
ON THE HOMOTOPY TYPE OF THE SPECTRUM

REPRESENTING ELLIPTIC COHOMOLOGY

Andrew Baker

(Version 6: 8/08/1997)

Abstract. In this paper we analyse the homotopy type at primes p > 3 of the ring
spectrum E`` representing a version of elliptic cohomology whose coefficient ring E``∗
agrees with the ring of modular forms for SL2(Z). For any prime (=maximal) graded
ideal P / E``∗ containing the Eisenstein function Ep−1 as well as p, we show that there
is a morphism of ring spectra

[E(2) −→ �
E``

�bP
and a corresponding splitting �

E``
�bP '_

i

Σ2θ(i)[E(2)

of algebra spectra over [E(2) (the I2-adic completion of E(2)); here ( )bP denotes the
P-adic completion of the spectrum E``. Moreover, there is a multiplicative reduction
(E``/P)∗( ) and we similarly show that there is a splitting of K(2) algebra spectra

E``/P '
_
i

Σ2θ(i)K(2).

In each case the indexing i ranges over a finite set.

§0 Introduction.
Recently, the subject of elliptic cohomology has become the focus of much activity

amongst a wide range of mathematicians and physicists. Although the principal mo-
tivation has lain in the interface between quantum field theory, string theory, global
analysis on loop spaces and equivariant bordism, it seems likely that the applications
to topology itself will also prove fruitful.

The principal attraction of elliptic cohomology in stable homotopy theory is perhaps
that it offers the prospect of a geometric interpretation of the notion of v2-periodicity ,
analogous to that of v1-periodicity as Bott periodicity in K-theory. Unfortunately, to
date there is no good geometric description of E``∗( ), however it seems likely that this
will appear in the near future.
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The purpose of the present paper is to make precise some relationships between
E``∗( ), Morava K(2)-theory and v2-periodicity. We use the definition of [Land 1] as
modified in [Ba 1], giving a theory whose coefficient ring agrees with the full ring of
modular forms for the modular group SL2(Z). We remark that the author’s earlier
work (see [Ba 1] and [Ba 2]) leads to the conclusion that there is a good set of stable
operations available for use in stable homotopy theory and that together with the
present results it seems reasonable to look for applications.

I would like to thank the following for arousing my interest in elliptic cohomology
and providing interesting discussions and encouragement: Robin Chapman, Francis
Clarke, Peter Landweber, Haynes Miller, Serge Ochanine, Nigel Ray, and Bob Stong.

Outline.
In §1 we investigate the prime ideals P of the graded ring E``∗ containing the ideal

(p,Ep−1); we show that these are all maximal (i.e. the ring (E``∗)(p) has dimension 1)
and have the form (p, π) where π is an irreducible factor of Ep−1 modulo p. We deduce
that the residue (graded) field has the form

Fpd [Z, Z−1]

where d ≥ 1 and |Z| = 12, 8, or 4 according as to whether E4 ∈ P, E6 ∈ P or neither
of these holds. We have

(E``∗)(̂p,Ep−1)
∼=

∏

π|Ep−1
(π)∈Spec (E``∗/(p))

(
E``∗

)
(̂p,π)

as topological rings.
In §2 we use results of J. Igusa and P. Landweber to define formal group laws over

the rings E``∗/P and (E``∗)P̂ which are strictly isomorphic to the canonical one; then
we use results of [BaWu] to produce a further group law on (E``∗)P̂ , isomorphic to
the canonical one, reducing to the previous one modulo P and moreover classified by a
homomorphism E(n)∗ −→ (E``∗)P̂ whose reduction is classified by a homomorphism
K(2)∗ −→ E``∗/P.

In §3 we use results of §1 to show that there are isomorphisms of rings

(E``∗)P̂ ∼=
⊕

i

Σ2θ(i)Ê(2)∗

E``∗/P ∼=
⊕

i

Σ2θ(i)K(2)∗

together with corresponding splittings of multiplicative cohomology theories

(
(E``)P̂

)∗ ( ) ∼=
⊕

i

Ê(2)
2θ(i)+∗

( )

(E``/P)∗ ( ) ∼=
⊕

i

K(2)2θ(i)+∗( ).
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Associated to the latter are splittings of ring spectra

(
E``

)
P̂ '

∨

i

Σ2θ(i)Ê(2)

and
E``/P '

∨

i

Σ2θ(i)K(2).

Thus we establish a precise relationship between Morava K–theory K(2)∗( ) and elliptic
cohomology.

Finally, in the Appendix we discuss the relationship of our results with the theory
of supersingular elliptic curves over finite fields.

§1 Supersingular reductions of the ring of modular forms.
Recall from [Ba 1] that there is a multiplicative complex oriented cohomology theory

defined on the category of finite CW complexes CWf by

(1–1) E``∗( ) = E``∗ ⊗MU∗ MU∗( )

where we define the graded ring E``∗ by

(1–2) E``∗ = Z
(

1
6

)
[g2, g3,∆−1]

with gk ∈ E``4k and

(1–3) ∆ = g3
2 − 27g2

3 .

There a is ring homomorphism (genus) ϕE`` : MU∗ −→ E``∗ constructed using the
canonical formal group law FE`` associated to the elliptic curve

(1–4) Y 2 = 4X3 − g2X − g3

over E``∗ together with the fact that MU∗ is identifiable with Lazard’s universal ring
for formal group laws and possesses a universal group law FMU . This is described in
detail in [Ba 1] and more generally in [Land 1].

We can identify the group E``2n with the group of weight n modular forms for
SL2(Z) which are meromorphic at i∞ and have q-expansions with coefficients in Z(1/6)
(see [Ba 1]). The corresponding isomorphism of graded rings is effected by the pairings

(1–5)





g2 ←→ 1
12

E4

g3 ←→ −1
216

E6

where E2n is the weight 2n Eisenstein function, whose q-expansion is

E2n(q) = 1− 4n

B2n

∑

1≤k

σ2n−1(k)qk.
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A particular case of importance in the present paper occurs when p is a prime
greater than 3 and 2n = p − 1; then Ep−1 ∈ Z(p)[[q]] is an element of

(
E``2(p−1)

)
(p)

(the localisation at p), and its q-expansion satisfies

Ep−1 ≡ 1 mod p

in Z(p)[[q]].
Notice that E``∗ contains the subring

OE``
∗ = Z

(
1
6

)
[g2, g3]

which can be identified with the ring of modular forms holomorphic at i∞ and of course
we have

E``∗ = OE``
∗ [∆−1].

Convention: From now on we localise at a prime p ≥ 5, and suppress this from the
notation. Thus, in future E``∗ will denote the graded ring Z(p)[g2, g3, ∆−1] and OE``

∗
will denote Z(p)[g2, g3]. Also, we have Ep−1 ∈ E``2(p−1). There is a cohomology theory
obtained by localising elliptic cohomology at p, and this has coefficient ring equal to
E``∗; the spectrum representing this localised theory is obtained by p-localisation of
the spectrum for the version in [Ba 1].

In [Se 3] it is shown that in the ring OE``
∗ /(p), the element Ep−1 has no repeated

irreducible factors (note that OE``
∗ is a unique factorisation domain, as are OE``

∗ /(p),
E``∗ and E``∗/(p).) We will be interested in the prime ideals P / E``∗ for which
(p,Ep−1) ⊂ P.

Let π1, π2, . . . , πd ∈ E``∗ be a sequence of irreducibles in E``∗ such that

Ep−1 ≡ π1 π2 · · · πd mod p.

We can even assume that these all lie in OE``
∗ and are irreducible there, since ∆ is a

cusp form (i.e. it has no terms in q of degree less than 1) and hence cannot divide
Ep−1. Let P / E``∗ be a prime containing (p, Ep−1); then P must contain a unique
ideal of the form (p, πk). We can say even more, as the following result shows.

Theorem (1–6). Let P / E``∗ be a prime ideal containing (p,Ep−1). Then P is a
maximal graded ideal and the residue ring E``∗/P is a finite graded field extension of
Fp[∆,∆−1], having the following form:

(1) Fp[E6, E6
−1

] if E4 ∈ P;
(2) Fp[E4, E4

−1
] if E6 ∈ P;

(3) Fpd [W,W−1] otherwise, where W ∈ E``4 satisfies E4W ≡ E6 mod p, and the
exponent d ≥ 1 depends upon P .

In the Appendix we give further details of case (3), using results of [Si] on super-
singular elliptic curves over finite fields; in particular, we establish that d = 1 or 2.

Proof. We have to consider three distinct cases:
(1) πk ∼ E4;
(2) πk ∼ E6;
(3) πk is not associated to either E4 or E6.
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Here all statements refer to elements of the quotient ring E``∗/(p).
In the cases (1) and (2) we have (using (1–3) and (1–5)) that

E``∗/(p,E4) = Fp[E6, E6
−1

]

and
E``∗/(p,E6) = Fp[E4, E4

−1
]

and so we have the desired result. In case (3) we see that πk must be expressible as
a homogeneous polynomial in E3

4 and E2
6 . Hence, for some homogeneous polynomial

fk(X, Y ) ∈ Fp[X, Y ] we have

πk ≡ fk(E3
4 , E2

6) mod p.

Now as ∆ = 1/1728(E3
4 −E2

6) does not divide πk, then X −Y cannot divide fk(X, Y ).
Hence we can replace E2

6 by
E3

4 − 1728∆

and obtain
πk ≡

∑

0≤j≤deg fk

cj∆deg fk−jE3j
4 mod p

where c0 6= 0 in Fp. But this means that in the residue ring E``∗/(p, πk) the element
E3

4 has norm over the subfield Fp[∆, ∆−1] a non-zero Fp multiple of a power of the unit
∆, hence is itself a unit. A similar argument proves that E6 is a unit in the residue
ring. By (1–2) we can now deduce that Theorem (1–6) is true, the form of E``∗/P in
this case following easily since we are reduced to a finite algebraic extension Fpd of Fp

extended by a 4–dimensional periodicity element W as defined above. ¤

Of course, this result determines all of the maximal ideals M / E``∗ containing
(p,Ep−1). We can use (1–6) to decompose E``∗/(p,Ep−1).

Proposition (1–7). There is an isomorphism of rings

E``∗/(p, Ep−1) ∼=
∏

π|Ep−1
(π)∈Spec (E``∗/(p))

E``∗/(p, π).

In turn, this splitting can be lifted to completions.

Proposition (1–8). There is an isomorphism of topological rings

(
E``∗

)
(̂p,Ep−1)

∼=
∏

π|Ep−1
(π)∈Spec (E``∗/(p))

(
E``∗

)
(̂p,π)

.
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§2 Lubin–Tate group laws and supersingular reductions of E``∗.
In this section we construct a certain formal group law FP over each of the comple-

tions
(
E``∗

)
P̂ where P = (p, π) for π | Ep−1 an irreducible in E``∗/(p). This will turn

out to be classified by a homomorphism factoring as

BP∗ −→ E(2)∗ −→
(
E``∗

)
P̂

where E(2)∗ = v−1
2 BP∗/(vk : k ≥ 3). On passing to the residue field E``∗/P we find

that the reduction of FP is classified by a homomorphism which factors as

BP∗ −→ K(2)∗ −→ E``∗/P

where K(2)∗ = v−1
2 BP∗/(vk : 0 ≤ k 6= 2).

We begin with the group law FE`` over E``∗, which is induced by the genus ϕE`` :
MU∗ −→ E``∗. In [Land 1] it is shown that if we extend E``∗ by adjoining a root e of
the cubic

fE``(X) = 4X3 − g2X − g3 ∈ E``∗[X]

then the ring E``∗(e) is isomorphic to

Z(p)[δ, ε, ε−1, (δ2 − ε)−1]

of [Land 1] (recall that we are localised at p), which is the usual coefficient ring of
elliptic cohomology. The standard Euler formal group law FEuler over E``∗(e) then
becomes strictly isomorphic to FE``.

If we adjoin 3 distinct roots of fE`` in some integral domain extension of E``∗, say
E``∗(e1, e2, e3) where fE``(ei) = 0, then we have 3 distinct formal group laws FEuler

i ,
each isomorphic to FE`` by an isomorphism

hi : FE`` −→ FEuler
i .

Now by work of J. Igusa (see [Ig 1], [Ig 2], and [Land 2]) we have the following result.

Proposition (2–1). For each prime p ≥ 5 the group law FEuler over E``∗(e) has
p-series of the form

[p]FEuler(X) ≡ (−1
p

)
∆(p2−1)/12Xp2

mod (p,Ep−1).

Proof. This is essentially proved in [Land 2], and needs only the further information
that Ep−1 mod p is the Hasse invariant of the elliptic curve of (1–4) (e.g. see [Si]). ¤

Now form the series

h(X) =
1
3

3∑

i=1

hi(X) ∈ E``∗[[X]]

which begins with X, and so allows us to introduce another formal group law F uniquely
specified by the requirement that

h : FE`` −→ F
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be a strict isomorphism (over E``∗). Observe that for any prime p > 3,

(2–2)

[p]F (X) =
1
3

3∑

i=1

hi ([p]F E``(X))

=
1
3

3∑

i=1

[p]FEuler
i

(
hi(X)

)

≡ 1
3
(−1

p

)
∆(p2−1)/12

∑3
i=1 hi(X)p2

≡ (−1
p

)
∆(p2−1)/12h(X)p2

where the congruences are taken modulo (p,Ep−1).
Now for each such prime p, we can construct the canonical p-typification FTyp of F

over E``∗ (see [Ad]); this is classified by a ring homomorphism

ϕp : BP∗ −→ E``∗

satisfying

ϕp(vk) ≡
{

0, if 0 ≤ k 6= 2,(−1
p

)
∆(p2−1)/12, if k = 2,

where vk is the kth Araki generator for BP∗ (see [Rav]), and once again the congru-
ences are taken modulo (p, Ep−1). But this means that the reduction of FTyp modulo
(p,Ep−1) factors through K(2)∗, the coefficient ring of the second Morava K-theory at
the prime p.

Now let P / E``∗ be a maximal ideal containing (p,Ep−1). Then upon reducing ϕp

to a homomorphism K(2)∗ −→ E``∗/P we see that E``∗ becomes a finite graded field
extension of

K(2)∗ ∼= Fp

[
∆(p2−1)/12,∆−(p2−1)/12

]

by Theorem (1–6).
By the main results of [BaWu] we can form a new formal group law FP over

(
E``∗

)
P̂ ,

strictly isomorphic to FTyp by an isomorphism which is the identity modulo P. More-
over, FP is classified by a homomorphism

ϕP : Ê(2)∗ −→
(
E``∗

)
P̂

covering K(2)∗ −→ E``∗/P which classifies the above reduction, and where Ê(2)∗ is
the I2-adic (Noetherian) completion of E(2)∗. It is now easy to see that the next result
holds.

Proposition (2–3). The topological ring
(
E``∗

)
P̂ is a finite rank free algebra over

Ê(2)∗ identified with im ϕP , in a way compatible with the identification of E``∗/P as
a finite dimensional K(2)∗ algebra.
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§3 Supersingular reductions of elliptic cohomology and Morava K–theory.
We are now in a position to state and prove our topological results. For any prime

p > 3 and prime ideal P / E``∗ containing (p,Ep−1), the P-adic completion
(
E``∗

)
P̂

is flat over the ring E``∗ since the later is (graded) Noetherian (see [Ma]). Hence, the
functor (

E``∗
)
P̂ ⊗E``∗ E``∗( )

is a cohomology theory on CWf . The genus ϕE`` pushed into
(
E``∗

)
P̂ allows us to

identify this functor with (
E``∗

)
P̂ ⊗MU∗ MU∗( )

and we denote it by (
E``P̂

)∗( ).

By standard arguments, this is easily seen to be a complex oriented multiplicative coho-
mology theory on CWf , with canonical orientation xE`` induced by the multiplicative
natural transformation

ϕE`` : MU∗( ) −→ (
E``P̂

)∗( )

extending the genus ϕE``. The group law associated to this orientation is of course
FE``. Now the group law FP constructed in §2 has an isomorphism

hP : FE`` −→ FP

which provides a new orientation yE`` = hP(xE``), induced by a multiplicative natural
transformation

ψP : BP ∗( ) −→ E(2)∗( ) −→ (
E``P̂

)∗( ).

It is easy to verify that using ψP we have equivalences of functors

(
E``P̂

)∗( ) ∼=
(
E``∗

)
P̂ ⊗BP∗ BP ∗( )

∼=
(
E``∗

)
P̂ ⊗E(2)∗ E(2)∗( )

∼=
(
E``∗

)
P̂ ⊗Ê(2)∗

Ê(2)
∗
( )

where the last theory is defined on CWf by

Ê(2)
∗
( ) = Ê(2)∗ ⊗E(2)∗ E(2)∗( )

∼= Ê(2)∗ ⊗BP∗ BP ∗( )

From §2 we know that
(
E``∗

)
P̂ is a finite rank, free Ê(2)∗ algebra, and so after

choosing a basis, we can naturally identify the theory
(
E``P̂

)∗( ) with a finite sum of

Ê(2)
∗
( ) module theories, via a natural equivalence

⊕

i

Ê(2)
∗+2θ(i)

( ) −→ (
E``P̂

)∗( )
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for some suitable numerical function θ of the (finite) indexing i.
Now this theory (on CWf ) is given by an inverse limit of the form

lim←−
k

(⊕

i

E(2)∗( )/Ik
2 E(2)∗( )

)

considered in [BaWu] for example. Hence, we have morphisms of representing spectra

ρ :
∨

i

Σ2θ(i)Ê(2) −→ E``P̂

which by the methods of [BaWu] are unique (up to homotopy) and are morphisms of
Ê(2) module spectra, where the right hand spectrum inherits a unique module structure
from the above multiplicative natural transformation of cohomology theories. But ρ
is now easily seen to be an equivalence using Whitehead’s Theorem. Thus we have
established the following result:

Theorem (3–1). There is an equivalence of Ê(2) algebra spectra

E``P̂ '
∨

i

Σ2θ(i)Ê(2).

Upon reduction modulo P we also have a splitting into copies of K(2). To see this
we need to use the version of the Landweber’s Exact Functor Theorem valid modulo In

(see [Ya]). Let (MU/I2)∗( ) be the cohomology theory obtained by killing the regular
sequence p, v1 in (MU∗)(p), where v1 is the first Araki generator in BP∗ ⊂ (MU∗)(p).
Then there is a cohomology theory

(E``/P)∗( ) = E``∗/P ⊗MU∗/I2 (MU/I2)∗( )

since the conditions of the Exact Functor Theorem modulo I2 hold. Moreover, this is
a multiplicative, complex oriented theory and there is a multiplicative natural trans-
formation

ϕP : P (2)∗( ) −→ (E``/P)∗( )

where P (2)∗( ) is the theory

P (2)∗( ) = (BP∗/I2)⊗BP∗/I2 (MU/I2)∗( )

of for instance [Rav]. Of course, ϕP is obtained using the reduction of ϕP modulo P.
Since ϕP : BP∗ −→ E``∗/P factors through K(2)∗ and K(2)∗( ) ∼= K(2)∗ ⊗P (2)∗

P (2)∗( ) we can deduce that there is a multiplicative natural transformation
⊕

i

K(2)∗+2θ(i)( ) −→ (E``/P)∗( )

which is an isomorphism (on CWf ). Just as before, we have a splitting of module
spectra.
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Theorem (3–2). There is an equivalence of K(2) module spectra
∨

i

Σ2θ(i)K(2) −→ E``/P.

The surprising point about these results is their multiplicative character, since whilst
on general grounds one would expect for example E``/P to be a wedge of copies of
(suspensions of) K(2), however, there are many distinct multiplicative structures on
wedges of K(n) corresponding to the distinct graded maximal ideals in v−1

n BP∗.

Conjectures. In the above, an essential part was played by the P-adic completions of
E``∗. In the case of K-theory our techniques yield the fact that the completion of the
Adams summand can be identified with Ê(1), however it is known that this is possible
after only localising at p. We conjecture that our results for elliptic cohomology can
be sharpened to hold after P-localisation. Were this to be true, we would expect a
proof to involve interesting explicit formulae connected with the formal groups which
appear. The results modulo P are clearly best possible.

Appendix: Supersingular elliptic curves over finite fields.
We refer the reader to [Si, V§3] for details used in the following discussion.
In accordance with traditional practice, we define the universal j-invariant by

jE`` = E3
4∆−1 ∈ E``0.

Now in Theorem (1–6) case (1), we have jE`` = 0 in E``∗/P, and in case (2) we have
jE`` = 1728 in E``∗/P. From [Si] these are seen to correspond to exceptional values
of the j-invariant. On the other hand, in case (3) we have that the irreducible element

f ′k(E3
4 , ∆) =

∑

0≤j≤deg fk

cj∆deg fk−jE3j
4 ∈ Fp

[
E3

4 , ∆
]

is associated to an irreducible

f ′′k (jE``) = f ′k(E3
4∆−1, 1)

which has jE`` as a zero in E``∗/P.
Now recalling that in this situation we have E``∗/P = Fp[W,W−1], we can consider

the elliptic curve
Ell0:Y 2 = 4X3 − γ2X − γ3

defined over E``0, where γ2 = 1/12 E4W
−2 and γ3 = −1/216 E6W

−3. As E``0 is a
finite field, we are now in the situation dealt with in [Si, V§3] and moreover, the j-
invariant of this curve is jE``. Silverman’s results include the fact that jE`` ∈ Fp2 and
hence we see that the polynomial f ′′k (jE``) is of degree 1 or 2. From this, we deduce
that f ′k is homogeneous of degree 1 or 2.

Now using the identity (1–3) together with the definition of W , we obtain

E4 ≡ jE``W
2

(jE`` − 1728)
mod P
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and

E6 ≡ jE``W
3

(jE`` − 1728)
mod P

implying that both E4 and E6 give elements of Fp2 [W,W−1], and even Fp[W,W−1] if
jE`` is itself of degree 1 over Fp. The rank of E``∗/P over K(2)∗ is of course (p2−1)d/2.

Finally, we note that the number of non-isomorphic supersingular elliptic curves
over the algebraic closure of Fp is determined in [Si] as a function of p.
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