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Abstract. Hecke operators are used to investigate part of the E2-term of the Adams
spectral sequence based on elliptic homology. The main result is a derivation of Ext1

which combines use of classical Hecke operators and p-adic Hecke operators due to
Serre.

Introduction.

Elliptic cohomology (and its dual homology theory) potentially offers a setting
in which v2-periodic phenomena might be studied from a geometric (rather than
purely homotopy theoretic) perspective. Hence it is important to investigate the
limits of what might be achieved this way. The Adams spectral sequence based
on elliptic (co)homology provides the appropriate framework for studying stable
homotopy. Clarke & Johnson [7] and Laures [10], essentially determined the v1-
periodic part of the E2-term of this spectral sequence for spheres. Here we rederive
this result using stable operations related to the classical Hecke operators which
were originally constructed in [2,3] and discussed further in [5,6]. Hitherto, these
operations appear to have lacked serious topological applications.

In stating our main result we use notation for Ext groups found in Adams [1]
and Switzer [13]. In particular,

m(n) = denom
Bn

n
,

where Bn denotes the nth Bernoulli number. We will prove

Theorem.

Ext1,2n
Eℓℓ∗Eℓℓ(Eℓℓ∗, Eℓℓ∗)

∼=

{

Z[1/6]/m(n) if n > 0,

0 otherwise.

Our proof of this is modelled on one previously used in proving the analogous
result in K-theory,

Ext1,2n
KU∗KU (KU∗, KU∗) ∼= Z/m(|n|) if n 6= 0.
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This utilises carefully selected (stable) Adams operations to give bounds on the
orders of elements. In our case, we first use Hecke operations to show that only
holomorphic modular forms and hence nonnegative degrees can possibly yield non-
vanishing groups, then we use Adams operations in elliptic homology to bound the
orders and realise these bounds with Eisenstein functions. Finally we use opera-
tions in a p-adic version of elliptic cohomology to show that these indeed exhaust
Ext1.

§1 Hecke operations and cooperations.

In [3] we showed that on finite CW complexes and spectra, there are families of
stable operations

Tn, ψ
n
Eℓℓ:Eℓℓ

∗( ) −→ Eℓℓ[1/n]∗( ).

which give rise to operations on the dual homology functors

Tn, ψ
n
Eℓℓ:Eℓℓ∗( ) −→ Eℓℓ[1/n]∗( ).

In [5] we described the cooperation algebra Eℓℓ∗Eℓℓ which has the structure of a
Hopf algebroid over Z[1/6]. We now explain the relationship between comodule
structures over Eℓℓ∗Eℓℓ and actions of Hecke operations. This discussion involves
some reworking of our earlier description which we leave to the interested reader.

First recall from [4] the ring EℓℓΓ(n)
∗ consisting of all modular forms for the

(normal) congruence subgroup

Γ(n) = {A ∈ SL2(Z) : A ≡ I2 (mod n)} ⊳ SL2(Z),

which are meromorphic at each cusp and have all their q-coefficients in Z[1/6n, ζn]

where ζn = e2πi/n. We may view EℓℓΓ(n)
∗ as a ring of functions on the space of

modular points (L,α), where α is the ordered pair

α =
(ω1

n
+ L,

ω2

n
+ L

)

of basis vectors for the free Z/n-module (1/n)L/L with {ω1, ω2} ⊂ L an oriented

basis of L. The extension (of integral domains) EℓℓΓ(n)
∗ /Eℓℓ∗[1/n] is Galois with

group SL2(Z/n) ∼= SL2(Z)/Γ(n). Following [4,5] we interpret EℓℓΓ(n)
∗ as a ring of

functions on the space V(n) = V/Γ(n) which provides an analytic model for the
space of modular points mentioned above, admitting an analytic principal fibre
bundle

V(n) −→ V/ SL2(Z) = L

with group SL2(Z/n).
For each matrix

A =

(

a b
c d

)

∈ M2(n)

(the set of all 2× 2 integer matrices of determinant n), there is a map

V(n)
[A]
−−→ L

sending each modular point (L,α) to the lattice
〈

aω1 + cω2

n
,
cω1 + dω2

n

〉
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and only depending on the coset A SL2(Z) ∈ M2(n)/ SL2(Z). The map [A] induces
a ring homomorphism

[A]∗:Eℓℓ∗ −→ EℓℓΓ(n)
∗

extending to an Eℓℓ∗-algebra homomorphism

[A]∗:Eℓℓ∗Eℓℓ −→ EℓℓΓ(n)
∗ .

In particular, the matrix n I2 ∈ M2(n
2) provides homomorphisms

[n I2]
∗:Eℓℓ∗ −→ EℓℓΓ(n2)

∗ ,

[n I2]∗:Eℓℓ∗Eℓℓ −→ EℓℓΓ(n2)
∗ .

From [5], we know that there are Eℓℓ∗-linear maps

Tn ∗, ψ
n
Eℓℓ ∗:Eℓℓ∗Eℓℓ −→ Eℓℓ∗[1/n]

which may be used to define stable operations

Tn, ψ
n
Eℓℓ:Eℓℓ

∗( ) −→ Eℓℓ∗( )[1/n]

in elliptic cohomology on finite CW complexes and in the dual homology theories.
We have the defining formulæ

Tn ∗ =
1

n

∑

A:M2(n)/ SL2(Z)

[A]∗,

ψn
Eℓℓ ∗ = [n I2]∗,

where the notation ‘A: M2(n)/ SL2(Z)’ indicates that we sum over a complete set of
representatives of the left cosets of SL2(Z) in M2(n). Although by definition these

take values in EℓℓΓ(n)
∗ and EℓℓΓ(n2)

∗ , they turn out to have images in Eℓℓ[1/n]∗ and
we view them as giving Eℓℓ∗-linear maps

Tn ∗:Eℓℓ∗Eℓℓ −→ Eℓℓ[1/n]∗,

ψn
Eℓℓ ∗:Eℓℓ∗Eℓℓ −→ Eℓℓ[1/n]∗.

Let M∗ be a right comodule over Eℓℓ∗Eℓℓ with coproduct

γ:M∗ −→M∗ ⊗
Eℓℓ∗

Eℓℓ∗Eℓℓ.

Each operation Θ = Tn or ψn
Eℓℓ is obtained as a composite of the form

M∗
γ
−→M∗ ⊗

Eℓℓ∗
Eℓℓ∗Eℓℓ

Θ∗−−→M∗ ⊗
Eℓℓ∗

Eℓℓ∗[1/n] ∼= M∗[1/n].
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Proposition 1.1. Let x ∈ Ext0,k
Eℓℓ∗Eℓℓ(Eℓℓ∗,M∗). Then for r > 0 and a prime ℓ,

we have

Tℓ x = (1 + ℓ−1)x,

ψr
Eℓℓx = x.

Proof. By definition, ψr
Eℓℓ has the coaction as a factor, and this sends x to x⊗ 1.

Similarly, the operation Tℓ is 1/ℓ times a sum of multiplicative operations, which
must all act trivially on x since they have the coaction as a factor. �

§2 Hecke operators and the Adams 1-line.

It is easy to show that

Extr,s
Eℓℓ∗Eℓℓ(Eℓℓ∗, Eℓℓ∗Q) =

{

Q if (r, s) = (0, 0),

0 otherwise.

By considering the exact sequence of Eℓℓ∗Eℓℓ-comodules

0 −→ Eℓℓ∗ −→ Eℓℓ∗Q −→ Eℓℓ∗Q/Z −→ 0

and its derived long exact sequence in Ext, we obtain an exact sequence

0 −→ Q/Z −→ Ext0,s
Eℓℓ∗Eℓℓ(Eℓℓ∗, Eℓℓ∗Q/Z) −→ Ext1,s

Eℓℓ∗Eℓℓ(Eℓℓ∗, Eℓℓ∗) −→ 0.

Thus to compute Ext1,s it suffices to compute

Ext0,s(Eℓℓ∗Q/Z) = Ext0,s
Eℓℓ∗Eℓℓ(Eℓℓ∗, Eℓℓ∗Q/Z).

We will write elements of Eℓℓ∗Q/Z in the form

F

d
= (1/d)F (mod Z[1/6]),

where F ∈ Eℓℓ∗ and 0 < d ∈ Z is not divisible by 2 or 3. The q-expansion gives a
series

F (q)

d
= (1/d)F (q) (mod Z[1/6]((q))).

Note that
F

d
= 0 if and only if

F (q)

d
= 0. We begin with the following ‘Preparation

Lemma’.

Lemma 2.1. Let F ∈ Eℓℓ2k and suppose that

F (q)

d
=

∑

r06r arq
r

d
(mod Z[1/6]((q))).

Then there is an F ′ ∈ Eℓℓ2k such that

F ′(q) =
∑

r06r

a′rq
r
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and
F ′(q)

d
=
F (q)

d
(mod Z[1/6]((q))).

Proof. Suppose that

F (q) =
∑

s06s

asq
s

for s0 < r0. Then as0
/d ∈ Z[1/6]. We may choose a modular form QaRb∆c ∈ Eℓℓ2k

with the property that

Q(q)aR(q)b∆(q)c = qs0 + higher degree terms.

Then F − as0
QaRb∆c has q-expansion of the form

∑

s0+16s bsq
s and also satisfies

F − as0
QaRb∆c

d
=
F

d
(mod Z[1/6]((q))).

Repeating this process we eventually obtain the desired F ′. �

Now let
F

d
∈ Ext0,2k(Eℓℓ∗Q/Z). By the Preparation Lemma 2.1, we can assume

that

F (q) =
∑

r06r

arq
r,

ar0

d
6= 0 (mod Z[1/6]).

By Dirichlet’s Theorem on primes in arithmetic progressions, there is a prime ℓ
satisfying ℓ+ 1 ≡ 0 (mod d).

Suppose that r0 < 0. Then from [3],

(Tℓ F )(q) =
∑

r06rℓ

arℓq
r + ℓk−1

∑

r06r

arq
rℓ

and so

Tℓ
F

d
=

(Tℓ F )(q)

d
6= 0,

since the leading q-expansion term is
ℓk−1ar0

qr0ℓ

d
. Proposition 1.1 implies that

Tℓ
F

d
= (1 + ℓ−1)

F

d
≡ 0 (mod Z[1/6]((q))),

giving a contradiction.
We can assume that F is holomorphic at the cusp and so k > 0. In the case

k = 0 the only holomorphic modular forms of weight zero are constants which all
lie in Ext0,0(Eℓℓ∗Q/Z), thus we see that this group is isomorphic to Q/Z[1/6] with

generators the elements
1

d
for 6 ∤ d.
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Now we may apply the operations ψt
Eℓℓ where t is prime to d. We have

ψt
Eℓℓ

F

d
=
tkF

d

and the standard argument familiar from K-theory shows that d | m(k) since

m(k) = gcd{tk − 1 : (d, t) = 1}.

In particular, since we are inverting the prime 2, we can only have a non-zero
group if k is even. For even k > 4, the Eisenstein function Ek, characterised by its
q-expansion

Ek(q) = 1−
2k

Bk

∑

r>1

σk−1(r)q
r,

is a modular form of weight k with rational q-expansion coefficients. By well known
properties of the Bernoulli number Bk, Ek gives rise to an element (Bk/k)Ek ∈

Eℓℓ2kQ which in turn yields an element of Eℓℓ2kQ/Z of the form
E′

k

m(k)
with E′

k ∈

Eℓℓ2k. Moreover,

E′
k(q) ≡ numer

Bk

k
Ek(q) (mod m(k)),

and so all of the Hecke operators Tn, ψn
Eℓℓ with (n,m(k)) = 1 annihilate

E′
k

m(k)
.

Indeed, this element lies in Ext0,2k(Eℓℓ∗Q/Z) as noted in [7,10]. Thus if k > 0,

Ext0,2k(Eℓℓ∗Q/Z) contains a summand isomorphic to Z[1/6]/m(k).

§3 p-adic Hecke operators.

In order to show that we have captured all of Ext0,2k(Eℓℓ∗Q/Z) when k > 0
is even, we will make use of a further modification of elliptic cohomology and its
operations described in [2].

From [2] we recall the following construction, which we discuss with modified
notation. Let p > 3 be a prime and A = Ep−1 ∈ Eℓℓ[1]2(p−1) be the (p − 1)st

Eisenstein function, which agrees modulo p with the so called Hasse invariant of
the p-reduction of the universal Weierstraß cubic. Setting Q = E4, R = E6 and
∆ = (Q3 −R2)/1728, we define graded rings

eℓℓ∗ = Z(p)[Q,R],

eℓℓ[1]∗ = Z(p)[Q,R,A
−1],

Eℓℓ[1]∗ = Z(p)[Q,R,A
−1,∆−1] = (Eℓℓ∗)(p)[A

−1].

The ring eℓℓ∗ is the subring of Eℓℓ∗ consisting of modular forms holomorphic at in-
finity, and the level 1 elliptic genus MU∗ −→ Eℓℓ∗ takes values in eℓℓ∗. The induced
genus MU∗ −→ eℓℓ[1]∗ makes eℓℓ[1]∗ into an algebra over MU∗ satisfying the con-
ditions of the Landweber Exact Functor Theorem, hence there are multiplicative
homology and cohomology theories

eℓℓ[1]∗( ) = eℓℓ[1]∗ ⊗
MU∗

MU∗( ),

eℓℓ[1]
∗
( ) = eℓℓ[1]

∗
⊗

MU∗

MU∗( ),
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with the latter defined on finite CW complexes or spectra. On localizing with
respect to powers of ∆, we find

eℓℓ[1]∗( )[∆−1] = Eℓℓ[1]∗ ⊗
MU∗

MU∗( )

∼= Eℓℓ[1]∗ ⊗
Eℓℓ∗

Eℓℓ∗( ),

eℓℓ[1]
∗
( )[∆−1] = Eℓℓ[1]

∗
⊗

MU∗

MU∗( )

∼= Eℓℓ[1]∗ ⊗
Eℓℓ∗

Eℓℓ∗( ),

at least on finite CW complexes and spectra.
We now form a sort of p-adic completion of eℓℓ[1]

∗
( ) and its dual homology

theory. For n > 1, there is a q-expansion modulo pn,

εn: eℓℓ[1]2k −→ Z[[q]]/(pn).

Following [2] which in turn depends on results of [11,12] (see also [8]), we know
that for F ∈ eℓℓ[1]2r and G ∈ eℓℓ[1]2s, then

εn(F ) = εn(G) =⇒ s− r = t(p− 1)pn−1 for some t ∈ Z.

In particular, we may use this to define an equivalence relation on eℓℓ[1]∗/(p
n),

giving a graded object eℓℓ[1]/pn
• indexed on the finite group Z/2(p − 1)pn−1. We

then set
êℓℓ[1]• = lim

←−
n

eℓℓ[1]/pn
•

which is naturally graded on the profinite group Z/2(p − 1) × Zp; apart from the
factor of 2, this grading group is sometimes usefully interpreted as being the p-adic
units Z×

p . Note that for each n > 0, there are natural maps

eℓℓ2k/(p
n) −→ eℓℓ[1]2k/(p

n),

eℓℓ2k −→ eℓℓ[1]2k.

There is an additive operation of degree 0,

Up: êℓℓ[1]• −→ êℓℓ[1]•,

defined on q-expansions by

(Up F )(q) =
∑

n

anpq
n,

where F (q) =
∑

n anq
n. By [2], Up extends to a stable cohomology operation

Up: êℓℓ[1]
•
( ) −→ êℓℓ[1]

•
( ).

This operation is induced from an element of

Homeℓℓ[1]
∗

(eℓℓ[1]•êℓℓ[1], êℓℓ[1]•)
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where
eℓℓ[1]•êℓℓ[1] = eℓℓ[1]∗eℓℓ[1] ⊗

eℓℓ[1]
∗

êℓℓ[1]•.

Let M∗ be a right eℓℓ[1]∗eℓℓ[1]-comodule. Then the extended module

M• = M∗ ⊗
eℓℓ[1]

∗

êℓℓ[1]•

is also graded on Z/2(p − 1) × Zp. For x ∈ M∗, we will denote x ⊗ 1 by x. The
coaction γ can be used to define the operation Up on M•, namely as the composite

M•
γ
−→M∗ ⊗

eℓℓ[1]
∗

eℓℓ[1]∗eℓℓ[1] ⊗
eℓℓ[1]

∗

êℓℓ[1]• = M∗ ⊗
eℓℓ[1]

∗

eℓℓ[1]•êℓℓ[1]

Id⊗Up

−−−−→M∗ ⊗
eℓℓ[1]

∗

êℓℓ[1]• = M•.

We now return to our discussion of Ext0,2k
Eℓℓ∗Eℓℓ(Eℓℓ∗, Eℓℓ∗Q/Z[1/6]). We have

to show that an element of the form
F

d
where F (q) =

∑

r06r arq
r for some r0 > 0

must be zero. It suffices to factorize d into its prime power factors and verify this for
denominators of such form; indeed, it is even sufficient to consider the case where

d = p and ar0
6≡ 0 (mod p).

Here the coaction agrees with the right unit ηR:Eℓℓ∗ −→ Eℓℓ∗Eℓℓ and it is easy to
verify that for an element F ∈ Eℓℓ∗ with holomorphic q-expansion

ηR(F ) ∈ eℓℓ∗ ⊗
MU∗

MU∗MU ⊗
MU∗

eℓℓ∗.

Hence

F ∈ Ext0,2k
Eℓℓ∗Eℓℓ(Eℓℓ∗, Eℓℓ∗/(p

n)) =⇒ F ∈ Ext0,2k
eℓℓ[1]

∗
eℓℓ[1](eℓℓ[1]∗, eℓℓ[1]∗/(p

n)).

In particular we have Up F = F for such F .

Proposition 3.1. Let F ∈ eℓℓ[1]2(p−1)t be a cusp form satisfying

Tℓ F ≡ (1 + ℓ−1)F (mod p) for every prime ℓ 6= p,

Up F ≡ F (mod p).

Then F ≡ 0 (mod p).

Proof. Let F have q-expansion F (q) =
∑

16r arq
r where ar ∈ Z(p). By the first

assumption on F , we have for each prime ℓ 6= p,

Tℓ F ≡
(1 + ℓ)

ℓ
F ≡ (1 + ℓ−1)F (mod p),

implying the following system of congruences modulo p:

anℓ ≡ (1 + ℓ−1)an if ℓ ∤ n,

anℓ + ℓ−1an/ℓ ≡ anℓ + ℓ(p−1)t−1an/ℓ ≡ (1 + ℓ−1)an if ℓ | n.
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By the second assumption, the following congruences are also true:

anp ≡ an (n > 0).

As remarked in Serre [12] §2.3, Lemme 4, the general solution of these congruences
can be shown by induction on n to have the form

an ≡ σp−2(n)a1 (mod p),

where
σp−2(n) =

∑

m|n

mp−2 ≡
∑

m|n

m−1 (mod p).

Thus we must have
F (q) ≡ a1ϕp(q)

for some a1 ∈ Z(p) and

ϕp(q) =
∑

16n

σp−2(n)qn.

But it is an important fact that ϕp(q) is not the reduction modulo p of the q-
expansion of a modular form over Z(p), as is proved by Serre in [11] §2.2 Lemme,
see also Lang’s account in [9]. Thus a1 ≡ 0 and hence F ≡ 0 modulo p. �

This result completes the proof of the Theorem.
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