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ABSTRACT We construct a p-adic version of Elliptic Cohomology whose coefficient ring agrees
with Serre’s ring of p-adic modular forms. We then construct a stable operation Ûp in this theory
agreeing with Atkin’s operator Up on p-adic modular forms.

Throughout the paper we assume given a fixed prime p ≥ 5. We begin as in [2] by considering the
universal Weierstrass cubic (for Z(p) algebras) Ell/R∗:

Ell:Y 2 = 4X3 − g2X − g3

where R∗ = Z(p)[g2, g3] is the graded ring for which |gn| = 4n. We can also assign gradings 4, 6 to X, Y
respectively. Now the discriminant

∆Ell = g3
2 − 27g2

3

is non-zero and hence Ell is an elliptic curve over R∗. Thus we can define an abelian group structure on
Ell considered as a projective variety- see [5], [11]. This has the unique point at infinity O = [0, 1, 0] as its
zero. We can take the local parameter

T = −2X

Y

and then the group law on Ell yields a formal group law (commutative and 1 dimensional) FEll over R∗.
This is explained in detail in for example [11]. Associated to this is an invariant differential

ω
Ell

=
dT

∂
∂Y FE``(T, 0)

=
dX

Y

which can also be written as
ω

Ell
= d logF E``

(T ).

The formal group law FE`` is classified by a unique homomorphism ϕ: L∗ −→ R∗ where L∗ is Lazard’s
universal ring (given its natural grading). But topologists are aware that L∗ is isomorphic to MU∗, the
coefficient ring of complex (co)bordism MU∗( ), and moreover the natural orientation for complex line
bundles in this theory has associated to it a universal formal group law FMU . This is all explained in for
example [1]. Thus we obtain a genus

ϕE``: MU∗ −→ R∗.

The ring R∗ can be identified with a ring of modular forms for SL2(Z) which are holomorphic at i∞ as
explained in [2]. Under this identification we have

R∗ ∼= S(Z(p))∗

where
g2 ←→ 1

12
E4 and g3 ←→ − 1

216
E6

and E2n denotes the weight 2n Eisenstein function. We will use this identification without further comment.
Now Elliptic Cohomology is usually defined by first localising R∗ at the multiplicative set generated by

∆Ell which makes R∗[∆−1
Ell] universal for elliptic curves. However, this is not necessary if we only worry about

the formal group law (in fact such a Weierstrass cubic is always non-singular at O). We define a functor on
the category of finite CW complexes by

E``[1]∗( ) = R∗(V1
−1)⊗MU∗MU∗( )

where V1 ∈ R2(p−1) is the image of the Eisenstein function Ep−1 in R∗.

‡ We would like to thank the SERC for support whilst this research was carried out.
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(1) THEOREM. The functor E``[1]∗( ) is a multiplicative cohomology theory on CWf which is complex
oriented in the sense of [1] by a multiplicative natural transformation

ϕE``:MU∗( ) −→ E``[1]∗( )

extending ϕE``.

Proof: The proof is based on Landweber’s Exact Functor Theorem together with the fact that Ep−1 agrees
modulo p with the leading term u in

[p]F E``(T ) ≡ uT p (mod (p, T p+1)).

This is well known—see [4] for example.

We can view each group E``[1]2a as a subgroup of Z(p)[[q]], since

Ep−1 = 1− 2(p− 1)
Bp−1

∑

m≥1

σ2p−3(m)qm ∈ Z(p)[[q]].

We remark that, as is well known, Bp−1/2(p− 1) has p-adic valuation exactly −1.
Let A∗ be a Z graded object in some category Γ (e.g. a group, or R module) and let f∗ = {fn : An −→

B}n∈Z be a collection of morphisms in Γ into a fixed object B. Then there is a unique extension of the fn

to a morphism
fTotal : ATotal −→ B

where
ATotal =

⊕

n∈Z

An

(here we assume such direct sums exist in Γ). Now take the case A∗ = E``[1]∗ and for each n ≥ 1 consider
the group homomorphism

ρm : E``[1]2m −→ Z/pn[[q]]

obtained by reducing the canonical inclusion E``[1]2m −→ Z[[q]] modulo pn. Then as above we have the
canonical extension

ρTotal : E``[1]Total −→ Z/pn[[q]].

Let J(n)Total = ker ρTotal and consider the quotient E``[1]Total/J(n)Total. We have two Lemmas which give
us insight into this quotient.

(2) LEMMA. For each n ≥ 1 and α ∈ E``[1]2m with m ∈ Z we have

Epn−1

p−1 α− α ∈ J(n)Total.

Proof: We have

Ep−1 = 1− 2(p− 1)
Bp−1

∑

k≥1

σ2p−3(k)qk

and hence Ep−1 ≡ 1 (mod p). From this it is easy to deduce the result.
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(3) LEMMA. Let n ≥ 1, α ∈ E``[1]2a, β ∈ E``[1]2b and α− β ∈ J(n)Total. Then

a ≡ b (mod (p− 1)pn−1).

Proof: See [10].

Thus for each n ≥ 1 we can recover a Z/2(p− 1)pn−1 graded object
(
E``[1]/J(n)

)
∗ with

(
E``[1]/J(n)

)
m̄

= image
[
jn : E``[1]m −→ E``[1]Total/J(n)Total

]

for each m ∈ Z and where m̄ denotes the residue class of m (mod 2(p−1)pn−1). It is easy to see that there
is a homomorphism of graded rings

E``∗ −→
(
E``[1]/J(n)

)
∗

extending the maps jn and where the gradings are mapped as the natural projection Z −→ Z/2(p− 1)pn−1.
We can now form the inverse limit

Ê``[1]• = lim←−
n

(
E``[1]/J(n)

)
∗

which is a ring graded by
lim←−

n

Z/2(p− 1)pn ∼= Z/2(p− 1)× Zp

and complete with respect to the ideals J(n)∗ obtained by intersecting with J(n)Total; moreover the ring
Ê``[1]• agrees with the ring of p-adic modular forms of [10]. The natural map E``[1]∗ −→ Ê``[1]• induces
a genus

ϕ̂E`` : MU∗ −→ Ê``[1]• .

(4) THEOREM. The functor

Ê``[1]
•
( ) = Ê``[1]•⊗MU∗MU∗( )

is a multiplicative Z/2(p−1)×Zp graded cohomology theory on CWf , complex oriented by a multiplicative
natural transformation

ϕ̂E`` : MU∗( ) −→ Ê``[1]
•
( )

extending ϕE``.

The proof of this result is exactly as for E``[1]∗( ) since Ep−1 is still a unit in Ê``[1]•.
Now for any α ∈ Ê``[1]2a, we can find a sequence

(
αm ∈ E``[1]2am

)
m≥1

such that the sequence (am)m≥1 is a p-adic Cauchy sequence in the sense that

ord (am+1 − am) −→∞
and we can further require that am −→∞. To see this, suppose that α is the limit of the sequence

(
γm ∈ E``[1]2cm

)
m≥1

with γm+1 − γm ∈ J(m)Total. Then
Epm−1

p−1 − 1 ∈ J(m)Total

and so replacing γm+1 by γm+1E
dmpm−1

p−1 if necessary, we can assume that cm+1 > cm. Observe also tha such
an α has a well defined q-expansion

α(q) =
∑

anqn = lim
m−→∞

am,nqn

where
αm(q) =

∑
am,nqn

and αm −→ α.
We can now define Ûp : Ê``[1]

•
( ) −→ Ê``[1]

•
( ). First recall a basic fact from [10].
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(5) PROPOSITION. Let α ∈ E``[1]∗ be a modular form and let its q-expansion be

α(q) =
∑

anqn.

Then
(Upα)(q) =

∑
anpq

n

is the q-expansion of a p-adic modular form.

Proof: Let α = limm−→∞ αm with αm ∈ E``[1]2am and am −→∞. Then eventually we have am > 0 and so

Tpαm ∈ E``[1]2am

exists and has q-expansion

(Tpαm)(q) =
∑

am,npq
n + pam−1

∑
am,nqnp

−→
∑

anpq
n as m −→∞.

Hence, we see that in fact
Upα = lim

m−→∞
Tpαm.

To define Ûp we mimic the construction of [2]. Let

τ ∈ H = {τ ∈ C : im τ > 0}

and let Lτ =< 1, τ >⊂ C be the lattice generated by τ . Consider a lattice L′ containing Lτ with index
[L′, L] = p and also not containing 1/p. Putting L′ =< 1, τ ′ >, we can assume that

τ ′ =
(j + τ)

p

for some j in the range 1 ≤ j ≤ p. Now for each such j we have a homomorphism

hj : MU∗ −→ Z(p)(ζp)[[q1/p]]

defined as the composition obtained from the genus

ϕEll(q) : MU∗
ϕE``−→E``[1]∗ ↪→ Z(p)[[q]]

followed by the homomorphism

θj : Z(p)[[q]] −→ Z(p)(ζp)[[q1/p]]; q 7−→ ζp
jq1/p

in which ζp = e2πi/p and q1/p = e2πiτ/p. As explained in [2], the theory of Tate curves shows that there is a
strict isomorphism of formal group laws over the ring Z(p)(ζp)[[q1/p]],

FEll(q) ∼=−→F (ζp
jq1/p)

where FEll(q) is the formal group law induced by ϕEll(q).
Now it is well known that the topologically defined ring MU∗MU is a Hopf algebroid which classifies

strict isomorphisms of formal group laws—see [7] for example. There is thus an extension of each homomor-
phism hj to a ring homomorphism

Hj : MU∗MU −→ Z(p)(ζp)[[q1/p]]
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which in turn extends to

θj ⊗Hj : E``[1]∗ ⊗MU∗ MU∗MU −→ Z(p)(ζp)[[q1/p]].

We remark that this is a right MU∗ module map using the genus ϕEll(q) to define the module structure.
It is now easily seen that this construction passes to

Ĥj : Ê``[1]• ⊗MU∗ MU∗MU −→ Z(p)(ζp)[[q1/p]].

We now define the function
Ĥ =

1
p

∑

1≤j≤p

Ĥj .

The image of an element under Ĥ is invariant under ζp 7→ ζp
j for p/|j and is in Zp[[q]]. Indeed if α ∈ Ê``[1]•

has expansion α(q) =
∑

anqn then
Ĥ

(
α
)
(q) =

∑
anpq

n.

Hence we can define Ûp to be the natural transformation

Ĥ ⊗ Id : Ê``[1]• ⊗MU∗ MU∗( ) −→ Ê``[1]• ⊗MU∗ MU∗( )

which agrees with Up on the coefficient ring Ê``[1]•.

(6) THEOREM. There is a degree 0 stable operation

Ûp : Ê``[1]
•
( ) −→ Ê``[1]

•
( )

agreeing with Up on the coefficient ring Ê``[1]•.

We can also construct a operation V̂p agreeing with the operator Vp of [9] on the coefficients Ê``[1]•.
Here the effect of Vp on a q-expansion

∑
anqn is given by

Vp

(∑
anqn

)
=

∑
anqnp

and Vp is multiplicative on Ê``[1]•. To construct V̂p we use the lattice < 1/p, τ > containing < 1, τ > with
index p and its scaling < 1, pτ >. Notice that on the rational ring Ê``[1]• ⊗Q we have the identity

Tp

(∑
anqn

)
= Up

(∑
anqn

)
+ pk−1Vp

(∑
anqn

)

if
∑

anqn is a modular form of weight k.

(7) THEOREM. There is a degree 0 multiplicative stable operation

V̂p : Ê``[1]
•
( ) −→ Ê``[1]

•
( )

agreeing with Vp on the coefficient ring Ê``[1]•.

Although Up is not a multiplicative operation its image is a subring. This follows from the calculation

Up(
∑

amqm)Up(
∑

bnqn) = UpVp

(
Up(

∑
amqm)Up(

∑
bnqn)

)

= Up

(
VpUp(

∑
amqm)VpUp(

∑
bnqn)

) .
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This remains true on replacing Up by UN
p for N ≥ 1 and the same is true for Ûp. Hence the limit (in an

appropriate p-adic sense)
U∞p = lim

n−→∞
UN

p

is a subring. On p-adic Elliptic Cohomology the limit

Û∞p = lim
n−→∞

ÛN
p

appears to give an interesting summand theory. It is known for example that Up is a contraction operator
on whose image Up acts bijectively. This summand may be worth further study, especially if it can be shown
to exist without first inverting Ep−1.

We end with some remarks on the significance of our results for the algebraic topology of Elliptic
Cohomology.
a) The p-adic theory we have defined is closely related to K- theory. Indeed it can be constructed by

taking the Moore spectra M(pn) = S0 ∪pn e1, considering them as forming an inverse system under the
reduction maps M(pn+1) −→ M(pn) and then forming the theory

lim
n−→∞

(
E``[1] ∧M(pn)

)∗( )

where E`` denotes a spectrum representing E``∗( ). We could also replace the Moore spectra by their
K-localisations LKM(pn) and use the non-periodic version of Elliptic Cohomology with coefficient ring
isomorphic to the ring of holomorphic modular forms. Either way we would get our theory Ê``[1]

•
( ).

We could also use the theory E``∗( ) of [2] to get a doubly periodic theory.
b) The theory of modular forms with both p and Ep−1 killed is considered for example in [8]. This seems

a worthwhile area of study since it is much more likely that genuinely v2-periodic phenomena will be
found than in the situation with Ep−1 ≈ v1 inverted. We consider this supersingular case in [3].

c) It would be interesting to construct other operations in E``∗( ), for example the ∂ operator of [10] (which
is a derivation on E``∗ and increases weight by 2) may very well be the restriction of an operation. In
particular ∂(∆N ) = 0 and hence respects the periodicity.
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