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Abstract. We apply the Lefschetz Fixed Point Theorem to show that every square matrix

over the quaternions has right eigenvalues. We classify them and discuss some of their properties

such as an analogue of Jordan canonical form and diagonalization of elements of the compact

symplectic group Sp(n).

Introduction

Hamilton’s ring of quaternions H has long provided a source of (often nontrivial) generaliza-
tions of and counterexamples to, results over the real or complex numbers. In particular, linear
algebra over H has been studied by algebraists, topologists and those interested in applications.
The recent survey of Zhang [3] provides an overview of some of this work and the present article
is in part a commentary on that paper. Our main result is a new topological proof of the
existence of right eigenvalues using the Lefschetz Fixed Point Theorem which is a counterpart
to Wood’s topological proof of the existence of left eigenvalues in [2, 3]. A proof of our result
by more algebraic techniques is given in [3].

1. Matrices over the quaternions

The ring of quaternions H is the unique finite central division algebra (skew-field) over the
field of real numbers R. It contains the field of complex numbers C as a maximal commutative
subfield and is of dimension 4 over R and 2 over C viewed as a left or right C-vector space.

In this paper, a right H-module will be called an H-vector space; we may sometimes also
refer to a left H-module as a left H-vector space. The theory of bases, dimension and linear
transformations applies in a straightforward way to such vector spaces. However, because of
the non-commutativity of H, care must be taken when working with coordinates and matrices
relative to bases.

For example, given bases u = {u1, . . . , um} and v = {v1, . . . , vn} and a (right) H-linear
transformation ϕ : U −→ V , we can write

ϕ(uj) =
n∑

r=1

vrarj

and introduce the matrix A = [aij ]. Then

ϕ(
m∑

j=1

ujxj) =
m∑

j=1

n∑

r=1

vrarjxj ,
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and writing

ϕ(
m∑

j=1

ujxj) =
n∑

i=1

viyi

we have



y1
...

yn


 = A




x1
...

xm


 .

This allows us to identify U and V with the H-vector spaces Hm and Hn and the action of ϕ

with the action of A on the left.
Now let U = V . Notice that ϕ is a monomorphism if and only if it is an epimorphism; hence

if one (or equivalently both) of these conditions are satisfied, then the matrix A has left and
right inverses B and C, so

BA = In, AC = In.

But then
C = (BA)C = B(AC) = B,

hence we have a unique two-sided inverse A−1 = B = C. This gives an apparently more
straightforward approach to the discussion of Question 1 on page 22 of [3].

From this point of view, the right eigenvalue problem amounts to the existence of a non-
zero column vector x and λ ∈ H for which Ax = xλ. Equivalently, in terms of the linear
transformation ϕ, we are interested in the existence of a non-zero v ∈ V for which ϕ(v) = vλ.
The left eigenvalue problem amounts to the existence of a column vector x satisfying Ax = λx,
but there seems to be no obvious interpretation of this in terms of the endomorphism ϕ. The
left eigenvalue problem was solved by Wood [2]. In Theorem 2.1, we will give a seemingly new
topological proof of the right eigenvalue problem which has previously been tackled by algebraic
means involving embeddings into matrix rings over the complex numbers. We will also derive
generalizations of canonical forms for complex matrices.

2. Existence and properties of right eigenvalues

In order to investigate the right eigenvalue problem, we observe that it suffices to consider
the group of invertible H-linear transformations V −→ V , or equivalently of the group GLn(H)
of invertible n×n, matrices over H. We view GLn(H) as acting on the left of the right H-vector
space Hn, whose entries are considered as column vectors. This action induces a left action on
the quaternionic projective space

HPn−1 = Hn
0/H×

where
Hn

0 = {v ∈ Hn : v 6= 0}.
Let A ∈ GLn(H). Then v ∈ Hn

0 is an eigenvector of A with eigenvalue λ ∈ H if Av = vλ; note
that λ 6= 0. Notice also that if 0 6= α ∈ H, then

(2.1) Av = vλ =⇒ Avα = vα(α−1λα),

so we can sensibly talk about the eigenline spanned by an eigenvector v, even though there may
be many associated eigenvalues! The existence of an eigenvector v is clearly equivalent to the
the existence of a fixed point of A acting on HPn−1.

Theorem 2.1. The action of A on HPn−1 has a fixed point.
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Proof. We will use the Lefschetz Fixed Point Theorem (see Gray [1], theorem 26.42) which
states that if A has no fixed points then

Tr∗A∗ =
∑

06k6n−1

(−1)k Trk A∗ = 0.

Here Trk A∗ denotes the trace of the induced map A∗ : Hk(HPn−1;Q) −→ Hk(HPn−1;Q) in
rational cohomology. Since

H∗(HPm;Q) = Q[y]/(ym+1)

where y ∈ H4(HPm;Q), we have for m = n− 1, and A∗y = ty,

Tr∗A∗ = 1 + t + · · ·+ tn−1.

We have the following result.

Proposition 2.2. If A ∈ GLn(H), then the induced continuous map A : HPn−1 −→ HPn−1

satisfies A∗y = y in cohomology. Hence, Tr∗A∗ > 0.

Proof. Since GLn(H) is path connected, A is homotopic to the identity map on HPn−1 and so

TrA∗ = Tr Id = n.

¤

Thus the action of A on HPn−1 must have a fixed point and hence at least one eigenvalue,
which completes the proof of Theorem 2.1. ¤

We can classify the eigenvalues of A.

Proposition 2.3. If r + sw is an eigenvalue of A, where r, s ∈ R, s > 0 and w ∈ H is a unit
pure quaternion, then all quaternions of the form r + sw′ with w′ ∈ H a unit pure quaternion
are also eigenvalues.

Proof. From Equation (2.1), if Av = v(r + sw) then for each α ∈ H×,

Avα = vα(α−1(r + sw)α).

But it is easily checked that

{α−1wα : α ∈ H×} = {w′ : w′ is a unit pure quaternion},
these sets both being the unit sphere in the set of pure quaternions. ¤

We will write a ∼ b whenever a, b ∈ H× are conjugate.

Proposition 2.4. Suppose that λ1, . . . , λr are distinct eigenvalues for A, no two of which are
conjugate, and let v1, . . . , vr be corresponding eigenvectors. Then v1, . . . , vr are linearly inde-
pendent.

Proof. Suppose not. By reordering and discarding some of the λj and vj if necessary, we may
assume that

vr =
∑

j<r

vjtj

for some tj ∈ H with v1, . . . , vr−1 linearly independent. Then

Avr =
∑

j<r

Avjtj

=
∑

j<r

vjλjtj ,
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implying

Avr − vrλr =
∑

j<r

vj(λjtj − tjλr),

and so
∑

j<r

vj(λjtj − tjλr) = 0.

For non-zero tj , this gives

λj = t−1
j λrtj ,

implying that λj ∼ λr. Hence, all of the tj are zero, contradicting the original assumption. ¤

Corollary 2.5. If A has n non-conjugate eigenvalues, then it can be diagonalized in the sense
that there is a P ∈ GLn(H) for which PAP−1 is diagonal.

Now we consider the compact symplectic group Sp(n) ⊆ GLn(H), consisting of all matrices
perserving the standard quaternionic inner product u·v = u∗v, where u∗ denotes the transpose of
the vector consisting of quaternionic conjugates of the entries of u. For u, v ∈ Hn and α, β ∈ H,
this inner product satisfies

(uα) · (vβ) = α∗(u · v)β.

It is easy to verify that if λ is an eigenvalue of A ∈ Sp(n), then λ−1 = λ∗ since |λ|2 = λ∗λ = 1.

Proposition 2.6. Let A ∈ Sp(n) and suppose that λ, λ′ are distinct eigenvalues for A which
are not conjugate, with corresponding eigenvectors v, v′. Then v · v′ = 0. Hence, A there exists
S ∈ Sp(n) such that SAS−1 is diagonal.

Proof. We have

v · v′ = (Av) · (Av′) = λ∗(v · v′)λ′.
If v · v′ 6= 0, then

λ′ = (v · v′)−1λ(v · v′),
contradicting the nonconjugacy assumption. The final statement is proved by induction on n,
exactly as is done for the diagonalization of unitary matrices. ¤

If λ ∈ H, then

J1
λ = {v : (A− Iλ)v = 0}

is a vector subspace over the centralizer of λ,

Z(λ) = {γ ∈ H : γλ = λγ}.
In fact,

Z(λ) =

{
H if λ ∈ R,

R[λ] ∼= C otherwise.

Define the R-vector subspace

J1[λ] =
∑

α∈H×
J1

αλα−1 .

This is actually an H-vector subspace.

Theorem 2.7. Let λ be an eigenvalue for A. Then a Z(λ)-basis for J1
λ is an H-basis for J1[λ].
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Proof. If v ∈ J1
αλα−1 , then vα ∈ Jλ. Hence, it suffices to show that a Z(λ)-basis {v1, . . . , vr} for

J1
λ is H-linearly independent.
Suppose not. By discarding and renaming elements we may suppose that {v1, . . . , vr−1} is

H-linearly independent and
vr =

∑

j<r

vjαj

for some αj ∈ H. Then

0 =
∑

j<r

(Avjαj − vjαjλ) =
∑

j<r

(vjλαj − vjαjλ).

By assumption, for each j this gives λαj = αjλ and so αj ∈ Z(λ) which implies αj = 0. ¤

We can also define the Z(λ)-vector subspace

Jk
λ = {v : (A− Iλ)kv = 0}.

and the R-vector subspace
Jk[λ] =

∑

α∈H×
Jk

αλα−1 .

Theorem 2.8. Let λ be an eigenvalue for A. Then a Z(λ)-basis for Jk
λ is an H-basis for Jk[λ].

For large enough k, this defines an analogue of Jordan canonical form for A.
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