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ABSTRACT We construct a p-adic version of Elliptic Cohomology whose coefficient ring agrees
with Serre’s ring of p-adic modular forms. We then construct a stable operation U, in this theory
agreeing with Atkin’s operator U, on p-adic modular forms.

Throughout the paper we assume given a fixed prime p > 5. We begin as in [2] by considering the
universal Weierstrass cubic (for Z, algebras) Ell/R.:

El: Y2 =4X3 — o X — g3

where R, = Z)[g2, 93] is the graded ring for which |g,,| = 4n. We can also assign gradings 4, 6 to X, Y
respectively. Now the discriminant
Agn = g5 — 2793

is non-zero and hence Ell is an elliptic curve over R,. Thus we can define an abelian group structure on
Ell considered as a projective variety- see [5], [11]. This has the unique point at infinity O = [0, 1, 0] as its
zero. We can take the local parameter

T=-=2
Y

and then the group law on Ell yields a formal group law (commutative and 1 dimensional) FE! over R,.
This is explained in detail in for example [11]. Associated to this is an invariant differential

o - 4T _dx
= D FET0) Y

which can also be written as o
w_ =dlog" (T).

El

The formal group law FF# is classified by a unique homomorphism ¢: L, — R, where L, is Lazard’s

universal ring (given its natural grading). But topologists are aware that L, is isomorphic to MU, the
coefficient ring of complex (co)bordism MU*( ), and moreover the natural orientation for complex line
bundles in this theory has associated to it a universal formal group law FMU. This is all explained in for
example [1]. Thus we obtain a genus

PEee: MU, — R,.

The ring R, can be identified with a ring of modular forms for SLo(Z) which are holomorphic at ico as
explained in [2]. Under this identification we have

R = S(Z))s

where

1 1
92(—>EE4 and gS<—>—%

and Fs,, denotes the weight 2n Eisenstein function. We will use this identification without further comment.

Now Elliptic Cohomology is usually defined by first localising R, at the multiplicative set generated by
Agn which makes R, [A;ﬂll] universal for elliptic curves. However, this is not necessary if we only worry about
the formal group law (in fact such a Weierstrass cubic is always non-singular at O). We define a functor on
the category of finite CW complexes by

B[] () = R.(Vi "Y®nmu, MU*()

Eg

where V; € Ry(,_1) is the image of the Eisenstein function E, 1 in R..

I We would like to thank the SERC for support whilst this research was carried out.
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(1) THEOREM. The functor E¢([1]*( ) is a multiplicative cohomology theory on CWY which is complex
oriented in the sense of [1] by a multiplicative natural transformation

e MU () — EU1]()

extending Q.

Proof: The proof is based on Landweber’s Exact Functor Theorem together with the fact that £,_; agrees
modulo p with the leading term u in

[plpsa(T) = uT?  (mod (p,TP)).
This is well known—see [4] for example.

We can view each group El{[1]z, as a subgroup of Z,)[[q]], since

2(p—1)

E,1=1-
p—1 Bp*l

> oap-a(m)q™ € Zgy)|lq]].

m>1

We remark that, as is well known, B,_1/2(p — 1) has p-adic valuation exactly —1.

Let A, be a Z graded object in some category I' (e.g. a group, or R module) and let f. = {f, : 4, —
B},ez be a collection of morphisms in I' into a fixed object B. Then there is a unique extension of the f,
to a morphism

fTotal : ATotal — B

where

ATotal = @ An

neZ

(here we assume such direct sums exist in I'). Now take the case A, = E#{[1], and for each n > 1 consider
the group homomorphism

pm 2 B2 — Z/p"[[q]]

obtained by reducing the canonical inclusion E¢([1]2,, — Z[[¢]] modulo p". Then as above we have the
canonical extension

PTotal - Eze[l}Total — Z/pn[[QH

Let J(n)rotal = ker protar and consider the quotient E00[1)rotal/J (7)Total. We have two Lemmas which give
us insight into this quotient.

(2) LEMMA. For eachn > 1 and a € Ell[1]a,, with m € Z we have

n—1
E£71 a—a € J(n)Total-

Proof: We have
2(

—1
Ep,1 =1- L) ngp,;),(k)qk
Bp—1 k>1

and hence E,_q1 =1 (mod p). From this it is easy to deduce the result.



(3) LEMMA. Letn>1, a € El[l]a,, 8 € B[] and a — 3 € J(n)rota1. Then
a=b (mod (p—1)p"1).

Proof: See [10].

Thus for each n > 1 we can recover a Z/2(p — 1)p"~! graded object (E£([1]/.J(n)), with
(Eﬁé[l]/.](n))m = image [jn : Bel),, — E%[l]Total/J(n)Toml]

for each m € Z and where m denotes the residue class of m  (mod 2(p—1)p™~1). It is easy to see that there
is a homomorphism of graded rings
El, — (EL1]/J(n)),

extending the maps j, and where the gradings are mapped as the natural projection Z — Z/2(p — 1)p
We can now form the inverse limit

n—1

—

B, = lim(Eee[1]/J(n)),

which is a ring graded by
lim Z/2(p — 1)p" = Z/2(p— 1) X Z,

and complete with respect to the ideals J(n),. obtained by intersecting with J(n)Tota1; moreover the ring

—

E1],
a genus

agrees with the ring of p-adic modular forms of [10]. The natural map E¢([1], — E¢¢[1], induces

—

Prw : MU, — EL(1], .
(4) THEOREM. The functor

BUQ] () = BUO], @y, MU' ()
is a multiplicative Z/2(p — 1) x Z,, graded cohomology theory on CW/, complex oriented by a multiplicative
natural transformation

— e

Pre: MU™() — B[] ()
extending Y.

—

The proof of this result is exactly as for E£¢[1]*( ) since E,_; is still a unit in E£([1],.

Now for any o € E¢¢[1]5-, we can find a sequence

(Oém S Eéﬁ[l]gam)

Ta
m>1
such that the sequence (am,)m>1 is a p-adic Cauchy sequence in the sense that
ord (@m41 — Gm) — 00
and we can further require that a,, — oco. To see this, suppose that « is the limit of the sequence

(Ym € Ezem%m)mzl

with Ym+1 — Ym € J(m)Total- Then

m—1
Eg—l -1 c J(m)Total

m—1
and so replacing v,,+1 by fym+1EzL”f if necessary, we can assume that ¢,,+1 > ¢,,,. Observe also tha such
an « has a well defined g-expansion

a(q) = Zanqn = mhm am,nqn

—00
where
o (q) = Zam,nqn

and o, — «.

We can now define IAJP : EZE\[I].( ) — EZE\[l]O( ). First recall a basic fact from [10].
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(5) PROPOSITION. Let « € EVl[1].. be a modular form and let its g-expansion be

a(q) = Z anq".

Then
(Upa)(q) = Z anpq"”

is the g-expansion of a p-adic modular form.

Proof: Let a = lim,— o0 @y, With i, € Ell[1]a,,, and a,,, — 0o. Then eventually we have a,, > 0 and so
Tpam S ng[l]gam

exists and has g-expansion

(Tpam)(Q) = Z am,npqn + pam—l Z am,nqnp

— g anpq" as m — oo.
Hence, we see that in fact
Upa = lim Tpap,.
m—>00

To define Gp we mimic the construction of [2]. Let
TeH={reC:im7 >0}

and let L; =< 1,7 >C C be the lattice generated by 7. Consider a lattice L’ containing L, with index
[L’, L] = p and also not containing 1/p. Putting L' =< 1,7’ >, we can assume that

LG+
p

for some j in the range 1 < j < p. Now for each such j we have a homomorphism
hy : MU, — Z) (Gp)[[a"7)]
defined as the composition obtained from the genus
PEl(q) : MU, ZZ5Fe1), — Z ) [[q]]
followed by the homomorphism
0; : Zillal] — Zpy (G)[a"/7]]; a— G7 "7

in which ¢, = e2™i/P and ¢!/P = €277/ As explained in [2], the theory of Tate curves shows that there is a
strict isomorphism of formal group laws over the ring Z(p)((p)[[ql/ ],

FEU) =, p(G7q" )

where FEU9) is the formal group law induced by PEI(q)-
Now it is well known that the topologically defined ring MU, MU is a Hopf algebroid which classifies

strict isomorphisms of formal group laws—see [7] for example. There is thus an extension of each homomor-
phism h; to a ring homomorphism

Hy - MUMU — Zy(¢)[lg"7]
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which in turn extends to
0, ® H, : BUUL), @a0. MUMU — Zy (G,)][a7)]

We remark that this is a right MU, module map using the genus pgy(4) to define the module structure.
It is now easily seen that this construction passes to

—

ﬁj : Egg[l]. ®MU* MU*MU — Z(p)(Cp)[[ql/p]]

We now define the function
= i,

j<p

N
IN
S

1

The image of an element under H is invariant under ¢+ ¢ for p/|j and is in Z,[[g]]. Indeed if o € EZZ\[l].
has expansion a(q) = Y a,¢"™ then
H(a) (9) = Z anpq"

Hence we can define IAJp to be the natural transformation

H@1d: BUl), @yu, MU*( ) — B[], @0, MU*()

—

which agrees with U, on the coefficient ring E¢¢[1],.
(6) THEOREM. There is a degree 0 stable operation

—_— e

U, EU) () — BN ()

—

agreeing with U, on the coefficient ring E4¢[1],.

L}
We can also construct a operation V,, agreeing with the operator V, of [9] on the coefficients E¢¢[1],.
Here the effect of V,, on a g-expansion ) a,g¢" is given by

Vv, (Z ang") = Z anq"?

and V, is multiplicative on EZK\[I].. To construct Vp we use the lattice < 1/p, 7 > containing < 1,7 > with

index p and its scaling < 1,pr >. Notice that on the rational ring E¢¢[1], ® Q we have the identity

Ty (Y ang®) = Up (Y ang™) + 0"V, (D ang™)

if >~ a,q™ is a modular form of weight k.

(7) THEOREM. There is a degree 0 multiplicative stable operation

— e — e

V, : BU) () — EL1] ()

—

agreeing with V,, on the coefficient ring E4¢[1],.

Although U, is not a multiplicative operation its image is a subring. This follows from the calculation

UP(Z amqm)Up(Z bnq") = UpVp (UP(Z amqm)Up(Z bnqn))
=Up (VPUP(Z amqm)VpUp(Z bnqn)) .
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This remains true on replacing U, by UZI,V for N > 1 and the same is true for ﬁp. Hence the limit (in an
appropriate p-adic sense)
U = lim U}
n——-maoo

is a subring. On p-adic Elliptic Cohomology the limit

appears to give an interesting summand theory. It is known for example that U, is a contraction operator
on whose image U, acts bijectively. This summand may be worth further study, especially if it can be shown
to exist without first inverting E,_;.
We end with some remarks on the significance of our results for the algebraic topology of Elliptic
Cohomology.
a) The p-adic theory we have defined is closely related to K- theory. Indeed it can be constructed by
taking the Moore spectra M (p") = S° Upn el, considering them as forming an inverse system under the
reduction maps M (p"+1) — M(p™) and then forming the theory

lim (B0 A M(p™))"()

n——oo

where E¢{¢ denotes a spectrum representing E£¢*( ). We could also replace the Moore spectra by their
K-localisations L M (p™) and use the non-periodic version of Elliptic Cohomology with coefficient ring

—_— e

isomorphic to the ring of holomorphic modular forms. Either way we would get our theory E¢¢[1] ().
We could also use the theory E£¢*( ) of [2] to get a doubly periodic theory.

b) The theory of modular forms with both p and E,_; killed is considered for example in [8]. This seems
a worthwhile area of study since it is much more likely that genuinely vs-periodic phenomena will be
found than in the situation with E,_; ~ vy inverted. We consider this supersingular case in [3].

¢) It would be interesting to construct other operations in E¢¢*( ), for example the 9 operator of [10] (which
is a derivation on E¢¢, and increases weight by 2) may very well be the restriction of an operation. In
particular (A™N) = 0 and hence respects the periodicity.
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