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Introduction

These notes are intended to provide an account of the study of certain classes of differential
equations in divided power algebras over commutative rings with unity. As a particular example,
we have in mind translation invariant operators with respect to a formal group law over such
a ring. A biproduct of our approach is that we simultaneously solve differential equations and
equivalent recurrence relations. Even in the simplest situation (corresponding to the additive
formal group law and linear recurrences) our approach gives the well known classical solutions
very cleanly in a way which does not require special arguments for rings with torsion.

Most of our results are surely known. However, the present approach making systematic use
of divided powers to avoid problems with division in the case where the underlying ring has
torsion may be novel and worth further consideration, at least for pedagogical purposes.

These notes owe much in the way of motivation and viewpoint to discussions with Francis
Clarke, Bob Odoni, Nigel Ray and Richard Steiner, all of whom I would like to thank.

1. Divided power algebras

Let R be a commutative ring with unity. Let ΓR(X) denote the algebra of divided powers
on X over R. This is the free R-module on generators γn(X) (frequently denoted γn when no
ambiguity results) for n > 0, with the product given by

γmγn =
(

m + n

m

)
γm+n.

Thus γ0 = 1 is the unit for ΓR(X). In fact, ΓR(X) is a Hopf algebra with structure maps

(coproduct) ψ : ΓR(X) −→ ΓR(X)⊗
R

ΓR(X);(1.1)

γn 7−→
∑

06k6n

γk ⊗ γn−k,

(antipode) χ : ΓR(X) −→ ΓR(X);(1.2)

γn 7−→ (−1)nγn,

(augmentation) ε : ΓR(X) −→ ΓR(X);(1.3)

γn 7−→
{

1 if n = 0,

0 otherwise.

Notice that there is always a homomorphism of R-algebras R[X] −→ ΓR(X) given by
∑

k

rkX
k 7−→

∑

k

k!rkγk(X)

which is even a homomorphism of Hopf algebras if the domain is given the coproduct

X 7−→ X ⊗ 1 + 1⊗X

and antipode
X 7−→ −X.
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If R has no Z-torsion this is an embedding; indeed if R is a Q-algebra then we can write
γn(X) = Xn/n!, and we then have for the coproduct,

(1.4) ψ(γn(X)) = γn(X ⊗ 1 + 1⊗X).

We will actually require the formal completion of ΓR(X). To define this, we filter ΓR(X) by
setting Γk

R(X) to be the R submodule generated by the γn with n > k. So we have

0 = Γ∞R (X) ⊆ · · · ⊆ Γn+1
R (X) ⊆ Γn

R(X) ⊆ · · · ⊆ Γ0
R(X) = ΓR(X).

Then the product respects this filtration in the sense that

Γm
R (X)× Γn

R(X) −→ Γm+n
R (X).

We can complete ΓR(X) with respect to this filtration by forming the inverse limit

Γ̂R(X) = lim←−
k

ΓR(X)/Γk
R(X).

Elements of Γ̂R(X) can be expressed as infinite sums of the form
∑

06k

akγk(X), for ak ∈ R.

Thus Γ̂R(X) is free as a topological R-module on the topological basis {γk(X)}06k. Notice
that Γ̂R(X) is a complete topological R-algebra. In fact it is also a topological Hopf algebra.
Moreover, ΓR(X) is a dense Hopf subalgebra. Also, any element of the form f(X) =

∑
06k akγk

where a0 is a unit in R has a multiplicative inverse. To see this, notice that if we consider a
sequence (bk)06k of unknowns, then we can inductively solve the infinite collection of equations
determined by requiring that 

∑

06k

bkγk(X)


 f(X) = 1.

The coefficient of γk(X) is then seen to be

∑

06j6k

(
k

j

)
ajck−j ,

and thus, since
(
k
0

)
a0 is a unit in R, we can express ck in terms of cj for 0 6 j < k, allowing a

recursive solution for ck.

2. Differential operators on divided power algebras

We next discuss differential operators on the rings ΓR(X) and Γ̂R(X). First we consider the
simplest case. Let D denote the R derivation given by

D(γn(X)) = γn−1(X)

acting on either of these rings. We can extend this to give an action of the polynomial ring
R[D] on ΓR(X) and Γ̂R(X). Liebnitz’s formula gives

Dn(f(X)g(X)) =
∑

06j6n

(
n

j

)
Djf(X)Dn−jg(X)

as usual, and we can interpret this as defining a coproduct R[D] −→ R[D]⊗R R[D] given by

Dn 7−→
∑

06j6n

(
n

j

)
Dj ⊗Dn−j .



DIFFERENTIAL EQUATIONS, RECURRENCE RELATIONS AND FORMAL GROUPS 3

The sequence (Dn)06n is ‘dual’ to the sequence (γn(X))06n, where we use the R-linear pairings

R[D]⊗
R

ΓR(X) −→ R;

Dn ⊗ f(X) 7 〈 , 〉−−→ ε(Dnf(X)),

R[D]⊗
R

Γ̂R(X) −→ R;

Dn ⊗ f(X) 7 〈 , 〉−−→ ε(Dnf(X)).

Then

〈Dn, γk(X)〉 =

{
1 if n = k,

0 otherwise.

We generalize this as follows. Let h(X) ∈ Γ̂R(X) be a fixed element for which
〈
D0, h(X)

〉
= 0

and 〈D, h(X)〉 = 1; hence the element h′(X) = Dh(X) is invertible. We define the operator Dh

by
Dhf(X) = h′(X)−1Df(X).

We can extend this to an action of the polynomial ring R[Dh] on Γ̂R(X) as before, but this time
the Liebnitz formula does not apply.

3. Ordinary differential equations and linear recurrence relations

Now observe that there is a one to one correspondence between sequences (an)06n in R and
elements of Γ̂R(X), namely

(an)06n ←→
∑

06n

anγn(X).

This is multiplicative if we agree to define multiplication of sequences by the rule

(am)06m ∗ (bn)06n =


 ∑

06k6n

(
n

k

)
akbn−k




06n

rather than by the usual Cauchy product formula.
Now observe that the action of the operator D on Γ̂R(X) is transported into the shift operator

S: (an)06n 7−→ (an+1)06n.

Notice that kerD and ker S have rank 1 as R-modules, and are generated by the series γ0(X) = 1
and the sequence (δn,0)06n where δr,s is the Kronecker delta function.

Let us consider the parallel questions of the solution of the ordinary differential equation
 ∑

06k6d

cd−kDk


 f(X) = 0(ODE)

and the recurrence relation
∑

06k6d

cd−kan+k = 0.(LRR)

Here we set f(X) =
∑

06n anγn(X), ck ∈ R, and we also assume that c0 = 1.

Assumption: R is an integral domain.

We will sketch the solution of (ODE), from which the solution of (LRR) follows.
Let K be the field of fractions of R, Kalg be its algebraic closure and S denote the ring of

integers in Kalg with respect to R. We may factorize the polynomial
∑

06k6d cd−kT
k over the

ring S, and hence write ∑

06k6d

cd−kT
k =

∏
s

(T − λs)m(s),
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where the λs are the distinct roots and m(s) > 0 are their multiplicities. It suffices to deal with
the case where there is a single root having multiplicity m, since it easily verified that

ker(D− λs)m(s) ∩ ker(D− λs′)m(s′) = {0}
if s 6= s′. Thus we need to solve the equation

(ODE1) (D− λ)mf(X) = 0.

Observe that the series ∑

06n

λnγn(X) ∈ Γ̂R(X),

which we define to be eλX , satisfies

eλXD
(
e−λXg(X)

)
= (D− λ)g(X),

and so to solve (ODE1), we are reduced to solving Dnf(X) = 0. This is easily seen to have as
its solutions all elements in Γ̂R(X) of the form

b0 + b1γ1 + · · ·+ bn−1γn−1 for bk ∈ R,

and hence the solutions of (ODE1) are all elements of the form

(b0 + b1γ1 + · · ·+ bn−1γn−1) eλX =
∑

06k


 ∑

06r6k

(
k

r

)
bk−rλ

r


 γk.

Of course, this is exactly what the classical theory of ODE’s gives! The general solution for
(ODE) is now

∑
s

(
bs,0 + bs,1γ1 + · · ·+ bs,m(s)−1γm(s)−1

)
eλsX

=
∑

s

∑

06k


 ∑

06r6min{k,m(s)}

(
k

r

)
bs,k−rλ

r
s


 γk.

Returning to sequences, we obtain as the general solution of (LRR),

an =
∑∑

s, 06r6min{n,m(s)}

(
n

r

)
bs,n−rλ

r
s.

If R is an algebra over the rational numbers Q, the binomial coefficients
(
n
r

)
are polynomial

functions of n. However, over a general ring R, these are not ‘polynomial’ functions because of
the denominator in (

n

r

)
=

n(n− 1) · · · (n− r + 1)
r!

.

However, our method applies to give the general solution regardless of the ring.

4. More general differential equations and the associated recurrence
relations

We now consider the more general ‘twisted’ differential operator Dh defined in Section 2,
where we assume that h(X) = X + · · · . We need to find a good description for the ‘iterated
anti-derivative’ (with respect to Dh) of a constant.

Proposition 4.1. Let h(X) =
∑

k>1 akγn(X) ∈ Γ̂R(X) with a1 = 1. Then there is a element
gn(X) =

∑
k>n bkγk(X) ∈ Γ̂R(X) with the property that

h(X)n = n!gn(X).

Moreover, we can assume that Dn
hgn(X) = 1.
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We denote the unique element gn(X) ∈ Γ̂R(X) for which Dn
hgn(X) = 1 by γn(h(X)). If R

has no Z torsion then of course

gn(X) =
h(X)n

n!
.

To prove this Proposition, we follow a route suggested by R. Steiner. We use a sequence of
lemmas.

Lemma 4.2. For natural numbers m,n > 0, the product

(mn)!
n!(m!)n

is an integer.

Proof. This is the number of partitions of a set of mn distinct objects into n pairwise disjoint
subsets, each having m distinct elements, where we disregard the order of the subsets. Indeed,
the denominator is the order of the wreath product subgroup

Σn o Σm = Σn n (Σm)n ⊆ Σmn,

which is the stabilizer of such a partition. ¤

Lemma 4.3. In the ring ΓQ(X) we have the identity

γn(γm(X)) =
(mn)!

n!(m!)n
γmn(X)

and hence the left hand side is an element of the subring ΓZ(X) ⊆ ΓQ(X).

Proof. An easy calculation shows that

γn(γm(X)) =
γm(X)n

n!
is equal to the right hand side, and from Lemma 4.2 we deduce the second statement. ¤

Corollary 4.4. For any commutative ring with unity R, we can make the definition

γn(γm(X)) =
(mn)!

n!(m!)n
γmn(X) ∈ ΓR(X)

for all m,n > 0. More generally, if α ∈ ΓR(X) has zero augmentation (i.e., ε(α) = 0 then we
can define

γn(α) =
∑

k>1

∑
∑

16j6d rj=n

06rj

ar1
1 · · · ard

d γr1(γ1(X)) · · · γrd
(γd(X))

where α =
∑

16k6d akγk(X) with ak ∈ R.

Proof. We make use of Equation 1.4 to repeatedly expand linear combinations with aid of the
formula

γm(β + γ) =
∑

06k6m

γk(β)⊗ γm−k(γ)

and Induction on d, to establish the result. ¤

Corollary 4.5. For h(X) ∈ Γ̂R(X) with ε(h(X)) = 0, we can extend the definition of the
operation γn( ) on ΓR(X) of Corollary 4.4 to Γ̂R(X) by setting

γn(h(X)) = lim
d→∞

γn(hd(X)),

where h(X) =
∑

16k akγk(X) and hd(X) =
∑

16k6d akγk(X).
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The limit in this definition is taken with respect to the standard notion of convergence in the
inverse limit defining Γ̂R(X) in Section 1. This means that for natural numbers r, s we have

γn(hr(X))− γn(hs(X)) ∈ Γtr,s

R (X)

where tr,s →∞ as r, s →∞.
We can now consider differential equations defined using Dh in place of D. This time we find

that the general solution of
Dn

hf(x) = 0

is the set of elements of Γ̂R(X) having the form

b0 + b1γ1(h(X)) + · · ·+ bn−1γn−1(h(X)) for bk ∈ R.

Moreover, the general solution of (D− λ)f(X) = 0 is

f(X) = eλh(X).

Thus the general solution of

(Dh − λ)nf(X) = 0(4.1)

has to be of the form

(b0 + b1γ1(h(X)) + · · ·+ bn−1γn−1(h(X))) eλh(X).

More generally still, for a polynomial
∑

06r6d cd−rT
r ∈ R[T ] with c0 = 1, we have the equation

∑

06r6d

cd−rDr
hf(X) = 0.(4.2)

If R is an integral domain, then we may factorize this polynomial in some extension ring as in
Section 3, ∑

06r6d

cd−rT
r =

∏
s

(T − λs)m(s).

The general solution of (4.2) is thus
∑

s

(
bs,0 + bs,1γ1(h(X)) + · · ·+ bs,m(s)−1γm(s)−1(h(X))

)
eλsh(X).

Reading off the coefficients an of the γn(X) we obtain a sequence satisfying a non-linear re-
currence relation obtained from the coefficients of (4.2) where f(X) =

∑
n>0 anγn(X); however,

the length of this recurrence may grow with n, as well as be non-linear.
We illustrate this with an example, where the recurrence relation is non-linear but is of

constant length. Consider ln(1 + X) ∈ Q[[X]]. Then

ln(1 + X) =
∑

n>1

(−1)n−1(n− 1)!γn(X) ∈ Γ̂Z(X).

Thus we have the series

h(X) =
∑

n>1

(−1)n−1(n− 1)!γn(X) ∈ Γ̂R(X)

for any ring R. Hence h′(X) = (1 + X)−1 and so

Dh = (1 + X)
d

dX
.

The equation
(Dh − λ)f(X) = 0

corresponds to the non-linear recurrence relation

an+1 + nan = λan.

The general solution of this DE is

f(X) = b
∑

n>0

λ(λ− 1) · · · (λ− n + 1)γn(X)
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which we symbolically write as (1 + X)λ. The recurrence relation has general solution

an = λ(λ− 1) · · · (λ− n + 1).

More generally, the equation
(Dh − λ)nf(X) = 0

has solutions of the form

(b0 + b1γ1(h(X)) + · · ·+ bn−1γn−1(h(X))) (1 + X)λ.

Now in fact it is known that over Q,

ln(1 + X)m =
∑

k>m

m!s(k, m)Xk

k!

where s(i, j) ∈ Z denotes a Stirling number of the first kind (see e.g., [2]). Hence, over any ring
R we have

γm(ln(1 + X)) =
∑

k>m

s(k, m)γk(X),

and so we can read off the general solution of the recurrence relation as in Section 1.

5. Application to formal groups

Let R be a commutative ring with unity. The recall that a commutative one dimensional
formal group law over R is a power series F (X, Y ) ∈ R[[X, Y ]] satisfying the identities

F (X, Y ) = X + Y + XY G(X, Y ) for some G(X, Y ) ∈ R[[X, Y ]];

F (X,F (Y, Z)) = F (F (X, Y ), Z);

F (X, 0) =0 = F (0, X);

F (X, Y ) = F (Y,X).

There is a unique series

[−1]F (X) = −X + X2H(X) for some H(X) ∈ R[[X]]

which is characterized by the identities

F (X, [−1]F (X)) = 0 = F ([−1]F (X), X).

Important examples are provided by
• The additive formal group law: ĜA(X, Y ) = X + Y for any ring R.
• The multiplicative formal group law: ĜM(X, Y ) = X + Y + XY for any ring R.
• The Euler formal group law: for any ring R containing an inverse for 2,

FEuler(X, Y ) =
X
√

1− Y 4 + Y
√

1−X4

(1 + X2Y 2)
.

The latter example is the addition law associated to the elliptic integral
∫ X

0

dz√
1− z4

.

Now if R has no Z-torsion, then we can embed R into its rationalisation R ⊗ Q. Then for
any formal group law over such a ring there is a unique power series

logF (X) = X + · · · ∈ R⊗Q[[X]]

such that
logF (F (X, Y )) = logF (X) + logF (Y ).

This series is called the logarithm of F , and its composition inverse expF (X) is called the
exponential of F . For example,

logĜM(X) = ln(1 + X) and expĜM(X) = eX − 1
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for the multiplicative formal group law, and

logFEuler
(X) =

∫ X

0

dz√
1− z4

for the Euler formal group law.
Now in such cases where R is torsion free, it is well known that

logF (X), expF (X) ∈ Γ̂R(X),

as can be seen in these examples. The reason is that there is an identity

logF (X) =
∫ X

0

dz

F2(z, 0)
,

where F2(X,Y ) = ∂F (X, Y )/∂Y (see [1]).
In general there is no notion of logarithm for an arbitrary formal group law in the sense of

a power series which linearizes F . However, there is always an element of Γ̂R(X) which does
this. To see this we note that the power series F2(X, 0) can be interpreted as an element of
Γ̂R(X) if we replace each power Xn by the expression n!γX . But then we can uniquely integrate
F2(X, 0)−1 to an element of Γ̂R(X) with leading term γ1(X). The composition inverse of this
series is easily seen to exist as an element of Γ̂R(X). It is trivial to verify that this does produce
a logarithm. This argument could also be carried out for the universal ring of Lazard, which is
known to be torsion free (see [1]), and the result mapped into the general case. We will continue
to denote the logarithm and exponential of F by logF (X) and expF (X) as elements of Γ̂R(X).

Now suppose that we have fixed upon a formal group law over a ring R, and take h(X) =
logF (X). Then the operator Dh of Section 2 is translation invariant with respect to F , in the
sense that

[Dhf(X)]X=F (Y,Z) = [Dhf(F (X,Z))]X=Y .

This follows from the connection between logF (X) and F2(X, 0) described above. More gen-
erally, the polynomial ring R[Dh] is the ring of all translation invariant operators on Γ̂R(X)
with respect to F . In [1], the notion of covariant bialgebra of F is encountered; there is a Hopf
algebra homomorphism from R[Dh] into the latter which is an embedding if R is torsion free.
Thus our earlier discussion reduces in this situation to the study of the solutions of differential
equations of the form

Φf(X) = 0,

where Φ ∈ R[Dh] is an arbitrary translation variant operator with respect to F on Γ̂R(X).
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