ELLIPTIC COHOMOLOGY, *p*-ADIC MODULAR FORMS AND ATKIN'S OPERATOR U_p

Andrew Baker ‡

Dept of Mathematics, Manchester University, Manchester M13 9PL

ABSTRACT We construct a p-adic version of Elliptic Cohomology whose coefficient ring agrees with Serre's ring of p-adic modular forms. We then construct a stable operation \hat{U}_p in this theory agreeing with Atkin's operator U_p on p-adic modular forms.

Throughout the paper we assume given a fixed prime $p \ge 5$. We begin as in [2] by considering the universal Weierstrass cubic (for $\mathbf{Z}_{(p)}$ algebras) \mathbf{Ell}/R_* :

Ell:
$$Y^2 = 4X^3 - g_2X - g_3$$

where $R_* = \mathbf{Z}_{(p)}[g_2, g_3]$ is the graded ring for which $|g_n| = 4n$. We can also assign gradings 4, 6 to X, Y respectively. Now the *discriminant*

$$\Delta_{\mathbf{Ell}} = g_2^3 - 27g_3^2$$

is non-zero and hence **Ell** is an *elliptic curve* over R_* . Thus we can define an abelian group structure on **Ell** considered as a projective variety- see [5], [11]. This has the unique point at infinity $\mathbf{O} = [0, 1, 0]$ as its zero. We can take the local parameter

$$T = -\frac{2X}{Y}$$

and then the group law on **Ell** yields a *formal group law* (commutative and 1 dimensional) F^{Ell} over R_* . This is explained in detail in for example [11]. Associated to this is an *invariant differential*

$$\omega_{\rm EII} = \frac{dT}{\frac{\partial}{\partial Y} F^{E\ell\ell}(T,0)} = \frac{dX}{Y}$$

which can also be written as

$$\omega_{_{\mathbf{E}\mathbf{l}\mathbf{l}}} = d\log^{F^{E\ell\ell}}(T).$$

The formal group law $F^{E\ell\ell}$ is classified by a unique homomorphism $\varphi: L_* \longrightarrow R_*$ where L_* is Lazard's universal ring (given its natural grading). But topologists are aware that L_* is isomorphic to MU_* , the coefficient ring of complex (co)bordism $MU^*()$, and moreover the natural orientation for complex line bundles in this theory has associated to it a universal formal group law F^{MU} . This is all explained in for example [1]. Thus we obtain a *genus*

$$\varphi_{E\ell\ell}: MU_* \longrightarrow R_*.$$

The ring R_* can be identified with a ring of modular forms for $SL_2(\mathbf{Z})$ which are holomorphic at i ∞ as explained in [2]. Under this identification we have

$$R_* \cong S(\mathbf{Z}_{(p)})_*$$

where

$$g_2 \longleftrightarrow \frac{1}{12}E_4$$
 and $g_3 \longleftrightarrow -\frac{1}{216}E_6$

and E_{2n} denotes the weight 2n Eisenstein function. We will use this identification without further comment.

Now *Elliptic Cohomology* is usually defined by first localising R_* at the multiplicative set generated by Δ_{Ell} which makes $R_*[\Delta_{\text{Ell}}^{-1}]$ universal for elliptic curves. However, this is not necessary if we only worry about the formal group law (in fact such a Weierstrass cubic is always non-singular at **O**). We define a functor on the category of finite CW complexes by

$$E\ell\ell[1]^*() = R_*(V_1^{-1}) \otimes_{MU_*} MU^*()$$

where $V_1 \in R_{2(p-1)}$ is the image of the Eisenstein function E_{p-1} in R_* .

[‡] We would like to thank the SERC for support whilst this research was carried out.

(1) **THEOREM.** The functor $E\ell\ell[1]^*()$ is a multiplicative cohomology theory on \mathbf{CW}^f which is complex oriented in the sense of $[\mathbf{1}]$ by a multiplicative natural transformation

$$\overline{\varphi_{E\ell\ell}}: MU^*() \longrightarrow E\ell\ell[1]^*()$$

extending $\varphi_{E\ell\ell}$.

Proof: The proof is based on Landweber's Exact Functor Theorem together with the fact that E_{p-1} agrees modulo p with the leading term u in

$$[p]_{F^{E\ell\ell}}(T) \equiv uT^p \pmod{(p, T^{p+1})}.$$

This is well known—see [4] for example.

We can view each group $E\ell\ell[1]_{2a}$ as a subgroup of $\mathbf{Z}_{(p)}[[q]]$, since

$$E_{p-1} = 1 - \frac{2(p-1)}{B_{p-1}} \sum_{m \ge 1} \sigma_{2p-3}(m) q^m \in \mathbf{Z}_{(p)}[[q]].$$

We remark that, as is well known, $B_{p-1}/2(p-1)$ has p-adic valuation exactly -1.

Let A_* be a **Z** graded object in some category Γ (e.g. a group, or R module) and let $f_* = \{f_n : A_n \longrightarrow B\}_{n \in \mathbf{Z}}$ be a collection of morphisms in Γ into a fixed object B. Then there is a unique extension of the f_n to a morphism

$$f_{\text{Total}}: A_{\text{Total}} \longrightarrow B$$

where

$$A_{\text{Total}} = \bigoplus_{n \in \mathbf{Z}} A_n$$

(here we assume such direct sums exist in Γ). Now take the case $A_* = E\ell\ell[1]_*$ and for each $n \ge 1$ consider the group homomorphism

$$\rho_m : E\ell\ell[1]_{2m} \longrightarrow \mathbf{Z}/p^n[[q]]$$

obtained by reducing the canonical inclusion $E\ell\ell[1]_{2m} \longrightarrow \mathbf{Z}[[q]]$ modulo p^n . Then as above we have the canonical extension

$$\rho_{\text{Total}} : E\ell\ell[1]_{\text{Total}} \longrightarrow \mathbf{Z}/p^n[[q]].$$

Let $J(n)_{\text{Total}} = \ker \rho_{\text{Total}}$ and consider the quotient $E\ell\ell[1]_{\text{Total}}/J(n)_{\text{Total}}$. We have two Lemmas which give us insight into this quotient.

(2) LEMMA. For each $n \ge 1$ and $\alpha \in E\ell\ell[1]_{2m}$ with $m \in \mathbb{Z}$ we have

$$E_{p-1}^{p^{n-1}}\alpha - \alpha \in J(n)_{\text{Total}}.$$

Proof: We have

$$E_{p-1} = 1 - \frac{2(p-1)}{B_{p-1}} \sum_{k \ge 1} \sigma_{2p-3}(k) q^k$$

and hence $E_{p-1} \equiv 1 \pmod{p}$. From this it is easy to deduce the result.

- -

. .

(3) LEMMA. Let
$$n \ge 1$$
, $\alpha \in E\ell\ell[1]_{2a}$, $\beta \in E\ell\ell[1]_{2b}$ and $\alpha - \beta \in J(n)_{\text{Total}}$. Then $a \equiv b \pmod{(p-1)p^{n-1}}$.

Proof: See [10].

Thus for each $n \ge 1$ we can recover a $\mathbb{Z}/2(p-1)p^{n-1}$ graded object $\left(E\ell\ell[1]/J(n)\right)_*$ with

$$\left(E\ell\ell[1]/J(n)\right)_{\bar{m}} = \text{image } \left[j_n : E\ell\ell[1]_m \longrightarrow E\ell\ell[1]_{\text{Total}}/J(n)_{\text{Total}}\right]$$

for each $m \in \mathbb{Z}$ and where \overline{m} denotes the residue class of $m \pmod{2(p-1)p^{n-1}}$. It is easy to see that there is a homomorphism of graded rings

$$E\ell\ell_* \longrightarrow \left(E\ell\ell[1]/J(n)\right)_*$$

extending the maps j_n and where the gradings are mapped as the natural projection $\mathbf{Z} \longrightarrow \mathbf{Z}/2(p-1)p^{n-1}$. We can now form the inverse limit

$$E\ell\ell[1]_{\bullet} = \lim_{\stackrel{\leftarrow}{n}} \left(E\ell\ell[1]/J(n) \right),$$

which is a ring graded by

$$\lim_{\longrightarrow} \mathbf{Z}/2(p-1)p^n \cong \mathbf{Z}/2(p-1) \times \mathbf{Z}_p$$

and complete with respect to the ideals $J(n)_*$ obtained by intersecting with $J(n)_{\text{Total}}$; moreover the ring $\widehat{E\ell\ell[1]}_{\bullet}$ agrees with the ring of *p*-adic modular forms of [10]. The natural map $E\ell\ell[1]_* \longrightarrow \widehat{E\ell\ell[1]}_{\bullet}$ induces a genus

$$\widehat{\varphi_{E\ell\ell}}: MU_* \longrightarrow \widehat{E\ell\ell}[1]_{\bullet}$$

(4) THEOREM. The functor

$$\widehat{E\ell\ell[1]}^{\bullet}() = \widehat{E\ell\ell[1]}_{\bullet} \otimes_{MU_*} MU^*()$$

is a multiplicative $\mathbf{Z}/2(p-1) \times \mathbf{Z}_p$ graded cohomology theory on \mathbf{CW}^f , complex oriented by a multiplicative natural transformation

$$\widehat{\varphi_{E\ell\ell}}: MU^*() \longrightarrow \widehat{E\ell\ell[1]}^{\bullet}()$$

extending $\varphi_{E\ell\ell}$.

The proof of this result is exactly as for $E\ell\ell[1]^*()$ since E_{p-1} is still a unit in $\widehat{E\ell\ell[1]}_{\bullet}$.

Now for any $\alpha \in E\ell\ell[1]_{2a}$, we can find a sequence

$$\left(\alpha_m \in E\ell\ell[1]_{2a_m}\right)_{m>1}$$

such that the sequence $(a_m)_{m\geq 1}$ is a p-adic Cauchy sequence in the sense that

ord
$$(a_{m+1} - a_m) \longrightarrow \infty$$

and we can further require that $a_m \longrightarrow \infty$. To see this, suppose that α is the limit of the sequence

$$\left(\gamma_m \in E\ell\ell[1]_{2c_m}\right)_{m>1}$$

with $\gamma_{m+1} - \gamma_m \in J(m)_{\text{Total}}$. Then

$$E_{p-1}^{p^{m-1}} - 1 \in J(m)_{\text{Total}}$$

and so replacing γ_{m+1} by $\gamma_{m+1}E_{p-1}^{d_mp^{m-1}}$ if necessary, we can assume that $c_{m+1} > c_m$. Observe also the such an α has a well defined *q*-expansion

$$\alpha(q) = \sum a_n q^n = \lim_{m \to \infty} a_{m,n} q^n$$

where

$$\alpha_m(q) = \sum a_{m,n} q^n$$

and $\alpha_m \longrightarrow \alpha$.

We can now define $\widehat{U}_p: \widehat{E\ell\ell[1]}^{\bullet}() \longrightarrow \widehat{E\ell\ell[1]}^{\bullet}()$. First recall a basic fact from [10].

_ _

(5) **PROPOSITION.** Let $\alpha \in E\ell\ell[1]_*$ be a modular form and let its q-expansion be

$$\alpha(q) = \sum a_n q^n.$$

Then

$$(\mathbf{U}_p\alpha)(q) = \sum a_{np}q^n$$

is the q-expansion of a p-adic modular form.

Proof: Let $\alpha = \lim_{m \to \infty} \alpha_m$ with $\alpha_m \in E\ell\ell[1]_{2a_m}$ and $a_m \to \infty$. Then eventually we have $a_m > 0$ and so

$$\mathbf{T}_p \alpha_m \in E\ell\ell[1]_{2a_m}$$

exists and has q-expansion

$$(\mathbf{T}_p \alpha_m)(q) = \sum a_{m,np} q^n + p^{a_m - 1} \sum a_{m,n} q^{np}$$
$$\longrightarrow \sum a_{np} q^n \quad \text{as } m \longrightarrow \infty.$$

Hence, we see that in fact

$$\mathbf{U}_p \alpha = \lim_{m \longrightarrow \infty} \mathbf{T}_p \alpha_m.$$

- -

To define
$$\widehat{U}_p$$
 we mimic the construction of [2]. Let

$$\tau \in \mathcal{H} = \{\tau \in \mathbf{C} : \operatorname{im} \tau > 0\}$$

and let $L_{\tau} = \langle 1, \tau \rangle \subset \mathbf{C}$ be the lattice generated by τ . Consider a lattice L' containing L_{τ} with index [L', L] = p and also not containing 1/p. Putting $L' = \langle 1, \tau' \rangle$, we can assume that

$$\tau' = \frac{(j+\tau)}{p}$$

for some j in the range $1 \le j \le p$. Now for each such j we have a homomorphism

$$h_j: MU_* \longrightarrow \mathbf{Z}_{(p)}(\zeta_p)[[q^{1/p}]]$$

defined as the composition obtained from the genus

$$\varphi_{\mathbf{Ell}(q)} : MU_* \xrightarrow{\varphi_{E\ell\ell}} E\ell\ell[1]_* \hookrightarrow \mathbf{Z}_{(p)}[[q]]$$

followed by the homomorphism

$$\theta_j : \mathbf{Z}_{(p)}[[q]] \longrightarrow \mathbf{Z}_{(p)}(\zeta_p)[[q^{1/p}]]; \ q \longmapsto \zeta_p{}^j q^{1/p}$$

in which $\zeta_p = e^{2\pi i/p}$ and $q^{1/p} = e^{2\pi i\tau/p}$. As explained in [2], the theory of *Tate curves* shows that there is a strict isomorphism of formal group laws over the ring $\mathbf{Z}_{(p)}(\zeta_p)[[q^{1/p}]]$,

$$F^{\mathbf{Ell}(q)} \xrightarrow{\cong} F^{(\zeta_p^j q^{1/p})}$$

where $F^{\mathbf{Ell}(q)}$ is the formal group law induced by $\varphi_{\mathbf{Ell}(q)}$.

Now it is well known that the topologically defined ring MU_*MU is a Hopf algebroid which classifies strict isomorphisms of formal group laws—see [7] for example. There is thus an extension of each homomorphism h_j to a ring homomorphism

$$H_j: MU_*MU \longrightarrow \mathbf{Z}_{(p)}(\zeta_p)[[q^{1/p}]]$$

which in turn extends to

$$\theta_j \otimes H_j : E\ell\ell[1]_* \otimes_{MU_*} MU_*MU \longrightarrow \mathbf{Z}_{(p)}(\zeta_p)[[q^{1/p}]].$$

We remark that this is a right MU_* module map using the genus $\varphi_{\mathbf{Ell}(q)}$ to define the module structure.

It is now easily seen that this construction passes to

$$\widehat{H}_j : \widehat{\ell\ell\ell[1]}_{\bullet} \otimes_{MU_*} MU_*MU \longrightarrow \mathbf{Z}_{(p)}(\zeta_p)[[q^{1/p}]]$$

We now define the function

$$\widehat{H} = \frac{1}{p} \sum_{1 \le j \le p} \widehat{H}_j.$$

The image of an element under \widehat{H} is invariant under $\zeta_p \mapsto \zeta_p^{j}$ for p/j and is in $\mathbf{Z}_p[[q]]$. Indeed if $\alpha \in \widehat{\ell\ell\ell}[1]_{\bullet}$ has expansion $\alpha(q) = \sum a_n q^n$ then

$$\widehat{H}(\alpha)(q) = \sum a_{np}q^n.$$

Hence we can define $\widehat{\mathbf{U}}_p$ to be the natural transformation

$$\widehat{H} \otimes \mathrm{Id} : \widehat{E\ell\ell[1]}_{\bullet} \otimes_{MU_*} MU^*() \longrightarrow \widehat{E\ell\ell[1]}_{\bullet} \otimes_{MU_*} MU^*()$$

which agrees with U_p on the coefficient ring $\widehat{E\ell\ell[1]}_{\bullet}$.

(6) THEOREM. There is a degree 0 stable operation

$$\widehat{\mathcal{U}}_p: \widehat{E\ell\ell[1]}^{\bullet}(\) \longrightarrow \widehat{E\ell\ell[1]}^{\bullet}(\)$$

agreeing with U_p on the coefficient ring $\widehat{E\ell\ell[1]}_{\bullet}$.

We can also construct a operation \widehat{V}_p agreeing with the operator V_p of [9] on the coefficients $\widehat{E\ell\ell[1]}_{\bullet}$. Here the effect of V_p on a *q*-expansion $\sum a_n q^n$ is given by

$$\mathcal{V}_p\left(\sum a_n q^n\right) = \sum a_n q^{np}$$

and V_p is *multiplicative* on $\widehat{E\ell\ell[1]}_{\bullet}$. To construct \widehat{V}_p we use the lattice $< 1/p, \tau >$ containing $< 1, \tau >$ with index p and its scaling $< 1, p\tau >$. Notice that on the rational ring $\widehat{E\ell\ell[1]}_{\bullet} \otimes \mathbf{Q}$ we have the identity

$$T_p\left(\sum a_n q^n\right) = U_p\left(\sum a_n q^n\right) + p^{k-1} V_p\left(\sum a_n q^n\right)$$

if $\sum a_n q^n$ is a modular form of weight k.

(7) THEOREM. There is a degree 0 multiplicative stable operation

$$\widehat{\mathbf{V}}_p: \widehat{E\ell\ell[1]}^{\bullet}(\) \longrightarrow \widehat{E\ell\ell[1]}^{\bullet}(\)$$

agreeing with V_p on the coefficient ring $\widehat{\ell\ell\ell[1]}_{\bullet}$.

Although U_p is not a multiplicative operation its *image* is a subring. This follows from the calculation

$$U_p(\sum a_m q^m) U_p(\sum b_n q^n) = U_p V_p(U_p(\sum a_m q^m) U_p(\sum b_n q^n))$$
$$= U_p(V_p U_p(\sum a_m q^m) V_p U_p(\sum b_n q^n))$$

This remains true on replacing U_p by U_p^N for $N \ge 1$ and the same is true for \widehat{U}_p . Hence the limit (in an appropriate *p*-adic sense)

$$\mathbf{U}_p^{\infty} = \lim_{n \longrightarrow \infty} \mathbf{U}_p^N$$

is a subring. On p-adic Elliptic Cohomology the limit

$$\widehat{\mathbf{U}}_p^{\infty} = \lim_{n \longrightarrow \infty} \ \widehat{\mathbf{U}}_p^N$$

appears to give an interesting summand theory. It is known for example that U_p is a *contraction operator* on whose image U_p acts bijectively. This summand may be worth further study, especially if it can be shown to exist without first inverting E_{p-1} .

We end with some remarks on the significance of our results for the algebraic topology of Elliptic Cohomology.

a) The *p*-adic theory we have defined is closely related to *K*- theory. Indeed it can be constructed by taking the Moore spectra $M(p^n) = S^0 \cup_{p^n} e^1$, considering them as forming an inverse system under the reduction maps $M(p^{n+1}) \longrightarrow M(p^n)$ and then forming the theory

$$\lim_{n \to \infty} \left(E\ell\ell[1] \wedge M(p^n) \right)^* ()$$

where $E\ell\ell$ denotes a spectrum representing $E\ell\ell^*(\)$. We could also replace the Moore spectra by their K-localisations $L_K M(p^n)$ and use the non-periodic version of Elliptic Cohomology with coefficient ring isomorphic to the ring of holomorphic modular forms. Either way we would get our theory $\widehat{E\ell\ell[1]}^{\bullet}(\)$. We could also use the theory $E\ell\ell^*(\)$ of [2] to get a doubly periodic theory.

- b) The theory of modular forms with both p and E_{p-1} killed is considered for example in [8]. This seems a worthwhile area of study since it is much more likely that genuinely v_2 -periodic phenomena will be found than in the situation with $E_{p-1} \approx v_1$ inverted. We consider this *supersingular* case in [3].
- c) It would be interesting to construct other operations in $E\ell\ell^*()$, for example the ∂ operator of [10] (which is a derivation on $E\ell\ell_*$ and *increases* weight by 2) may very well be the restriction of an operation. In particular $\partial(\Delta^N) = 0$ and hence respects the periodicity.

REFERENCES

- [1] J. F. Adams, "Stable Homotopy and Generalised Homology", Chicago University Press (1974).
- [2] A. Baker, "Hecke operators as operations in Elliptic Cohomology", submitted to Topology (1988).
- [3] A.Baker, "On the homotopy type of the spectrum representing elliptic cohomology", preprint (1988).
- [4] N. Katz, "p-adic properties of modular schemes and modular forms", Springer Lecture Notes in Mathematics 350 (1973) 69-190.
- [5] N. Koblitz, "Elliptic Curves and Modular Forms", Springer Verlag (1984).
- [6] P. S. Landweber, "Elliptic curves and modular forms", preprint (1987).
- [7] D. C. Ravenel, "Complex Cobordism and the Stable Homotopy Groups of spheres", Academic Press (1986).
- [8] G. Robert, "Congruences entre séries d'Eisenstein, dans le cas supersingular", Inventiones Math. 61 (1980) 103-158.
- [9] J-P. Serre, "Corps d'Arithmétique", Presses Universitaires de France (1977).
- [10] J-P. Serre, "Formes modulaires et fonctions zeta p-adiques", Springer Lecture Notes in Mathematics 350 (1973) 191-268.
- [11] J. Silverman, "The Arithmetic of Elliptic Curves", Springer Verlag (1986).