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§1 The homotopy problem

In this talk, spaces X are always based at points x0 ∈ X and maps
f : X −→ Y are always based maps for which f(x0) = y0.

Two maps f, g : X −→ Y are homotopic (written f ' g) if there is a
map H : [0, 1]×X −→ Y for which

H(0, x) = f(x), H(1, x) = g(x), H(t, x0) = y0.

Homotopy is an equivalence relation on maps X −→ Y , the set of
equivalence classes being denoted [X, Y ]. For n > 0, Sn ⊂ Rn+1 is the
unit sphere based at e1, πn(X) = [Sn, X]. For n > 1, this is a group,
and abelian if n > 1.
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The mapping set [X, Y ] is functorial in the variables X,Y ; indeed, if
f1 ' f2 : X ′ −→ X and g1 ' g2 : Y −→ Y ′, the induced maps satisfy

f1
∗ = f2

∗ : [X, Y ] −→ [X ′, Y ],

g1∗ = g2∗ : [X, Y ] −→ [X,Y ′].

The smash product X ∧ Y is the space

X ∧ Y =
X × Y

X × {y0} ∪ {x0} × Y
,

based at the equivalence class class of (x0, y0). We have
Sm ∧ Sn ∼= Sm+n.

We set ΣnX = Sn ∧X and ΣX = S1 ∧X. [ΣX, Y ] is a group and
[ΣnX,Y ] is abelian for n > 2.
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For n > 0, there are suspension maps

Σ: [ΣnX, ΣnY ] −→ [Σn+1X, Σn+1Y ]

which are group homomorphisms apart from the case where n = 0.
The limit

{X,Y } = lim−→
n

[ΣnX, ΣnY ]

is called the set of stable homotopy classes of maps X −→ Y and is
an abelian group. By the Freudenthal Suspension Theorem, this limit
is actually attained. Notice that for k > 0,

{ΣkX, ΣkY } ∼= {X,Y }.

For n ∈ Z, we set

{X, Y }n = {X, Y }−n =




{ΣnX, Y } if n > 0,

{X, Σ−nY } if n < 0,
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and

πS
n (X) = {Sn, X}0 = {S0, X}n = {S0, X}−n.

If X, Y are finite CW complexes, then {X, Y }∗ is isomorphic to
πS
∗ (Z) for some Z, so it is important to determine or try to

understand πS
∗ (X) for finite CW complexes X.
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§2 Homology theories and the Adams spectral sequence

A homology theory on finite CW complexes is a covariant functor
E∗( ) for which f ' g : X −→ Y induce f∗ = g∗ : E∗(X) −→ E∗(Y )
and there are Mayer–Vietoris sequences for cofibrations. A
multiplicative homology theory E∗( ) is one where there are natural
pairings E∗(X)⊗ E∗(Y ) −→ E∗(X ∧ Y ) and E∗(X) is naturally a
module over the graded commutative ring E∗ = E∗(S0). From the
Mayer–Vietoris sequence, for k > 1,

En(X) ∼= En+1(ΣX) ∼= En+k(ΣkX),

so such homology theories are intrinsically ‘stable’.
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There is a spectral sequence (natural in X)

Es,t
2 (X) = Exts,t

E∗E(E∗, E∗(X)) =⇒ πS
t−s(X).

For connective theory this spectral sequence converges to something
like πS

∗ (X) or an arithmetic modification. In particular, when
X = S0, the target is something like πS

∗ (S0), the stable homotopy
groups of spheres. If E∗ is periodic, the spectral sequence converges
to something much less obvious.
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§3 Complex bordism

Complex bordism, MU∗( ), is an important homology theory in which
MUn(X) is defined using maps of closed stably almost complex
n-dimensional manifolds into X and imposing a bordism relation.
The coefficient ring is MU∗ = Z[un : n > 1] with un ∈ MU2n.
Moreover, there is a geometrically defined formal group law
associated to this theory which is a universal FGL. This makes MU∗
extremely interesting since there are many algebraic constructions
that can be done using this universality. The Adams spectral
sequence based on complex bordism is one of the most powerful tools
in stable homotopy theory.

Theorem 1 (Devinatz–Hopkins–Smith) For a finite CW
complex X, f ∈ {X,X}n is nilpotent if and only if

f∗ = 0: MU∗(X) −→ MU∗(X).
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§4 KKK-theory

K-theory provides a periodic homology theory K∗( ) where
K∗ = Z[t, t−1] where t ∈ K2 is the Bott periodicity generator. The
Ext groups for spheres were calculated by Adams–Baird then
Miller–Ravenel–Wilson and have

Ext1,2n
K∗K(K∗,K∗) =




Z/m(|n|) if n 6= 0,

Q/Z if n = 0.

Here

m(|n|) = denominator
Bn

2n
,

where Bn is the n th Bernoulli number. For an odd prime p,

m(n)p =





pr+1 if n = (p− 1)prn0 with p - n0,

1 otherwise.
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In fact,

Ext1,2n ⊂ Q/Z⊗K2n = Q/Z⊗ tn

and a generator is provided by (Bn/2n)⊗ tn.

5



Slide 11

For k > 0, these generators detect maps

αr,k ∈ πS
2k(p−1)pr−1(S

0)

whose construction we will now outline.

Let M(d) = S0 ∪d S1 where d ∈ πS
0 (S0) is a stable map of degree d.

Then K∗(M(d)) = K∗/(d).

There are stable maps

Ak
r ∈ {M(pr+1), M(pr+1)}2k(p−1)pr

for which the induced map Ak
r∗ in K-homology is multiplication by

the unit t2k(p−1)pr

, hence Ak
r is not nilpotent.

We get αr,k by using the following commutative diagram of stable
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maps.

S2k(p−1)pr αr,k−−−−→ S1

inclusion

y
xprojection

Σ2k(p−1)pr

M(pr+1)
Ak

r−−−−→ M(pr+1)

Then
αr,k ∈ πS

2k(p−1)pr (S1) = πS
2k(p−1)pr−1(S

0).
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The K-theory Adams spectral sequence for S0 converges to
something which contains terms of negative degree. For example, the
above generators for Ext1,−2n (n > 0) survive to E∞. Convergence
here is to the homotopy of the K-localization of S0 which is a
‘spectrum’ not a space.

The K-theory Ext groups can be related to continuous group
cohomology:

Exts,∗
K∗K(K∗,K∗/(pk)) = Hs

c (Z×p ;Z/(pk)[t, t−1]).

The appearance of the Bernoulli numbers is ‘explained’ by this since
they are known to arise in p-integration and this kind of continuous
cohomology.

The action of Z×p on Z/(pk)tn is that of the n th power of the natural
representation reduced modulo pk. It is induced from the stable
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p-adic Adams operations

ψα (α ∈ Z×p ).
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§5 Elliptic homology

Let p > 3 be a prime. Elliptic homology E``∗( ) is a multiplicative
homology theory where in the coefficient ring E``∗ (at least for the
p-local version) E``2n consists of the group of all modular forms of
weight n for SL2(Z), meromorphic at infinity and having q-expansion
coefficients in Z(p). Thus,

E``∗ = Z(p)[Q,R, ∆−1]
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where

Q = E4 = 1 + 240
∑

16r

σ3(r)qr,

R = E6 = 1− 504
∑

16r

σ5(r)qr,

∆ =
(Q3 −R2)

1728
= q

∏

n>1

(1− qn)24.

We also set

A = Ep−1 = 1− 2(p− 1)
Bp−1

∑

16r

σp−2(r)qr.

Notice that this q-expansion satisfies A ≡ 1 mod (p).

Elliptic homology is periodic with ∆ providing a periodicity operator
of degree 24.
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The Adams E2-term for elliptic homology has

Ext1,2n
E``∗E``(E``∗, E``∗) =




Z/m(|n|) if n > 0,

0 if n 6 0.

The proof of this involves reducing to

lim−→
k

Ext0,2n
E``∗E``(E``∗, E``∗/(pk))

∼= Ext1,2n
E``∗E``(E``∗, E``∗),

and then using Hecke operators Tn (p - n) to show that only
holomorphic modular forms modulo pk can be in such groups then
using Atkin’s Hecke operator Up and a result of Serre to show exactly
which groups can occur.
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An alternative approach involves inverting A in the ring E``∗/(pk)
and reducing to calculations formally similar to those in K-theory,
then using arguments like the above to rule out the negative degree
part.

Both these approaches make use of the ‘ordinary’ theory of mod p

and p-adic modular forms due to Swinnerton-Dyer–Serre–Katz.

The sequence p,A, ∆ is regular in E``∗. The periodicity can be
interpreted in terms of yet another Eisenstein function (of weight
p + 1)

B = Ep+1 = 1− 2(p + 1)
Bp+1

∑

16r

σp(r)qr.

We have

Bp−1 ≡ −
(−1

p

)
∆(p2−1)/12 mod (p, A).
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A calculation of the rest of

Ext∗,∗E``∗E``(E``∗, E``∗)

follows by reduction to

Ext∗,∗E``∗E``(E``∗, E``∗/(p,A))

where E``∗/(p,A) is the supersingular reduction of E``∗. This is
calculated by interpreting stable operations in terms of isogenies of
supersingular elliptic curves over F̄p and considering an appropriate
kind of cohomology.
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This cohomology can be shown to agree with the continuous
cohomology of the automorphism group of the formal group law
associated to such an elliptic curve, agreeing with earlier
cohomological approximations. There seems to be some work on
p-adic interpolation in the supersingular context, but it seems to be
less well developed than the ordinary theory.

As an example of what is obtained, we have

Ext0,∗
E``∗E``(E``∗, E``∗/(p, A)) = Fp[Bp−1, B−(p−1)].

With the aid of similar techniques to those used for K-theory,
elements of πS

∗ (S0) can be constructed to realise supersingular
elements in the elliptic homology Ext groups. In particular, we can
realise each Bk(p−1) (k > 0) with an element in homotopy.
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