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Abstract. Elliptic genera of level N have been defined by F. Hirzebruch, generalising the
earlier notion of elliptic genus due to S. Ochanine. We show that there are corresponding
elliptic cohomology theories which are naturally associated to such genera and that these are
obtained from the level 1 case by algebraic extension of the coefficient rings from level 1 to
level N modular forms.

Introduction.
In [8], F. Hirzebruch has introduced elliptic genera of level N which are (multiplicative)

genera
ρα : MU∗ −→ Z[1/N, ζ

N
]((q

N
)).

Here ζ
N

= e2π i /N , q = e2π i τ for τ ∈ H (the upper half plane), q
N

= e2π i τ/N , and α ∈
(1/N)Lτ/Lτ ⊆ C/Lτ is required to have order N as an element of the torus C/Lτ associated
to the lattice Lτ = 〈τ, 1〉 ⊆ C. For any ring R, we denote by R((X)) = R[[X]][X−1] the
ring of Laurent series in X over R with finitely many negative degree terms. The main
purpose of the present work is to fit such genera into the framework of elliptic cohomology
in a manner which generalises the original level 2 constructions.

When earlier versions of this paper were written the author was unaware of the work
of J.-L. Brylinski [4], who constructs higher level theories in many respects similar to ours,
although he does not invert N in his level N theory. However, he does make use of deep facts
from the theory of moduli schemes and in some cases this allows him to prove stronger results
than ours, which only use standard facts from the theory of complex cobordism comodules.
We hope to investigate further the precise relationships between these approaches in future
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work. It is also worth mentioning the recent work of J. Francke [7] as of interest as a
companion approach to these matters.

As basic references on elliptic cohomology, we use [2], [3], [11] and [12]. We also refer
to [1] and [14] for essential ideas on formal groups and their relationship to complex oriented
cohomology theories. For details of ‘level N ’ structures and the Weil pairing we cite [9], [10]
and [16].

I would like to thank F. Clarke, F. Hirzebruch, M. Hovey, P. Landweber, J. Morava and
S. Ochanine for their help and encouragement whilst this work was undertaken.

§1 Modular forms for congruence subgroups of level N .
We begin by considering the level N congruence subgroup Γ1(N) of SL2(Z),

Γ1(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 b
0 1

)
mod N

}

for any N > 2 and set Γ1(1) = SL2(Z). Let L ⊆ C be a lattice. We follow [10] in introducing
the notion of a modular point for Γ1(N), (L, α), where α ∈ C/L has order N . Given a
basis {ω1, ω2} of L and the identification of SL(L) with SL2(Z) using this basis, the induced
action of SL2(Z) on C/L gives rise to a stabilizer group

Γ1(α) = Stab(α) ⊆ SL2(Z)

which is conjugate to Γ1(N) in SL2(Z).
Let L denote the set of all lattices L in C and let M(Γ1(N)) be the set of all modular

points for Γ1(N); this set can be given the structure of a two dimensional complex analytic
manifold which is a finite covering of L. A function F : M(Γ1(N)) −→ C is called a modular
function for Γ1(N) on M(Γ1(N)) of weight k ∈ Z if for all λ ∈ C×,

F (λL, λα) = λ−kF (L, α).

For any M =
(

a′ b′

c′ d′

)
∈ SL2(Z), we also have the notion of a modular function

f : H −→ C for the subgroup MΓ1(N)M−1 ⊆ SL2(Z), where H = {τ ∈ C : im τ > 0}. We
say that f is a modular function for MΓ1(N)M−1 on H of weight k if

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) ∀τ ∈ H,∀

(
a b
c d

)
∈ MΓ1(N)M−1.

We will now explain the relationship between these two notions of modular functions.
Given a lattice L ⊆ C, then we can choose a basis for L, say {ω1, ω2}, for which

τ =
ω1

ω2
∈ H.

We will refer to such a basis as an oriented basis for L. Now suppose that f : H −→ C is a
modular function for MΓ1(N)M−1 on H of weight k. We can construct a modular function
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for Γ1(N) on M(Γ1(N)) of weight k as follows. For a modular point (L,α) ∈ M(Γ1(N)),
where α = (α/N) + L with α ∈ L, choose an oriented basis {ω1, ω2} for L so that

α ≡ −c′ω1 + a′ω2 mod N,

and then define

F (L,α) = ω−k
2 f

(
ω1

ω2

)
.

This is clearly well defined and modular. Conversely, given an F , we can define an f by
setting

f(τ) = F

(
〈τ, 1〉 , −c′τ + a′

N

)
.

In fact, this shows that there is an equivalence between modular functions F for Γ1(N) on
M(Γ1(N)) and collections of functions

{(
f |[M ]k : H −→ C

)
: M ∈ SL2(Z)

}
where

f |[M ]k(τ) = (c′τ + d′)−kf

(
a′τ + b′

c′τ + d′

)

is a modular form of weight k for MΓ1(N)M−1. Of course it is sufficient to let M range
over a complete set of representatives for SL2(Z)/Γ1(N). We will pass freely between these
types of modular functions when necessary and will say that a pair F, f related as above
are associated modular functions. Notice that in the case of N = 1, these concepts agree
with the usual notions of modular functions for SL2(Z).

Now suppose that F : M(Γ1(N)) −→ C, f : H −→ C are associated modular functions for
Γ1(N) and that each of the modular functions f |[M ]k is holomorphic on H and meromorphic
at i∞, or equivalently has a q-expansion

f̃ |[M ]k(q) =
∑

−∞¿n

aM
n qn

N
;

the collection of all such expansions are the q-expansions at the cusps. Then we say that F, f

are modular forms for Γ1(N). If for some subring K ⊆ C all of the q-expansions f̃ |[M ]k(q)
have coefficients in the ring K[ζ

N
], then we say that F, f are defined over K.

Now let F be a modular form for MΓ1(N)M−1 for some M ∈ SL2(Z) on M(Γ1(N)) of
weight k. Given a lattice L ∈ L, we can define a polynomial

ΦL(X) =
∏

α ∈ C/L
|α| = N

(X − F (L, α)) ∈ C[X].

Now if λ ∈ C×, we have

ΦλL(X) =
∏

α′ ∈ C/λL
|α′| = N

(X − F (λL,α′))

=
∏

α ∈ C/L
|α| = N

(X − λ−kF (L,α)).
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Hence, if
ΦL(X) =

∑

06j6DN

Hj(L)XDN−j ,

where DN = deg Φ (and is independent of L), then Hj satisfies

Hj(λL) = λ−jkHj(L),

and so is in fact a modular function of L of weight jk for SL2(Z) rather than just for
MΓ1(N)M−1. If now the f associated to F is holomorphic, so is the hj associated to Hj .
Thus we have proved the following algebraic result.

Theorem (1.1). Let F be a modular form of weight k for MΓ1(N)M−1 on M(Γ1(N));
then F is a solution of a functional equation of the form

Φ(X) =
∑

06j6DN

Hj XDN−j = 0,

where the coefficients are modular forms for SL2(Z) on L, with Hj of weight jk.

Now let E``[1/N ]∗ = Z[1/6N ][E4, E6, ∆−1] be the ring of all modular forms for SL2(Z)
on H which are holomorphic on H, meromorphic at i∞ and have q-expansion coefficients
in Z[1/6N ]. This is the localisation of the ring E``∗ = Z[1/6][E4, E6,∆−1] of [3] with
respect to the multiplicative set of powers of N . In the above, the modular form ∆ is the
discriminant function satisfying the relation

∆ =
1

1728
(E3

4 − E2
6)

and E2k denotes the Eisenstein function of weight 2k. The grading on E``[1/N ]∗ is such
that E``[1/N ]2k correspond to weight k. We can also define E``

MΓ1(N)M−1

∗ to be the graded
ring of modular forms of integer weight for MΓ1(N)M−1 which are meromorphic at each
cusp, and are defined over the ring Z[1/6N ], i.e., they have all their q-expansions in the
ring Z[1/6N, ζ

N
]((q

N
)). As in [3], we set the topological grading to be twice the weight for

elements of this ring.
Clearly we can regard a modular form for SL2(Z) as one for Γ1(N) by forgetting α in

each modular point (L,α); hence

E``[1/N ]∗ ⊆ E``
MΓ1(N)M−1

∗

and is a subring.
Given M1, M2 ∈ SL2(Z), let M = M2M

−1
1 and consider the isomorphism

( )M : E``
M1Γ1(N)M−1

1∗ −→ E``
M2Γ1(N)M−1

2∗ ;

f 7−→ f |[M−1]k ∀ f ∈ E``
M1Γ1(N)M−1

1
2k
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induced from conjugation by M . This isomorphism clearly fixes E``[1/N ]∗, and so is an
isomorphism of E``[1/N ]∗ algebras. By Theorem (1.1), E``

MΓ1(N)M−1

∗ is a finitely generated
algebraic extension of E``[1/N ]∗. We could now appeal to Galois theory for the existence of a
minimal Galois extension of E``

MΓ1(N)M−1

∗ over E``[1/N ]∗ (i.e., a splitting ring) and embed

all of the other algebras of the form E``
M ′Γ1(N)M ′−1

∗ in it. However, we can construct this
splitting ring as yet another ring of modular forms, this time for the congruence subgroup

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 0
0 1

)
mod N

}

which is normal in SL2(Z).
We follow [10] in defining a modular point for Γ(N) to be a pair of form (L, {ω1/N mod

L, ω2/N mod L}), where L ⊆ C is a lattice and the pair {ω1, ω2} is an oriented basis for L
(equivalently, {ω1/N mod L, ω2/N mod L} is an oriented basis for the free Z/N module
(1/N)L/L). Now the standard action of SL2(Z) on C/L determined by any such basis
{ω1, ω2} in turn induces an action on the set M(Γ(N)) of all modular points (L, {ω′1/N mod
L, ω′2/N mod L}). With respect to this action, we have

Stab(L, {ω1/N mod L, ω2/N mod L}) = Γ(N).

By analogy with our earlier definition, we can define a modular function for Γ(N) on
M(Γ(N)) of weight k, F : M(Γ(N)) −→ C, to be a function satisfying

F (λL, {λω1/N mod L, λω2/N mod L}) = λ−kF (L, {ω1/N mod L, ω2/N mod L})
for any λ ∈ C×. Similarly, we can define a modular function for Γ(N) on H of weight k,
f : H −→ C, to be a function satisfying

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) ∀τ ∈ H, ∀

(
a b
c d

)
∈ Γ(N).

The relationship between these is provided by setting

f(τ) = F (〈τ, 1〉 , {τ, 1})
and

F (L, {ω1/N mod L, ω2/N mod L}) = ω−k
2 f

(
ω1

ω2

)
.

Similarly, we can modify our earlier definitions of modular forms by insisting that such
a function f be holomorphic on H, holomorphic or meromorphic at each cusp and has
q-expansions of the form

f̃ |[M ]k
(q) =

∑
aM

n qn

N

for each M ∈ SL2(Z). If we have all of the coefficients aM
n in K[ζ

N
] for some subring K ⊆ C,

then we say that f is defined over K. In particular we have the graded Z[1/6N ] algebra
of integer weight modular forms for Γ(N) defined over Z[1/6N ], which we will denote by
E``

Γ(N)
∗ . By the argument of Theorem (1.1), this is an algebraic extension of E``[1/N ]∗.

The following result describes this extension more fully.
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Theorem (1.2). The ring E``
Γ(N)
∗ is a finitely generated Galois extension of E``[1/N ]∗

with Galois group SL2(Z)/Γ(N) ∼= SL2(Z/N). The subgroup Γ1(N)/Γ(N) ⊆ SL2(Z)/Γ(N)
has fixed ring E``

Γ1(N)
∗ .

Proof. We will require the theory of integral extensions of (graded) rings; all the necessary
results are to be found in Lang’s book [13], especially Chapter IX. The ring E``[1/N ]∗ is a
Noetherian entire factorial ring, hence E``

Γ(N)
∗ is the integral closure of E``[1/N ]∗ in the

field of fractions of E``
Γ(N)
∗ . Now for any modular form F for Γ(N) we have a polynomial

∏

{ω1/N mod L, ω2/N mod L}
(X − λ−kF (L, {ω1/N mod L, ω2/N mod L}))

where the product is over all oriented bases of (1/N)L/L and which lies in E``[1/N ]∗[X] by
the same reasoning as in the case of Γ1(N) above. This has degree equal to the number of
elements of SL2(Z/N), say D′

N . Hence every element of E``
Γ(N)
∗ is of degree at most D′

N .
The following result of [13,Chapter VIII Lemma 1] implies that the field of fractions of
E``

Γ(N)
∗ is of degree at most D′

N over that of E``[1/N ]∗.

Lemma (1.3). Let k be a field and E/k be a separable algebraic extension. Suppose that for
some n, every element α ∈ E has degk α 6 n. Then E is a finite extension and [E : k] 6 n.

Thus we see that this extension must be Galois of degree D′
N , since the elements of

the quotient group SL2(Z/N) ∼= SL2(Z)/Γ(N) act as distinct automorphisms. Hence,
the ring E``

Γ(N)
∗ is a finitely generated extension of E``[1/N ]∗ with automorphism group

SL2(Z/N). ¤

Remark: Notice that we do not claim that E``
Γ(N)
∗ is a free module over E``[1/N ]∗,

although since E``[1/N ]∗ is Noetherian, it is finitely generated. In [6,Theorem 8.4], Eichler
and Zagier prove a related result for the extension (E``

Γ(N)
∗ ⊗Q)/(E``∗ ⊗Q); in this case

the result is free of rank D′
N . A similar result holds for E``

MΓ1(N)M−1

∗ . In [4], Brylinski
has in effect shown that these are faithfully flat extensions of E``∗, but he makes use of
deep results from the theory of moduli schemes, whereas our approach only uses standard
machinery from algebraic topology.

Now take τ ∈ H and consider the lattice Lτ = 〈τ, 1〉. Let α ∈ C/Lτ be a point of
order N , hence the pair (Lτ , α) is a modular point for Γ1(N). Consider the lattice L⊥α =
Lτ + 〈α/N〉 ⊆ C generated by Lτ together with any element of the coset α = α/N + Lτ ,
where α ∈ Lτ . We have that Lτ ⊆ L⊥α and [L⊥α : Lτ ] = N . Now for any holomorphic
modular function f : H −→ C for SL2(Z) (of weight k say, and with associated function F on
lattices), we have a q-expansion

f̃(q) =
∞∑

n=−∞
anqn where q = e2π i τ .
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If f is meromorphic at infinity, then this sum is for n À −∞ only. Associated to L⊥α we
have a (non-unique) τ ′ = τα ∈ H for which L⊥α = λαLτ ′ and λα ∈ C×. Then evaluating f
at τ ′ we obtain

f̃(q′) =
∞∑

n=−∞
anq′n where q′ = e2π i τ ′ .

As
α

N
=

rτ + s

N
∈

〈
τ

N
,

1
N

〉

for suitable integers r, s, we have
q′ = ζs

N
qr

N
.

If we suppose that the q-expansion has coefficients in a subring K ⊆ C, then we also have

f̃(q′) ∈ K((q′)) ⊆ K[ζ
N

]((q
N

)).

If now Mα ∈ Stab(α), then it is easily verified that the function f(τ ′) is modular with
respect to M−1

α Γ1(N)Mα. Notice that if we chose τ ′′ in place of τ ′, we would have a
relationship of the form

τ ′′ =
aτ ′ + b

cτ ′ + d
for

(
a b
c d

)
∈ SL2(Z),

and hence setting q′′ = e2π i τ ′′ , we have

f̃(q′′) = (cτ ′ + d)kf̃(q′).

All of this amounts to the fact that the associated function

(L,α) 7−→ F (L⊥α)

is a function on M(Γ1(N)) which is a weight k modular function for Γ1(N).

§2 The Weil pairing and elliptic genera of level N .
Now let (L,α) be a modular point for Γ1(N). Then following [16] we can define the Weil

pairing
eN : (1/N)L/L× (1/N)L/L −→ µN

where (1/N)L/L ⊆ C/L is the subgroup of points of order dividing N , and µN = 〈ζN 〉 ⊆ C×
is the subgroup of N th roots of unity.
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Proposition (2.1). The Weil pairing is a non-degenerate, bilinear, skew symmetric pair-
ing. Moreover, if {ω1, ω2} is an oriented basis for L, then we have

eN

(ω1

N
mod L,

ω2

N
mod L

)
= ζ

N
.

This is proved in [16] and we review the construction. The reader should also compare
this with the construction of [8].

Assume that N > 2; then there is a unique elliptic function G : C/L −→ C with divisor
div(G) = N(0) −N(α) and whose Taylor expansion about 0 begins with (2π i z/N)N . We
can express the function G(z) in the form

(2.2) G(z) =
(

σ(z, L)
Nσ(z − α,L)

)N

,

where σ(z, L) denotes the Weierstrass sigma function for the lattice L, and α is a represen-
tative of α ∈ C/L. In particular, for a lattice of the form 〈τ, 1〉 where τ ∈ H, we have the
following well known product expansion:

2π iσ(z, 〈τ, 1〉) = e−G2(τ)z2
(eπ i z − e−π i z)

∏

n>1

(
e2π i z − qn

) (
e−2π i z − qn

)

(1− qn)2
,

where

G2(τ) = − (2π i)2

24
E2(q)

and

E2(q) = 1− 24
∑

r>1

σ1(r)qr,

with the latter being a function of τ which is periodic but is not a modular form. A
convenient reference for this is [18]. Now introducing the variable

w = (e2π i z − 1),

we find that
2π i σ(z, 〈τ, 1〉) ∈ Q[[q, w]].

Using this together with the fact that α ∈ (1/N)L, we see that for a lattice of the form L =
〈τ, 1〉,

(2.3) G(z) ∈ Z[1/6N, ζN ][[qN , w]].
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Indeed, the latter has a product expansion of the form

(2.4) G(z) =
1

NN
(e2π i z − 1)N

(
1− qα

e2π i z − qα

)N

×
∏

n>1

(
(e2π i z − qn)

(e2π i z − qnqα)
(e2π i z − q−n)

(e2π i z − q−nqα)
(1− qn)

(1− qnqα)
(1− q−n)

(1− q−nqα)

)N

,

where
qα = qr′

Nζs′
N .

Now for any point β ∈ C/L for which Nβ = α, we have a second elliptic function (depending
on β) F : C/L′ −→ C where L′ is a certain lattice for which L ⊆ L′ ⊆ (1/N)L, and satisfying

div(F) =
∑

γ∈(1/N)L/L′
(γ)− (γ + β′),

and

(F(z))N = G(Nz),

where β′ ∈ C/L′ is the image of β ∈ C/L under the natural map of tori. We can uniquely
specify F by requiring that its Taylor expansion about 0 begins with the term 2π i z, and
thus making use of (2.2) and (2.3) we deduce that

F(z) =
(

σ(Nz, L)
Nσ(Nz − α,L)

)
(2.5)

∈ Z[1/N, ζN ][[qN , w]].

We now define

eN (γ, α) =
F(z + γ)
F(z)

for γ = γ + L ∈ (1/N)L/L.

The lattice L′ is characterised by the fact that the quotient L′/L ⊆ C/L is the orthogonal
complement of the subgroup of (1/N)L/L generated by α; it is actually equal to the lattice
generated by L together with a representative β of β = β + L. By the skew symmetry and
non-degeneracy of eN we have, in the notation of §1, L′ = L⊥α = L + 〈α/N〉 where α =
α/N + L.

The construction of the level N genus in [8] is closely related to this. In fact, Hirzebruch’s
function f is elliptic with respect to the lattice 2π i NL⊥α and we have

F(z) = f(Nz).

Thus the two constructions for F are essentially equivalent.
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Now viewing F as elliptic with respect to L⊥α, we obtain an expansion of the form

(2.6) F(z) = 2π i z +
∑

k>1

Hk(L⊥α)(2π i z)k

where the Hk are modular forms of weight k which we evaluate at the lattice L⊥α. If we
write L⊥α in the form λα 〈τ ′, 1〉 with τ ′ ∈ H, then we have

F(z) = 2π i z +
∑

k>1

Hk(λα 〈τ ′, 1〉)(2π i z)k

= 2π i z +
∑

k>1

λ−k
α Hk(〈τ ′, 1〉)(2π i z)k

= 2π i z +
∑

k>1

λ−k
α hk(τ ′)(2π i z)k

where hk(τ) = Hk(〈τ, 1〉) is the modular form on H associated to Hk. Notice that we have

q′ = e2π i τ ′ = ζr′
N qs′/N

for integers r′, s′ such that

τ ′ =
r′τ + s′

N
.

Thus by (2.3), the q-expansion of each hk(τ ′) is an element of the ring Z[1/6N, ζN ][[qN ]].
This implies that when expressed as a function of w as above, we find that

(2.7) F(z) = F̃(w) ∈∈ Z[1/6N, ζN ][[qN , w]].

§3 Elliptic cohomology and level N genera.
Recall from §1 the graded ring of modular forms for Γ1(N), E``

Γ1(N)
∗ . Then the chain of

subrings
E``∗ ⊆ E``[1/N ]∗ ⊆ E``

Γ1(N)
∗

allows us to define a functor on the homotopy category of finite CW complexes,

(E``Γ1(N))∗( ) = E``
Γ1(N)
∗ ⊗

E``∗
E``∗( )

∼= E``
Γ1(N)
∗ ⊗

MU∗
MU∗( )

where we use the genus MU∗
ϕE``−−−→ E``∗ ↪−→ E``

Γ1(N)
∗ induced from the canonical level 1

genus ϕE`` : MU∗ −→ E``∗ of [3] and the inclusion of E``∗ into E``
Γ1(N)
∗ ; the functor



ELLIPTIC GENERA OF LEVEL N AND ELLIPTIC COHOMOLOGY 11

E``∗( ) is the level 1 version of elliptic cohomology also described in [3]. Similarly, we have
the functor

(E``MΓ1(N)M−1
)∗( ) = E``

MΓ1(N)M−1

∗ ⊗
E``∗

E``∗( )

∼= E``
MΓ1(N)M−1

∗ ⊗
MU∗

MU∗( )

whenever M ∈ SL2(Z).
We may now appeal to Landweber’s Exact Functor Theorem to show that that these

functors are cohomology theories, thus generalising the constructions used in [3,11,12]. The
argument relies upon the fact that for each prime p > 3 for which p - N , the sequence p, v1, v2

in E``∗ remains regular in the extension ring E``
MΓ1(N)M−1

∗ . From [12] we know that in
the quotient ring E``∗/(p, v1), the class of v2 is a unit and so it suffices to verify regularity
for the sequence p, v1.

To do this, notice that the quotient E``∗/(p) is an integral domain (in fact it is a principal
ideal domain in a graded sense) and thus if the residue class of v1 were annihilated by
the class of u say, the constant term w say, in the minimal polynomial of u would also
annihilate v1 modulo p. But this could only happen if w and hence u were 0 modulo p.
It is perhaps worth remarking that v1 ≡ Ep−1 (mod p), and so this is not usually a prime
element in E``∗/(p) (see [2] for more on this).

We have thus obtained our promised cohomology theories.

Proposition (3.1). For each M ∈ SL2(Z), the functor (E``MΓ1(N)M−1
)∗( ) is a multi-

plicative, complex oriented cohomology theory on finite CW complexes.

Now the conjugation map from §1,

( )M : M1Γ1(N)M−1
1 −→ M2Γ1(N)M−1

2 ; AM = MAM−1

where M2 = MM1, fixes E``[1/N ]∗ and therefore induces a multiplicative natural isomor-
phism of functors

(3.2) (E``M1Γ1(N)M−1
1 )∗( )

( )M

−−−→∼= (E``M2Γ1(N)M−1
2 )∗( ).

In a similar way, the natural embedding E``∗ −→ E``
Γ(N)
∗ allows us to construct the functor

(E``Γ(N))∗( ) = E``
Γ(N)
∗ ⊗

E``∗
E``∗( )

∼= E``
Γ(N)
∗ ⊗

MU∗
MU∗( )

on finite CW complexes, where the second identification makes use of the homomorphism
MU∗ −→ E``∗ which classifies the ‘standard’ elliptic cohomology orientation pushed into
E``

Γ(N)
∗ . Using the same approach as for Proposition (3.1), we obtain the next result with

the aid of Landweber’s Exact Functor Theorem.
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Proposition (3.3). The functor (E``Γ(N))∗( ) is a multiplicative complex oriented coho-
mology theory on the category of finite CW complexes.

These theories are related by multiplicative natural transformations of the form

E``∗( ) −→ (E``MΓ1(N)M−1
)∗( ) −→ (E``Γ(N))∗( ),

which are induced from the natural embeddings

E``∗ −→ E``
MΓ1(N)M−1

∗ −→ E``
Γ(N)
∗ .

The natural complex orientation xE`` ∈ E``2(CP∞) (see [1]) for the cohomology theory
(E``MΓ1(N)M−1

)∗( ) is that induced from that of E``∗( ) by the defining multiplicative
natural transformation

E``∗( ) −→ (E``MΓ1(N)M−1
)∗( ).

We wish to show that there is a second choice of orientation yE`` ∈ E``2(CP∞) which is ex-
pressible as a power series θM (xE``) in xE``, whose coefficients lie in the ring E``

MΓ1(N)M−1

∗ ,
which begins with the term xE`` and is also related to Hirzebruch’s level N genus. This is
equivalent to the existence of a strict isomorphism between the formal group laws associated
to the corresponding genera. To establish this we need some algebraic results.

From Equation (2.6), we have the power series in Z

Φ(Z) = F(Z/2π i) = Z +
∑

k>1

Hk(L⊥α)(Z)k

whose coefficients lie in the ring E``
MΓ1(N)M−1

∗ ⊗Q ⊆ E``
Γ(N)
∗ ⊗Q; we can take this series

to be the exponential for a formal group law FN (X, Y ) defined over this ring (note that this
depends upon the original choice of α). The next result shows that this formal group law
is actually defined over the subring E``

MΓ1(N)M−1

∗ which we can view as a (non-graded)
subring of Z[1/6N, ζ

N
]((qN )).

Proposition (3.4). The power series F̃(w) is a strict isomorphism from the multiplicative
formal group law to FN (X, Y ), all of whose coefficients lie in the ring Z[1/6N, ζ

N
]((qN )),

and thus FN (X, Y ) is defined over the ring E``
MΓ1(N)M−1

∗ .

Finally, we see that over the ring E``
MΓ1(N)M−1

∗ , the formal group law FN (X,Y ) is
strictly isomorphic to the canonical level 1 formal group law FE``(X, Y ) discussed in [3];
this uses the theory of Tate curves as described in the latter reference, which provides us
with the following fact. Recall that over any ring the multiplicative formal group law is
defined by

Ĝm(X, Y ) = X + Y + XY.
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Proposition (3.5). Over the ring Z[1/6]((q)) ⊆ Z[1/6N, ζ
N

]((qN )), the formal group

law FE`` is strictly isomorphic to the multiplicative formal group law Ĝm(X, Y ).

Using the isomorphisms of Propositions (3.4) and (3.5), we obtain an isomorphism be-
tween the formal group laws FN (X, Y ) and FE``(X, Y ), which is visibly defined over the
ring Z[1/6N, ζ

N
]((qN )). However, both of these formal group laws are defined over the sub-

ring E``
MΓ1(N)M−1

∗ , and hence the isomorphism between them has coefficients which are
rational polynomials in their coefficients; this means that our isomorphism has coefficients
in the intersection

Z[1/6N, ζN ]((q)) ∩ E``
MΓ1(N)M−1

∗ ⊗Q,

which is equal to the ring E``
MΓ1(N)M−1

∗ . Thus we have established the following crucial
result relating these two formal group laws.

Theorem (3.6). The formal group laws FE``(X, Y ) and FN (X,Y ) defined over the ring
(E``MΓ1(N)M−1

)∗ are strictly isomorphic.

If we now let θM denote the (unique) strict isomorphism FE``
∼=−→ FN , we have our new

choice of orientation in the cohomology theory (E``MΓ1(N)M−1
)∗( ). We remark that the

real reason for inverting N in defining the latter cohomology theory is to ensure that such
an isomorphism exists, and that the corresponding genera define the same multiplicative
cohomology theory. It would be interesting to investigate the situation without inverting N
(this is closely related to Brylinski’s work [4]).

We can use the level N genus ρα : MU∗ −→ E``
MΓ1(N)M−1

∗ to give an alternative definition
of the cohomology theory (E``MΓ1(N)M−1

)∗( ). Namely we form the tensor product functor
(
E``

MΓ1(N)M−1

∗
)

ρα
⊗

MU∗
MU∗( ),

where ( )ρα
indicates that we use the MU∗ module structure on the left hand factor aris-

ing from ρα. The strict isomorphism θM now allows us to define a multiplicative natural
isomorphism

(3.7)
(
E``

MΓ1(N)M−1

∗
)

ρα
⊗

MU∗
MU∗( ) ∼= (E``MΓ1(N)M−1

)∗( ).

We could prove that this new functor is a cohomology theory by directly appealling to
Landweber’s Exact Functor Theorem, however, this would also make use of the existence of
the strict isomorphism θM , together with the fact that Landweber’s criteria are invariant
under change of formal group law by a strict isomorphism.

§4 The case of level 2.
The case where N = 2 corresponds to the original version of elliptic cohomology (see [11]

and [12]). We remark that Γ1(2) = Γ0(2). It is known that the extension E``
Γ1(2)∗ is

algebraic over E``∗ and generated as a ring by a root of the Weierstrass cubic polynomial

4X3 − 1
12

E4X +
1

216
E6.
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The remaining quadratic term in this polynomial splits over E``
Γ(2)
∗ and its roots generate

this extension of E``
Γ1(2)∗ . In this case, the extension E``

Γ(2)
∗ is a free module over E``∗ of

rank 6. Thus the cohomology theory (E``Γ(2))∗( ) is naturally isomorphic to a direct sum
of six copies of E``∗( ) as module theories over the latter.

§5 Reduction modulo a prime ideal.
In this section we pursue a line similar to that in [2] and consider the theories obtained

from our level N theories by reduction modulo prime ideals of the coefficient rings. We will
assume the reader to be familiar with the methods of [2]. We will only discuss the case
of Γ(N) since the others are similar.

First let p be a prime which does not divide 6N . Then the ideal (p) / E``[1/N ]∗ is prime
(in a graded sense) and the reduction modulo (p) gives

E``[1/N ]∗/(p) = Fp[E4, E6, ∆−1]

which is a (graded) principal ideal domain. Using a mod p version of Landweber’s Ex-
act Functor Theorem [17], this can be shown to be the coefficient ring of a multiplicative
cohomology theory of the form

(E``/p)∗( ) = E``[1/N ]∗/(p) ⊗
MU∗/(p)

MU/p
∗( ),

where MU/p is the mod p reduction of the spectrum MU , known to be a module spectrum
over MU .

We can similarly consider the ideal (p)/E``
Γ(N)
∗ ; however, this need not be prime and so

we can take a prime π dividing p. Then the reduction E``
Γ(N)
∗ /(π) is also the coefficient ring

of a multiplicative cohomology theory (E``Γ(N)/π)∗( ). However, because of the possibility
of ramification, the degree D′′

N of the extension (E``
Γ(N)
∗ /(π))/(E``[1/N ]∗/(p)) need only

be a divisor of the degree D′
N of the extension E``

Γ(N)
∗ /E``[1/N ]∗. Notice that as our

underlying ring E``[1/N ]∗/(p) is a principal ideal domain, we can establish that E``
Γ(N)
∗ /(π)

is free of rank D′′
N over E``[1/N ]∗/(p).

By Brown’s Representability Theorem we can represent both of the above theories by
ring spectra E``/p and E``Γ(N)/π. We now have the following topological result.

Theorem (5.1). There is a natural isomorphism of multiplicative cohomology theories on
finite CW complexes

(E``Γ(N)/π)∗( ) ∼= E``
Γ(N)
∗ /(π) ⊗

E``[1/N ]∗/(p)
(E``/p)∗( ).

Moreover, there is a splitting of E``/p module spectra

E``Γ(N)/π '
∨
a

Σd(a)E``/p
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which can in fact be given the structure of an equivalence of algebra spectra over E``/p,
where a indexes the wedge summands and d is a suitable numerical function.

We can also consider a prime ideal p / E``[1/N ]∗ which contains the ideal (p,Ep−1)
together with another P/E``

Γ(N)
∗ containing p. From [2] we see that there is a cohomology

theory (E``/p)∗( ) with the quotient graded field E``[1/N ]∗/p as coefficient ring; also, by
(flat) extension of the coefficient ring of the latter theory, we can obtain an extended theory
(E``Γ(N)/P)∗( ), which has E``

Γ(N)
∗ /P as its coefficient ring. We obtain the following

analogue of Theorem (5.1).

Theorem (5.2). There is a natural isomorphism of multiplicative cohomology theories on
finite CW complexes

(E``Γ(N)/P)∗( ) ∼= E``
Γ(N)
∗ /P ⊗

E``[1/N ]∗/p
(E``/p)∗( ).

Moreover, there is a splitting of E``/p module spectra

E``Γ(N)/P '
∨

a′
Σd′(a′)E``/p

which can in fact be given the structure of an equivalence of algebra spectra over E``/p,
where a′ indexes the wedge summands and d′ is a suitable numerical function.

Concluding remarks.
As remarked before, our construction of level N theories is only partially satisfactory.

Although our methods are perhaps more elementary than those of Brylinski (at least from a
topologist’s perspective), our results are weaker in as much as we have inverted N from the
start. It would certainly be of interest to clarify the basic properties of these higher level
elliptic cohomology theories, especially considered locally at primes dividing N . Of course,
our whole approach (and indeed that of Brylinski) lacks a coherent geometric underpin-
ning. More recent work of the author on stable (co)operations in elliptic (co)homology has
highlighted the rôle of higher level phenomena even in the level 1 context, and we suspect
that a complete geometrically based understanding of these matters will involve all levels
simultaneously, as has been suggested by G. Segal.
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