0)} ∼= X,

and
W u

Y×R
Y = {(w, y) : h(w) = (y, 1)} ∼= X ′.

There is a smooth map

(g0 q g1, IdR) : Z × R −→ Y × R
transverse to h. By Proposition 1.17, the map

(g0 q g1, IdR)∗h : W u
Y×R

Z × R −→ Z × R

is an admissible complex orientable map transverse to εi : Z −→ Z ×R for i = 0, 1.
By Proposition 1.17, there is an induced map

ε∗0(g0 q g1, IdR)∗h :
(

W u
Y×R

Z × R
)

u
Z×R

Z −→ Z.

We have the product manifold
(

W u
Y×R

Z × R
)

u
Z×R

Z

= {(w, (z1, t), z2) : h(w) = (g0(z1), t) or h(w) = (g1(z1), t), (z1, t) = (z2, 0)}
= {(w, (z1, 0) : h(w) = (g0(z1), 0) or h(w) = (g1(z1), 0)}
∼= Zu

Y
X.

Similarly, we have the induced map

ε∗1(g0 q g1, IdR)∗h :
(

W u
Y×R

Z × R
)

u
Z×R

Z −→ Z.

The product manifold
(

W u
Y×R

Z × R
)

u
Z×R

Z is diffeomorphic to Zu
Y
X ′. The two

induced functions ε∗0(g0 q g1, IdR)∗h and ε∗1(g0 q g1, IdR)∗h are equivalent to g∗0f
and g1

∗f ′ respectively. ¤

Using the concept of Sard functions of Definition 3.2, Quinn [18] studied this
situation when g is a smooth map between infinite dimensional separable Hilbert
manifolds.

Theorem 2.5. Let H be a separable infinite dimensional Hilbert space with
U ⊆ H an open subset and f : M −→ N be a proper Fredholm map between separable
infinite dimensional Hilbert manifolds M and N . Then the set of maps transverse
to f is dense in the closure of Sard function space S(U,N) in the C∞ fine topology.

We will require the Open Embedding Theorem of Eells & Elworthy [7].

Theorem 2.6. Let X be a smooth manifold modelled on the separable infinite
dimensional Hilbert space H. Then X is diffeomorphic to an open subset of H.

Using this result, we have the transverse smooth approximation of Sard func-
tions in the C∞ fine topology. From [7], we have
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Theorem 2.7. Let X and Y be two smooth manifold modelled on the separable
infinite dimensional Hilbert space H. If there is a homotopy equivalence ϕ : X −→
Y , then ϕ is homotopic to a diffeomorphism.

Theorems 2.5, 2.6 and 2.7 together imply the following result.

Theorem 2.8. Suppose X, Y, Z are infinite dimensional smooth separable Hilb-
ert manifolds, f : X −→ Y is an admissible complex orientable map and g : Z −→ Y
a Sard function. Then the cobordism class of the pull-back Zu

Y
X −→ Z only depends

on the cobordism class of f . Hence there is a well defined group homomorphism
g∗ : Ud(Y ) −→ Ud(Z) given by

g∗[X, f ] = [Zu
Y
X, g∗(f)].

Then, U∗( ) is a contravariant functor for Sard functions on the infinite dimen-
sional separable Hilbert manifolds. The question of whether it agrees with other
cobordism functors such as representable cobordism seems not so easily answered
and there is also no obvious dual bordism functor.

3. Euler classes of finite dimensional bundles

In this section, we will show how to define Euler classes in complex cobordism
for finite dimensional complex vector bundles over separable Hilbert manifolds. We
begin with some definitions.

Definition 3.1. Let E be a Banach space. We say that a collection S of
smooth functions α : E −→ R is a Sard class if it satisfies the following conditions.

a) For r ∈ R, y ∈ E and α ∈ S, the function x 7−→ α(rx + y) is also in the
class S.

b) If α1, . . . , αn ∈ S, then the rank of the differential Dx(α1, . . . , αn) is con-
stant for all x not in some closed finite dimensional submanifold of E.

Definition 3.2. Let S be a Sard class on E, U ⊆ E open, and M a smooth
Banach manifold. A Sard function f : U −→ M is one for which for each x ∈ U
there is a neighbourhood V ⊆ U of x, functions α1, . . . , αn ∈ S, and a smooth
map g : W −→ M , with W ⊆ Rn open, (α1, . . . , αn)(V ) ⊆ W and f|V = g ◦
(α1, . . . , αn)|V . The collection of all Sard functions f : U −→ M will be denoted
S(U,M); in particular we will consider S(E,R).

Recall that the support of a function f : X −→ R is the closure of the set of
points x ∈ X such that f(x) 6= 0. From [18], we have

Theorem 3.3. If S(E,R) contains a function with nonempty bounded support,
then E admits a Sard class S. In particular, every separable Hilbert space admits
Sard classes.

Let X be a topological space. Recall that a refinement of a covering of X is
a second covering, each element of which is contained in an element of the first
covering. Also, X is paracompact if it is Hausdorff and every open covering has a
locally finite open refinement.

Definition 3.4. A smooth partition of unity on a manifold X consists of a
covering {Ui}i∈I of X and a collection of smooth functions {ψi : X −→ R}i∈I

satisfying the following conditions.
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a) For x ∈ X and i ∈ I, ψi(x) > 0.
b) For i ∈ I, the support of ψi is contained in Ui.
c) The covering is locally finite.
d) For x ∈ X, we have ∑

i∈I

ψi(x) = 1.

Definition 3.5. A paracompact manifold X admits partitions of unity if, given
a locally finite open covering {Ui}i∈I , there exists a partition of unity {ψi}i∈I such
that the support of each ψi is contained in some Ui.

From Lang [12], we have

Theorem 3.6. Every paracompact smooth manifold X modelled on a separable
Hilbert space H admits smooth partitions of unity.

From Eells & McAlpin [8], we have

Theorem 3.7. For a separable Hilbert manifold X, the functions on X con-
structed using smooth partitions of unity form a Sard class.

Global sections of a vector bundle on a smooth separable Hilbert manifold can
be constructed using partitions of unity, and all sections are Sard. Given a smooth
vector bundle π : E −→ B over a separable Hilbert manifold B, we know from
Theorem 2.6, that B can be embedded as a open subset of a separable Hilbert
space H. By Theorem 2.5, we have

Corollary 3.8. Let π : E −→ B be a finite dimensional complex vector bundle
over a separable Hilbert manifold B and let i : B −→ E be the zero-section. Then
there is an approximation ĩ of i with ĩ transverse to i.

By Theorems 2.7 and 2.8, we can define the Euler class of a finite dimensional
complex vector bundle on a separable Hilbert manifold. Note that Theorem 2.8
implies that this Euler class is a well-defined invariant of the bundle π.

Definition 3.9. Let π : ξ −→ B be a finite dimensional complex vector bundle
of dimension d on a separable Hilbert manifold B with zero-section i : B −→ ξ. The
U-theory Euler class of ξ is the element

χ(π) = i∗i∗1 ∈ U2d(B).

We have the following projection formula for the Gysin map of a submersion.

Theorem 3.10. Let f : X −→ Y be an admissible complex orientable Fredholm
submersion and let π : ξ −→ Y be a finite dimensional smooth complex vector bundle
of dimension d. Then

χ(ξ) ∪ [X, f ] = f∗χ(f∗ξ).

Proof. Let s be a smooth section of π transverse to the zero section i : Y −→ ξ.
Then Y ′ = {y ∈ Y : s(y) = i(y)} is a submanifold of complex codimension d and
χ(ξ) = [Y ′, j], where j : Y ′ −→ Y is the inclusion. Setting

X ′ = f−1Y ′ = {x ∈ X : s(f(x)) = i(f(x))},
which is also a submanifold of X of complex codimension d, we have

χ(ξ) ∪ [X, f ] = [Y ′, j] ∪ [X, f ]

= [X ′, f|X′ ].
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Now we determine f∗χ(f∗ξ). Since f is a submersion, the composite section s ◦
f : X −→ f∗ξ is transverse to the zero section and they agree on X ′, hence by
definition we have χ(f∗ξ) = [X ′, j] where j : X ′ −→ X is the inclusion. Hence,
f∗χ(f∗ξ) = [X ′, f|X′ ] by definition of the Gysin map f∗. ¤

4. The relationship between U-theory and MU-theory

In this section we consider the relationship between U-theory and MU-theory.
Later we will discuss the particular cases of Grassmannians and LG/T .

First we will discuss the general relationship between U∗( ) and MU∗( ). Let
X be a separable Hilbert manifold and recall Theorem 2.1. Then for each proper
smooth map f : M −→ X where M is a finite dimensional manifold, there is a
pullback homomorphism

f∗ : U∗(X) −→ U∗(M) = MU∗(M).

If we consider all such maps into X, then there is a unique homomorphism

ρ : U∗(X) −→ lim←−
M↓X

MU∗(M),

where the limit is taken over all proper smooth maps M −→ X from finite dimen-
sional manifolds, which form a directed system along commuting diagrams of the
form

M1
f−−−−→ M2y

y
X

=−−−−→ X

and hence give rise to an inverse system along induced maps f∗ : MU∗(M2) −→
MU∗(M1) in cobordism.

Let X be a separable Hilbert manifold. Each of the following conjectures
appears reasonable and is consistent with examples we will discuss later. We might
also hope that surjectivity could be replaced by isomorphism, but we do not have
any examples supporting this.

Conjecture 1. ρ is always a surjection.

Conjecture 2. If Uev(X) = 0 or Uodd(X) = 0, then ρ is a surjection.

Conjecture 3. If MUev(X) = 0 or MUodd(X) = 0, then ρ is a surjection.

5. Some examples of cobordism classes for infinite dimensional
manifolds

Now we discuss some important special cases. Let H be a separable complex
Hilbert space, with Hn (n > 1) an increasing sequence of finite dimensional sub-
spaces with dimHn = n with H∞ =

⋃
n>1 Hn dense in H. We will use a theorem

of Kuiper [11].

Theorem 5.1. The unitary group U(H) of a separable Hilbert space H is con-
tractible.
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Let Grn(H) be the space of all n-dimensional subspaces of H, which is a sepa-
rable Hilbert manifold. Then

Grn(H∞) =
⋃

k>n

Grn(Hk)

is a dense subspace of Grn(H) which we will take it to be a model for BU(n).

Theorem 5.2. The natural embedding Grn(H∞) −→ Grn(H) is a homotopy
equivalence, and the natural n-plane bundle ζn −→ Grn(H) is universal.

Proof. By a theorem of Pressley & Segal [16], the unitary group U(H) acts
on Gr(H) transitively and hence U(H) acts on Grn(H) transitively. Let H ′ be the
orthogonal complement of Hn in H. The stabilizer group of Hn is U(Hn)×U(H ′)
which acts freely on the contractible space U(H). Hence

Grn(H) = U(H)/(U(Hn)×U(H ′))

= B(U(Hn)×U(H ′))

= BU(Hn)× BU(H ′).

By Kuiper’s Theorem 5.1, U(H ′) is contractible, hence so is BU(H ′). Hence

Grn(H) ' BU(Hn) = BU(n).

On the other hand,

Grn(H∞) =
⋃

k>n

U(Hk)/(U(Hn)×U(H ′′)) ⊆ Grn(H),

where H ′′ is the orthogonal complement of Hn in Hk.
By construction, the natural n-plane bundle ζn −→ Grn(H) is universal. Also,

the natural bundle ζ∞n −→ Grn(H∞) is classified by the inclusion Grn(H∞) −→
Grn(H) and since the latter is universal, this inclusion is a homotopy equivalence.

¤

In particular, the inclusion of the projective space

P(H∞) =
⋃

n>1

P(Hn) ⊆ P(H)

is a homotopy equivalence.

Theorem 5.3. The natural homomorphism

ρ : U∗(P(H)) −→ lim←−
n

MU∗(P(Hn)) = MU∗(P(H∞))

is surjective.

Proof. We will show by induction that

U∗(P(H))
i∗n−→ MU∗(P(Hn+1)),

is surjective for each n. It will suffice to show that xi ∈ im i∗n for i = 0, . . . , n. For
n = 0, this is trivial.



12 A. BAKER & C. ÖZEL

Now we verify it for n = 1. By Theorem 5.2, since the natural line bundle
λ −→ P(H) ' P(H∞) is universal, the following diagram commutes for each n > 1

ηn = i∗n(λ)
i∗n−−−−→ λ

yi∗n(λ)

y
CPn = P(Hn+1) in−−−−→ P(H),

where in : CPn = P(Hn+1) −→ P(H) is the inclusion map. By the compatibility
of induced bundles, for n > 1 and the generator x = χ(ηn) ∈ MU∗(P(Hn+1)),
there exists an Euler class x̃ = χ(λ) ∈ U2(P(H)) satisfying i∗n(x̃) = x, where
in : P(Hn+1) −→ P(H) is the inclusion map.

Assume that i∗n is surjective. Then there are elements

yi ∈ U2i(P(H)), i = 0, . . . , n,

such that
i∗nyi = xi ∈ MU2i(P(Hn+1)).

Also,
i∗n+1yi = xi + zix

n+1 ∈ MU2i(P(Hn+2)),

where zi ∈ MU2(n+1−i).
In particular, let yn = [W, f ] ∈ U2(n)(P(H)). Then the following diagram

commutes

f∗λ
f∗−−−−→ λ

y
y

W
f−−−−→ P(H)

and there is an Euler class χ(f∗λ) = [W ′, g] ∈ U2(W ). Now by Theorem 3.10,

yn+1 = f∗χ(f∗λ) ∈ U2n+2(P(H))

satisfies

i∗n+1yn+1 = xnχ(ηn) = xn+1.

Hence, im i∗n+1 contains the MU∗-submodule generated by xi (i = 0, . . . , n) and so
i∗n+1 is surjective. This completes the induction.

This shows the induced homomorphism

ρ : U∗(P(H)) −→ lim←−
n

MU∗(P(Hn)) = MU∗(P(H∞)).

is surjective. ¤

This proof shows that Theorem 3.10 can be used to work with elements which
have the appearance of products even though these may not always exist. It is also
possible (and probably more natural) to prove this result by using the projective
spaces P(Hn⊥) ⊆ P(H) to realise cobordism classes restricting to the classes xn in
MU∗(P(H∞)).

Next we will discuss some geometry of Grassmannians from Pressley & Segal
[16], whose ideas and notation we assume. We take for our separable Hilbert space
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H = L2(S1;C) and let H+ to be the closure of the subspace of Hcontaining the
functions zn : z 7−→ zn (n > 0). Then

Gr0(H) = lim−→
k>1

Gr(H−k,k),

where Gr(H−k,k) is the Grassmannian of the finite dimensional vector space

H−k,k = z−kH+/zkH+.

Gr0(H) is dense in Gr(H) and is also known to be homotopic to the classifying
space of K-theory, BU× Z.

Theorem 5.4. For n > 1, the natural homomorphism

ρ : U∗(Grn(H)) −→ MU∗(Grn(H))

is surjective.

Proof. For k > n, the inclusion i : Grn(H−k,k) −→ Grn(H) induces a con-
travariant map

U∗(Grn(H)) −→ U∗(Grn(H−k,k) = MU∗(Grn(H−k,k)).

For k > n, since CS ⊆ Grn(H−k,k) is transverse to ΣS , there exists a stratum ΣS′

such that

σS′,k = [Grn(H−k,k) ∩ ΣS′ −→ Grn(H−k,k)] ∈ MU∗(Grn(H−k,k))

are the classical Schubert cells. By an argument using the Atiyah–Hirzebruch
spectral sequence and results on Schubert cells in cohomology [14], the cobordism
classes σS′,k provide generators for the MU∗-module MU∗(Grn(H−k,k)). Thus i∗ is
surjective. For each k,

MUodd(Grn(H−k,k)) = 0,

hence

U∗(Grn(H)) −→ lim←−
k

MU∗(Grn(H−k,k))

= MU∗(Grn(H∞))
∼= MU∗(Grn(H))

is surjective. ¤

Theorem 5.5. For a compact connected semi-simple Lie group G,

ρ : U∗(LG/T ) −→ MU∗(LG/T )

is surjective.

Proof. As LG/T has no odd dimensional cells, the Atiyah–Hirzebruch spec-
tral sequence for MU∗(LG/T ) collapses. Hence it suffices to show that the compo-
sition

U∗(LG/T ) −→ MU∗(LG/T ) −→ H∗(LG/T,Z)
is surjective. Since H∗(LG/T,Z) is generated by the Schubert classes εw (w ∈ W )
dual to the Schubert cells Cw, and Σw is dual to Cw, the image of the stratum Σw

under the composition map gives εw, establishing the desired surjectivity. ¤

Similarly, we have
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Theorem 5.6. For a compact connected semi-simple Lie group G,

ρ : U∗(ΩG) −→ MU∗(ΩG)

is surjective.

6. Bott–Samelson resolutions and operators of
Bernstein–Gelfand–Gelfand type

In this section, we will construct some families of elements in the complex
cobordism of the smooth Hilbert manifold LG/T , where G is a compact connected
semi-simple Lie group G and T with maximal torus T . We will assume familiarity
with notation and ideas of Pressley & Segal [16].

The homogeneous space LG/T is a complex manifold by the diffeomorphism
LG/T ∼= LGC/B̃, where LGC is the loop group of the complexification of G and B̃
is a (positive) Borel subgroup containing T .

Associated to each simple affine root αi is a parabolic subgroup Pi of LGC
containing B̃. The projection map pi : LGC/B̃ −→ LGC/Pi is then a smooth fibre
bundle with fibre Pi/B̃ ∼= CP1.

As usual, the identity map on LGC/B̃ represents the cobordism class 1 ∈
U0(LG/T ) and

pi∗1 = [LGC/B̃, pi ◦ Id] ∈ U−2(LGC/Pi).

Since the bundle map pi is a submersion, it is transverse to any smooth map, so

pi
∗(pi∗1) = [LGC/B̃ u

LGC/Pi

LGC/B̃, pi
∗pi] ∈ U−2(LG/T ).

By definition of the transverse intersection u,

LGC/B̃ u
LGC/Pi

LGC/B̃ ∼= {(ξ1B̃, ξ2B̃) : ξ1Pi = ξ2Pi}

= {(ξ1B̃, ξ2B̃) : ξ2
−1ξ1 ∈ Pi}.

The last space is diffeomorphic to

LGC×eB Pi/B̃

under the smooth correspondence

(ξ1B̃, ξ2B̃) ←→ [ξ2, ξ2
−1ξ1B̃],

where B̃ acts on LGC × Pi/B̃ by

b · (ξ, xB̃) = (ξb, b−1xB̃).

Hence the pull-back map

pi
∗pi : LGC×eB Pi/B̃ −→ LGC/B̃

is given by
[ξ, xB̃] −→ ξ · xB̃.

For i 6= j, let
pj : LGC/B̃ −→ LGC/Pj
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be the CP1-bundle associated with a different parabolic subgroup Pj 6= Pi. Then
pj
∗pj∗pi

∗pi∗1 is represented by the smooth map

s : LGC/B̃ u
LGC/Pj

LGC×eB Pi/B̃ −→ LGC/B̃.

By the definition of product, the smooth manifold

LGC/B̃ u
LGC/Pj

LGC×eB Pi/B̃

agrees with

{(ξ1B̃, [ξ2, xB̃]) : ξ1Pj = ξ2 · xPj} = {(ξ1B̃, [ξ2, xB̃]) : ξ2x
−1ξ1 ∈ Pj}.

The space
LGC/B̃ u

LGC/Pj

LGC×eB Pi/B̃

is diffeomorphic to
LGC×eB Pi×eB Pj/B̃

under the correspondence

(ξ1B̃, [ξ2, xB̃]) ←→ [ξ2, x, ξ2x
−1ξ1B̃].

The smooth map

LGC×eB Pi×eB Pj/B̃ −→ LGC/B̃ u
LGC/Pj

LGC×eB Pi/B̃

is given by
[ξ, x, x′B̃] 7−→ (ξxx′B̃, [ξ, x′B̃]).

The cobordism class of

s : LGC×eB Pi×eB Pj/B̃ −→ LGC/B̃.

is given by
[ξ, x, x′B̃] 7−→ ξxx′B̃.

Continuing in a similar way by induction, for I = (i1, i2, . . . , in) satisfying ik 6= ik+1,
we construct a space

ZI = LGC×eB Pi1 ×eB · · · ×eB Pin/B̃

together with a smooth map

zI : ZI −→ LGC/B̃

given by
[ξ, xi1 , . . . , xinB̃] 7−→ ξ · xi1 · · ·xinB̃.

Here B̃ acts by inverse multiplication on the right hand side of the each term in
the sequence and by multiplication on the left hand side of each term for any i ∈ I.

Proposition 6.1. For any sequence I = (i1, i2, . . . , in) such that ik 6= ik+1,
ZI is a smooth complex manifold and

zI : ZI −→ LGC/B̃

is a proper holomorphic map.
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Definition 6.2. Let ri1ri2 · · · rin be the reduced decomposition of the element
w of the affine Weyl group W . Then

Z̃w = Pi1 ×eB Pi2 ×eB · · · ×eB Pin/B̃ ⊆ ZI

is called the Bott–Samelson variety associated to w.

Definition 6.3. A map f : M −→ CPn whose domain M is a complex manifold
is rational if it has the form

f(x) = [1, f1(z), . . . , fn(z)]

for meromorphic functions f1, . . . , fn on M −→ C. A rational map g : M −→ N to
an algebraic variety N ⊆ CPn is one for which the composition with the inclusion
j : N −→ CPn is a rational map j ◦ g : M −→ CPn.

A rational map f : M −→ N is birational if there exists a rational map g : N −→
M such that f ◦ g and g ◦ f are the identity maps. Two algebraic varieties are said
to be birationally isomorphic, or simply birational, if there exists a birational map
between them.

Definition 6.4. Let Y be a complex manifold with singularities and Θ: X −→
Y a holomorphic map. Then (X, Θ) is a resolution of singularities of Y if X is
smooth and the map Θ is proper and birational.

The next result is from Demazure [5].

Theorem 6.5. The map zw : Z̃w −→ Cw is a resolution of singularities of the
closure of the cell Cw of LGC/B̃ in the usual complex topology.

Since the resolution ZI is a complex manifold and the map zI is a holomorphic
map, zI has a natural complex orientation and so [ZI , zI ] is a element of U∗(LG/T ).
For any sequence I = (i1, . . . , in), this class will be denoted xI .

Let the CP1-bundle associated with the parabolic subgroup Pi be

pi : LGC/B̃ −→ LGC/Pi.

We will denote by Ai the operator

pi
∗pi∗ : U∗(LG/T ) −→ U∗−2(LG/T ).

This operator is analogous to one introduced by Bernstein, Gelfand & Gelfand [1]
and used by Kac̆ and others in their work on the ordinary cohomology of flag spaces.
Bressler & Evens [2, 3] defined similar operators in complex cobordism for finite
dimensional flag spaces.

Proposition 6.6. For each sequence I = (i1, . . . , in), there is a cobordism class
xI = AI(1).

Proposition 6.7. For two sequences of the form I = (i1, . . . , in) and J =
(i1, . . . , in+1),

An+1(xI) = xJ .

Now we will describe a method for computing products of the cobordism classes
xI with characteristic classes of line bundles on LG/T . Let Lλ −→ LG/T be the line
bundle associated with a weight λ. Then i∗i∗1 is the Euler class in the U2(LG/T ),
where i is the zero-section of the line bundle Lλ.
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Theorem 6.8. We have

χ(Lλ) ∪ xI = zI∗χ(z∗I Lλ).

Proof. Since zI is a complex orientable submersion, by Theorem 3.10 we have
the equality. ¤

Given a index I = (i1, . . . , in), we define new indices Ik, I>k by

Ik = (i1, . . . , ik−1, ik+1, . . . , in), I>k = (ik+1, . . . , in).

A subindex J of I of length k is determined by a one-to-one order preserving map

σ : {1, . . . , k} −→ {1, . . . , n}
by the rule jm = iσ(m). For the subindex J of I of length k there is a natural
embedding iJ,I : ZJ −→ ZI defined by converting a (k + 1)-tuple (ξ, xj1 , . . . , xjk

)
to the n + 1-tuple in the iσ(m) th slot for 1 6 m 6 k and the identity element
elsewhere. A pair xJ = [ZJ , iJ,I ] represents an element of U∗(ZI). The classes of
the form xJ are used to obtain an expression for χ(Lλ).

A complex line bundle is determined up to isomorphism by its first Chern class
c1(L) in integral cohomology. The Picard group Pic(ZI) of line bundles on ZI

is isomorphic to H2(ZI ,Z), which is free with a basis consisting of elements with
liftings to U∗(ZI) that can be chosen to be the xIk . The first Chern class is given
as

c1 : Pic(ZI) −→ H2(ZI ,Z).
H2(ZI ,Z) is free with basis consisting of classes xIk (1 6 k 6 n). Therefore we can
choose a basis for Pic(ZI) consisting of line bundles Lk, where 1 6 k 6 n, satisfying

c1(Lk) = xIk .

We take Lk to be the line bundle associated with the divisor ZIk . This means Lk has
a section which intersects the zero section transversely on ZIk so that χ(Lk) = xIk

in complex cobordism. This basis relates line bundles to a basis for U∗(ZI).
In ordinary cohomology, the Euler class of a line bundle on ZI is a linear

combination of the elements xIk . The proof of the following is essentially to be
found in Bressler & Evens [3].

Theorem 6.9. Let λ be a weight. Let I = (i1, . . . , in) and rI be the correspond-
ing product of reflections. Then the line bundle Lλ on ZI decomposes as

Lλ =
n⊗

k=1

L
−〈rI>k

λ,aik〉
k .

7. Cobordism classes related to Pressley–Segal stratifications

In this section, we will show that stratifications introduced by Pressley & Segal
[16] give rise some further interesting cobordism classes in U∗(LG/T ), where LG
is the smooth loop group of the finite dimensional compact connected semi-simple
Lie group G with maximal torus T . Again we will assume familiarity with notation
and ideas of Pressley & Segal [16].

Let H be a fixed separable Hilbert space. The Grassmannian Gr H of [16] is
a separable Hilbert manifold, and the stratum ΣS ⊆ Gr(H) is a locally closed con-
tractible complex submanifold of codimension `(S) and the inclusion map ΣS −→
Gr(H) is a proper Fredholm map. Therefore, we have
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Theorem 7.1. The stratum ΣS −→ Gr(H) represents a class in U2`(S)(Gr(H)).

These strata ΣS are dual to the Schubert cells CS in the following sense:
• the dimension of CS is the codimension of ΣS ;
• CS meets ΣS transversely in a single point, and meets no other stratum

of the same codimension.
The loop group LG acts via the adjoint representation on the Hilbert space

Hg = L2(S1; gC),

where gC is the complexified Lie algebra of G. If dim G = n, we can identify Hg

with Hn and since the adjoint representation is unitary for a suitable Hermitian
inner product, this identifies LG with a subgroup of LU(n). Then [16] shows how
to identify the based loop group ΩG with a submanifold of ΩU(n), which can itself
be identified with a submanifold Gr(Hg).

Then ΩG inherits a stratification with strata Σλ indexed by homomorphisms
λ : T −→ T . Each stratum Σλ ⊆ ΩG is a locally closed contractible complex
submanifold of codimension dλ, and the inclusion map Σλ −→ ΩG is an admissible
Fredholm map. Then

Theorem 7.2. For each λ, the inclusion Σλ −→ ΩG represents a class in
U2dλ(ΩG).

Such stratifications also exist for the homogeneous space LG/T for every com-
pact connected semi-simple Lie group G with T 6 G a maximal torus.

Theorem 7.3. For w ∈ W̃ , the inclusion Σw −→ LG/T represents a class in
U2`(w)(LG/T ).

Concluding remarks

The evidence of this paper suggests that it is possible to extend Quillen’s def-
inition of cobordism to some class of infinite dimensional manifolds perhaps with
a slightly weaker equivalence relation to ensure that the conjectural surjections
or isomorphisms of Section 4 hold. However, it may be that the problems with
transversality encountered can be overcome and provided that reasonable general-
izations of the standard finite dimensional results are indeed true then our approach
may lead to more precise understanding of the theory we describe. We hope that
our efforts may at least lead to further consideration of these matters.
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53–58.

[6] E. Dyer, Cohomology Theories, Benjamin (1969).
[7] J. Eells & K. D. Elworthy, On the differential topology of Hilbert manifolds, in ‘Global

Analysis’, Proc. Symp. Pure Math. 15 (1970), 41–44.
[8] J. Eells & J. McAlpin, An approximate Morse–Sard theorem, J. Math. Mech. 17 (1968),

1055–1064.
[9] ‘Global Analysis’, Proc. Symp. Pure Math. 15 (1970).

[10] K. Jänich, Topology, Springer–Verlag (1981).
[11] N. H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965),

19–30.
[12] S. Lang, Differential Manifolds, Springer–Verlag (1985).
[13] P. W. Michor, Manifolds of Differentiable Mappings, Shiva Publishing Limited (1980).
[14] J. W. Milnor & J. D. Stasheff, Characteristic Classes, Princeton University Press (1974).
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