BRAVE NEW HOPF ALGEBROIDS AND THE ADAMS SPECTRAL SEQUENCE FOR *R*-MODULES

ANDREW BAKER

INTRODUCTION

This note is intended to draw attention to some phenomena arising naturally within the framework of brave new ring spectra which has recently been constructed by May et al [5]. Actually, our first contact with the algebraic aspects was in the framework of Robinson's theory of A_{∞} ring spectra [2, 3], however their most natural interpretation seems to be within the commutative theory.

Since writing this document, we became aware of recent work of A. Lazarev [6] in which similar algebra plays a part, see also [4].

Let R be a commutative S-algebra in the sense of [5] and E a commutative R-ring spectrum. When M is a left R-module, we will write $E_*^R M = \pi_* E \bigwedge_R M$.

We will describe the *E*-theory Adams spectral sequence in the homotopy category of *R*module spectra. It turns out that the E₂-term is built up from Ext-groups over the brave new Hopf algebroid $E_*^R E$. Dually, it can be described in terms of the function spectrum $\operatorname{REnd}_R(E)$.

1. Brave New Hopf Algebroids

Throughout we will work in a good category of spectra S such as that of [5]. Associated to this is the category of S-modules \mathcal{M}_S and its derived category \mathcal{D}_S .

Let R be a commutative S-algebra in the sense of [5]. There is an associated category of R-modules \mathcal{M}_R and its derived category \mathcal{D}_R .

For a commutative S-algebra R, an R-ring spectrum is an R-module A which has a unit $\eta: R \longrightarrow A$, product $\varphi: A \wedge A \longrightarrow A$ and the following diagrams commute in \mathcal{D}_R , but not necessarily in \mathcal{M}_R :

A is *commutative* if the following diagram commutes in \mathcal{D}_R :

Let *E* be such a commutative *R*-ring spectrum. Then the smash product $E \wedge E$ is also a commutative *R*-ring spectrum. It is also naturally an *E*-algebra spectrum in two different ways

Glasgow University Mathematics Department preprint no. 00/12 [Version 7: 24/7/2000].

induced from the left and right units

$$E \xrightarrow{\cong} E \underset{R}{\wedge} R \longrightarrow E \underset{R}{\wedge} E \longleftarrow E \underset{R}{\wedge} R \xleftarrow{\cong} E.$$

Theorem 1.1. Let $E_*^R E$ be flat as a left or equivalently right E_* -module. Then i) $(E_*, E_*^R E)$ is a Hopf algebroid over R_* ; ii) for any R-module M, $E_*^R M$ is a left $E_*^R E$ -comodule.

Proof. This is proved using essentially the same argument as in [1, 8]. The natural map

$$E \underset{R}{\wedge} M \xrightarrow{\cong} E \underset{R}{\wedge} R \underset{R}{\wedge} M \longrightarrow E \underset{R}{\wedge} E \underset{R}{\wedge} M$$

induces the coaction

$$\psi \colon E^R_* M \longrightarrow \pi_* E \underset{R}{\wedge} E \underset{R}{\wedge} M \xrightarrow{\cong} E^R_* E \underset{E_*}{\otimes} E^R_* M,$$

the flatness condition being used to show that

$$\pi_* E \underset{R}{\wedge} E \underset{R}{\wedge} M \cong E_*^R E \underset{E_*}{\otimes} E_*^R M.$$

2. Some examples

The examples in this section were first noted in the late 1980's and mentioned in the concluding remarks of [2]; the work of that paper and its companion [3] was carried out in the framework of Robinson's theory of A_{∞} spectra. It is only with the benefit of the theory of commutative ring spectra that the significance of such constructions has become clear to us.

2.1. $BP \longrightarrow H\mathbb{F}_p$. Let BP be a commutative ring spectrum model for the Brown-Peterson spectrum at a prime p which is claimed to exist by work of I. Kriz. By considering the Eilenberg-MacLane spectrum $H\mathbb{F}_p$ as a commutative BP-algebra [5], we can form $H\mathbb{F}_p \wedge H\mathbb{F}_p$. By [5], there is a Künneth spectral sequence,

$$\mathbf{E}_{s,t}^2 = \operatorname{Tor}_{s,t}^{BP_*}(\mathbb{F}_p, \mathbb{F}_p) \Longrightarrow H\mathbb{F}_p {}_{s+t}^{BP} H\mathbb{F}_p.$$

Using a Koszul complex over BP_* , it is straightforward to see that

$$\mathbf{E}^2_{*,*} = \Lambda_{\mathbb{F}_p}(\tau_j : j \ge 0),$$

where Λ denotes an exterior algebra and $\tau_j \in E^2_{1,2(p^j-1)}$. Of course, this is naturally a quotient Hopf algebra over \mathbb{F}_p of the dual Steenrod algebra $H\mathbb{F}_{p_*}H\mathbb{F}_p$.

2.2. $BP \longrightarrow E(n)$. By [5, 12], the Johnson-Wilson spectrum E(n) is a commutative *BP*-ring spectrum and we can form $E(n) \bigwedge_{PD} E(n)$. There is a Künneth spectral sequence,

$$\mathbf{E}^2_{s,t} = \mathrm{Tor}^{BP_*}_{s,t}(E(n)_*, E(n)_*) \Longrightarrow E(n)^{BP}_{s+t}E(n)$$

By using a Koszul complex over BP_* for $BP \langle n \rangle_*$ and localizing at v_n , we find that

$$\mathbf{E}^2_{*,*} = \Lambda_{E(n)_*}(\tau_j : j \ge n+1),$$

where Λ denotes an exterior algebra and $\tau_j \in E^2_{1,2(p^j-1)}$. So as an $E(n)_*$ -algebra,

$$E(n)^{BP}_*E(n) = \Lambda_{E(n)_*}(\tau_j : j \ge n+1)$$

2.3. $\widehat{E(n)} \longrightarrow K(n)$. Let $\widehat{E(n)}$ be the I_n -adic completion of the Johnson-Wilson spectrum E(n), known to be a commutative S-algebra by work of P. Goerss and M. Hopkins. Morava K-theory K(n) is a commutative $\widehat{E(n)}$ -ring spectrum [12]. There is a Künneth spectral sequence

$$\mathbf{E}_{s,t}^2 = \operatorname{Tor}_{s,t}^{\widehat{E(n)}_*}(K(n)_*, K(n)_*) \Longrightarrow K(n)_{s+t}^{\widehat{E(n)}}K(n).$$

We find that

$$\mathbf{E}^2_{*,*} = \Lambda_{K(n)_*}(\tau_j : n - 1 \ge j \ge 0),$$

which is naturally a quotient of $K(n)_*K(n) = K(n)_*(K(n))$ as a Hopf algebra over $K(n)_*$.

3. The Adams spectral sequence for R-modules

Let L, M be R-modules and E a commutative R-ring spectrum with $E_*^R E$ flat as a left or right E_* -module.

Theorem 3.1. If $E_*^R L$ is projective as an E_* -module, there is an Adams spectral sequence with

$$E_2^{s,t}(L,M) = Ext_{E_*^R E}^{s,t}(E_*^R L, E_*^R M).$$

If π_*M is connective, this converges to $\mathcal{D}_{L_E^R R}(\Sigma^{s+t} L_E^R L, L_E^R M)$, where L_E^R is the E_*^R -localization functor on R-modules. In particular, if L = R then the spectral sequence converges to $\pi_{s+t} L_E^R M$.

Proof. The proof follows that of Adams [1], replacing the sphere spectrum S with R and working in the derived category \mathcal{D}_R throughout. The Adams resolution of M is built up in the usual way by splicing together cofibre triangles:

Identification of the E₂-term and convergence are demonstrated as in Adams.

4. Some examples of brave new Adams spectral sequences

We give some sample calculations based on the examples of §2.

4.1. $BP \longrightarrow H\mathbb{F}_p$. Taking R = BP and $E = H\mathbb{F}_p$, we obtain a spectral sequence

$$\mathbf{E}_{2}^{s,t}(BP,M) = \mathbf{Ext}_{\Lambda_{\mathbb{F}_{p}}(\tau_{j}:j \ge 0)}^{s,t}(\mathbb{F}_{p},H\mathbb{F}_{p}\overset{BP}{*}M) \Longrightarrow \pi_{s+t} \mathbf{L}_{H\mathbb{F}_{p}}^{BP}M.$$

Here $\mathcal{L}_{H\mathbb{F}_p}^{BP} M$ is related to the *p*-adic completion of *M*. For a connective *BP*-module spectrum *M* of finite type with no *BP*_{*}-torsion in *M*_{*},

$$\pi_n \operatorname{L}^{BP}_{H\mathbb{F}_p} M = (\pi_n M)_p^{\widehat{}}$$

When M = BP,

$$\mathbf{E}_{2}^{s,t}(BP,BP) = \mathbf{Ext}_{\Lambda_{\mathbb{F}_{p}}(\tau_{j}:j \ge 0)}^{s,t}(\mathbb{F}_{p},\mathbb{F}_{p}) \Longrightarrow (BP_{s+t})_{p}^{\sim}.$$

4.2. **BP** \longrightarrow E(n). Taking R = BP and E = E(n), we obtain a spectral sequence with

$$E_{2}^{s,t}(BP,M) = Ext_{\Lambda_{E(n)*}(\tau_{j}:j \ge n+1)}^{s,t}(E(n)_{*}, E(n)_{*}^{BP}M),$$

however convergence here is problematic. The target of this spectral sequence does not always appear to be $\pi_* L_{E(n)}^{BP} M$ even when M_* is a finitely generated BP_* -module, as the example of M = BP shows. We then have

$$\mathbf{E}_{2}^{s,t}(BP,BP) = \mathrm{Ext}_{\Lambda_{E(n)*}(\tau_{j}:j \ge n+1)}^{s,t}(E(n)_{*},E(n)_{*}) \Longrightarrow (v_{n}^{-1}BP)_{s+t},$$

since here $E_2^{*,*}(BP, BP)$ is a polynomial algebra over $E(n)_*$ on generators

$$V_k \in \mathcal{E}_2^{1,2p^k-1}(BP, BP) \quad (k \ge n+1),$$

where V_k detects the elements $v_k \in BP_*$. But from [7] it is known that $\pi_* L_{E(n)}^{BP} BP \neq v_n^{-1}BP_*$.

4.3. $\widehat{E(n)} \longrightarrow K(n)$. Taking $R = \widehat{E(n)}$ and E = K(n), we obtain a spectral sequence

$$\mathbf{E}_{2}^{s,t}(\widehat{E(n)},M) = \mathrm{Ext}_{\Lambda_{K(n)*}(\tau_{j}:n-1 \ge j \ge 0)}^{s,t}(K(n)_{*},K(n)_{*}^{\widehat{E(n)}}M) \Longrightarrow \pi_{s+t} \mathbf{L}_{K(n)}^{\widehat{E(n)}}M.$$

For an $\widehat{E(n)}$ -module spectrum M with M_* an finitely generated $\widehat{E(n)}_*$ -module with no $\widehat{E(n)}_*$ torsion,

$$\pi_* \operatorname{L}_{K(n)}^{\widehat{E(n)}} M = (M_*)_{\widehat{I_n}}^{\widehat{}},$$

the I_n -adic completion of M_* . When $M = \widehat{E(n)}$,

$$\mathbf{E}_{2}^{s,t}(\widehat{E(n)},\widehat{E(n)}) = \mathbf{Ext}_{\Lambda_{K(n)*}}^{s,t}(\tau_{j:n-1 \geqslant j \geqslant 0})(K(n)_{*},K(n)_{*}) \Longrightarrow \widehat{E(n)}_{*}.$$

These results are perhaps suggestive of interesting phenomena. The most significant consideration of localization in derived module categories to date seems to have been that of Wolbert [13, 5].

5. Some suggestive results

Given two *R*-modules L, M, with *R* not necessarily commutative, there is a function spectrum $F_R(L, M)$. When L = M this gives the derived endomorphism spectrum $\operatorname{REnd}_R(M)$ which is known to be an A_{∞} ring spectrum by [10, 11, 5] and *M* is an A_{∞} module over it. Dually we have the derived tensor product $M \wedge M$. If *R* is commutative and M = E is a commutative algebra over *R*, then $E \wedge E$ is a commutative algebra over *R* with product induced by the multiplication map $\mu \colon E \wedge E \longrightarrow E$ which also induces a map

$$\operatorname{REnd}_R(E) \xrightarrow{\mu^*} \operatorname{F}_R(E \underset{R}{\wedge} E, E).$$

Then μ^* is coassociative and cocommutative in the obvious senses. These gadgets are best viewed as dual to each other in the same way that E^*E and E_*E usually are. Of course, an optimal situation occurs if $\pi_*(\operatorname{REnd}_R(E))$ and E^R_*E were truly dual. If $\pi_*(E \wedge E)$ is E_* -flat then E^R_*E is a Hopf algebroid; if we also insist it be projective then

$$\pi_*(\operatorname{REnd}_R(E)) = \operatorname{Hom}_{E_*}(E_*^R E, E_*).$$

It is well known that working over S, the Adams spectral sequence can be set up using either $E_*(\)$ and comodules over E_*E , or using one or other of $E_*(\)$, $E^*(\)$ regarded as modules over E^*E . In the situation involving $E_*(\)$, this suggests that the Adams spectral sequence is ultimately based on the action of $\operatorname{REnd}_R(E)$ on the *R*-module functors $E_{\mathcal{P}}(\)$ or $\operatorname{F}_R(\ , E)$.

In each of the examples of Sections 2 and 4, it appears that for $R' = \operatorname{REnd}_R(E)$, $\operatorname{REnd}_{R'}(E)$ is trying hard to be R at least after E-localization. In fact in either case we can replace R with the commutative ring spectrum R_E and find that

$$\operatorname{REnd}_{R'_E}(E) \simeq R_E$$

which is reminiscent of double centralizer results for modules over simple algebras.

References

- [1] J. F. Adams, Stable Homotopy and Generalised Homology, University of Chicago Press (1974).
- [2] A. Baker, A_{∞} stuctures on some spectra related to Morava K-theory, Quart. J. Math. Oxf. **42** (1991), 403–419.
- [3] A. Baker & U. Würgler, Bockstein operations in Morava K-theory, Forum Math. 3 (1991), 543–60.
- [4] A. Baker & A. Jeanneret, Brave new Hopf algebroids and extensions of MU-algebras, Glasgow University Mathematics Department preprint 00/18.
- [5] A. Elmendorf, I. Kriz, M. Mandell & J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, 47 (1999).
- [6] A. Lazarev, Homotopy theory of A_{∞} ring spectra and applications to *MU*-modules, preprint 2000.
- [7] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351–414.
- [8] D. C. Ravenel, Complex Cobordism and the Stable Homotopy Groups of Spheres, Academic Press (1986).
- [9] A. Robinson, Derived tensor products in stable homotopy theory, Topology 22 (1983), 1–18.
- [10] A. Robinson, Spectra of derived module homomorphisms, Math. Proc. Camb. Phil. Soc. 101 (1987), 249-57.
- [11] A. Robinson, Composition products in RHom, and ring spectra of derived endomorphisms, in 'Algebraic Topology (Proceedings, Arcata 1986)', Lecture Notes in Mathematics 1370 (1990), 374–386.
- [12] N. P. Strickland, Products on *MU*-modules, Trans. Amer. Math. Soc. **351** (1999), 2569–2606.
- [13] J. J. Wolbert, Classifying modules over K-theory spectra, J. Pure Appl. Algebra 124 (1998), 289–323.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GLASGOW, GLASGOW G12 8QW, SCOTLAND. E-mail address: a.baker@maths.gla.ac.uk URL: http://www.maths.gla.ac.uk/~ajb