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Introduction

This note is intended to draw attention to some phenomena arising naturally within the
framework of brave new ring spectra which has recently been constructed by May et al [5].
Actually, our first contact with the algebraic aspects was in the framework of Robinson’s theory
of A∞ ring spectra [2, 3], however their most natural interpretation seems to be within the
commutative theory.

Since writing this document, we became aware of recent work of A. Lazarev [6] in which
similar algebra plays a part, see also [4].

Let R be a commutative S-algebra in the sense of [5] and E a commutative R-ring spectrum.
When M is a left R-module, we will write ER∗ M = π∗E∧

R
M .

We will describe the E-theory Adams spectral sequence in the homotopy category of R-
module spectra. It turns out that the E2-term is built up from Ext-groups over the brave new
Hopf algebroid ER∗ E. Dually, it can be described in terms of the function spectrum REndR(E).

1. Brave new Hopf algebroids

Throughout we will work in a good category of spectra S such as that of [5]. Associated to
this is the category of S-modules MS and its derived category DS .

Let R be a commutative S-algebra in the sense of [5]. There is an associated category of
R-modules MR and its derived category DR.

For a commutative S-algebra R, an R-ring spectrum is an R-module A which has a unit
η : R −→ A, product ϕ : A∧

R
A −→ A and the following diagrams commute in DR, but not

necessarily in MR:
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A is commutative if the following diagram commutes in DR:
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Let E be such a commutative R-ring spectrum. Then the smash product E∧
R
E is also a com-

mutative R-ring spectrum. It is also naturally an E-algebra spectrum in two different ways
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induced from the left and right units

E
∼=−−→ E∧

R
R −→ E∧

R
E ←− E∧

R
R

∼=←−− E.

Theorem 1.1. Let ER∗ E be flat as a left or equivalently right E∗-module. Then
i) (E∗, ER∗ E) is a Hopf algebroid over R∗;
ii) for any R-module M , ER∗ M is a left ER∗ E-comodule.

Proof. This is proved using essentially the same argument as in [1, 8]. The natural map

E∧
R
M

∼=−−→ E∧
R
R∧
R
M −→ E∧

R
E∧
R
M

induces the coaction

ψ : ER
∗ M −→ π∗E∧

R
E∧
R
M

∼=−−→ ER∗ E ⊗
E∗
ER∗ M,

the flatness condition being used to show that

π∗E∧
R
E∧
R
M ∼= ER∗ E ⊗

E∗
ER∗ M.

�

2. Some examples

The examples in this section were first noted in the late 1980’s and mentioned in the con-
cluding remarks of [2]; the work of that paper and its companion [3] was carried out in the
framework of Robinson’s theory of A∞ spectra. It is only with the benefit of the theory of
commutative ring spectra that the significance of such constructions has become clear to us.

2.1. BP −→ HFp. Let BP be a commutative ring spectrum model for the Brown-Peterson
spectrum at a prime p which is claimed to exist by work of I. Kriz. By considering the Eilenberg-
MacLane spectrum HFp as a commutative BP -algebra [5], we can form HFp ∧

BP
HFp. By [5],

there is a Künneth spectral sequence,

E2
s,t = TorBP ∗s,t (Fp,Fp) =⇒ HFp

BP
s+tHFp.

Using a Koszul complex over BP ∗, it is straightforward to see that

E2
∗,∗ = ΛFp(τj : j > 0),

where Λ denotes an exterior algebra and τj ∈ E2
1,2(pj−1)

. Of course, this is naturally a quotient
Hopf algebra over Fp of the dual Steenrod algebra HFp∗HFp.

2.2. BP −→ E(n). By [5, 12], the Johnson-Wilson spectrum E(n) is a commutative BP -ring
spectrum and we can form E(n) ∧

BP
E(n). There is a Künneth spectral sequence,

E2
s,t = TorBP ∗s,t (E(n)∗, E(n)∗) =⇒ E(n)BPs+tE(n).

By using a Koszul complex over BP ∗ for BP 〈n〉∗ and localizing at vn, we find that

E2
∗,∗ = ΛE(n)∗(τj : j > n+ 1),

where Λ denotes an exterior algebra and τj ∈ E2
1,2(pj−1)

. So as an E(n)∗-algebra,

E(n)BP∗ E(n) = ΛE(n)∗(τj : j > n+ 1).
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2.3. ̂E(n) −→ K(n). Let ̂E(n) be the In-adic completion of the Johnson-Wilson spectrum
E(n), known to be a commutative S-algebra by work of P. Goerss and M. Hopkins. Morava
K-theory K(n) is a commutative ̂E(n)-ring spectrum [12]. There is a Künneth spectral sequence

E2
s,t = TorÊ(n)∗

s,t (K(n)∗,K(n)∗) =⇒ K(n)Ê(n)
s+t K(n).

We find that

E2
∗,∗ = ΛK(n)∗(τj : n− 1 > j > 0),

which is naturally a quotient of K(n)∗K(n) = K(n)∗(K(n)) as a Hopf algebra over K(n)∗.

3. The Adams spectral sequence for R-modules

Let L,M be R-modules and E a commutative R-ring spectrum with ER∗ E flat as a left or
right E∗-module.

Theorem 3.1. If ER∗ L is projective as an E∗-module, there is an Adams spectral sequence with

Es,t2 (L,M) = Exts,t
ER
∗ E

(ER∗ L,E
R
∗ M).

If π∗M is connective, this converges to DLR
E R(Σs+t LRE L,L

R
EM), where LRE is the ER∗ -localization

functor on R-modules. In particular, if L = R then the spectral sequence converges to πs+t LREM .

Proof. The proof follows that of Adams [1], replacing the sphere spectrum S with R and working
in the derived category DR throughout. The Adams resolution of M is built up in the usual
way by splicing together cofibre triangles:
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Identification of the E2-term and convergence are demonstrated as in Adams. �

4. Some examples of brave new Adams spectral sequences

We give some sample calculations based on the examples of §2.

4.1. BP −→ HFp. Taking R = BP and E = HFp, we obtain a spectral sequence

Es,t2 (BP,M) = Exts,tΛFp (τj :j>0)(Fp,HFp
BP
∗ M) =⇒ πs+t LBPHFp

M.

Here LBPHFp
M is related to the p-adic completion of M . For a connective BP -module spectrum

M of finite type with no BP ∗-torsion in M∗,

πn LBPHFp
M = (πnM)p̂.

When M = BP ,

Es,t2 (BP,BP ) = Exts,tΛFp (τj :j>0)(Fp,Fp) =⇒ (BP s+t)p̂.



4 ANDREW BAKER

4.2. BP −→ E(n). Taking R = BP and E = E(n), we obtain a spectral sequence with

Es,t2 (BP,M) = Exts,tΛE(n)∗ (τj :j>n+1)(E(n)∗, E(n)BP∗ M),

however convergence here is problematic. The target of this spectral sequence does not always
appear to be π∗ LBPE(n)M even when M∗ is a finitely generated BP ∗-module, as the example of
M = BP shows. We then have

Es,t2 (BP,BP ) = Exts,tΛE(n)∗ (τj :j>n+1)(E(n)∗, E(n)∗) =⇒ (v−1
n BP )s+t,

since here E∗,∗2 (BP,BP ) is a polynomial algebra over E(n)∗ on generators

Vk ∈ E1,2pk−1
2 (BP,BP ) (k > n+ 1),

where Vk detects the elements vk ∈ BP ∗. But from [7] it is known that π∗ LBPE(n)BP 6= v−1
n BP ∗.

4.3. ̂E(n) −→ K(n). Taking R = ̂E(n) and E = K(n), we obtain a spectral sequence

Es,t2 (̂E(n),M) = Exts,tΛK(n)∗ (τj :n−1>j>0)(K(n)∗,K(n)Ê(n)
∗ M) =⇒ πs+t LÊ(n)

K(n)M.

For an ̂E(n)-module spectrum M with M∗ an finitely generated ̂E(n)∗-module with no ̂E(n)∗
torsion,

π∗ LÊ(n)
K(n)M = (M∗)În ,

the In-adic completion of M∗. When M = ̂E(n),

Es,t2 (̂E(n), ̂E(n)) = Exts,tΛK(n)∗ (τj :n−1>j>0)(K(n)∗,K(n)∗) =⇒ ̂E(n)∗.

These results are perhaps suggestive of interesting phenomena. The most significant consider-
ation of localization in derived module categories to date seems to have been that of Wolbert
[13, 5].

5. Some suggestive results

Given two R-modules L,M , with R not necessarily commutative, there is a function spectrum
FR(L,M). When L = M this gives the derived endomorphism spectrum REndR(M) which is
known to be an A∞ ring spectrum by [10, 11, 5] and M is an A∞ module over it. Dually we have
the derived tensor product M∧

R
M . If R is commutative and M = E is a commutative algebra

over R, then E∧
R
E is a commutative algebra over R with product induced by the multiplication

map µ : E∧
R
E −→ E which also induces a map

REndR(E)
µ∗−→ FR(E∧

R
E,E).

Then µ∗ is coassociative and cocommutative in the obvious senses. These gadgets are best
viewed as dual to each other in the same way that E∗E and E∗E usually are. Of course, an
optimal situation occurs if π∗(REndR(E)) and ER∗ E were truly dual. If π∗(E∧

R
E) is E∗-flat then

ER∗ E is a Hopf algebroid; if we also insist it be projective then

π∗(REndR(E)) = HomE∗(E
R
∗ E,E∗).

It is well known that working over S, the Adams spectral sequence can be set up using either
E∗( ) and comodules over E∗E, or using one or other of E∗( ), E∗( ) regarded as modules
over E∗E. In the situation involving E∗( ), this suggests that the Adams spectral sequence is
ultimately based on the action of REndR(E) on the R-module functors E∧

R
( ) or FR( , E).
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In each of the examples of Sections 2 and 4, it appears that for R′ = REndR(E), REndR′(E)
is trying hard to be R at least after E-localization. In fact in either case we can replace R with
the commutative ring spectrum RE and find that

REndR′E (E) ' RE ,

which is reminiscent of double centralizer results for modules over simple algebras.
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