
ON THE HOMOLOGY OF REGULAR QUOTIENTS

ANDREW BAKER

Abstract. We construct a free resolution of R/Is over R where I / R is generated by a (finite
or infinite) regular sequence. This generalizes the Koszul complex for the case s = 1. For s > 1,
we easily deduce that the algebra structure of TorR

∗ (R/I, R/Is) is trivial and the reduction map
R/Is −→ R/Is−1 induces the trivial map of algebras.

Introduction

Let R be a commutative unital ring. We will say that an ideal I /R is regular if it is generated
by a regular sequence u1, u2, . . . which may be finite or infinite. We will call the quotient ring
R/I a regular quotient of R. All tensor products and homomorphisms will be taken over R
unless otherwise indicated.

It is well known, see [8] for example, that there is a Koszul resolution

K∗ −→ R/I → 0,

where

K∗ = ΛR(ei : i > 1)

is a differential graded algebra with ei in degree 1 and differential given by d ei = ui. The
following result is standard, see for example [4, 8].

Proposition 0.1. If I/R is regular, then K∗ provides a free resolution of R/I over R. Moreover,
(K∗, d) is a differential graded R-algebra.

Corollary 0.2. As R/I-algebras,

TorR
∗ (R/I, R/I) = ΛR/I(ei : i > 1).

We will generalize this by defining a family of free resolutions

K(R; Is)∗ −→ R/Is → 0 (s > 1),

which are well related and allow efficient calculation of the R/I-algebra TorR
∗ (R/I, R/Is).

The resolution we construct may well be known, however lacking a convenient reference we
give the details. Our immediate motivation lies in topological calculations that are part of joint
work with A. Jeanneret and A. Lazarev [1, 2], but we believe this algebraic construction may be
of wider interest. Our approach to this construction was suggested by derived category ideas and
in particular the construction of Cartan-Eilenberg resolutions [3, 8]. Tate’s method of killing
homology classes [7] seems to be related, as does Smith’s work on homological algebra [5], but
neither appears to give our result explicitly.
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Notation. Our indexing conventions are predominantly homological (i.e., lower index) as op-
posed to cohomological, since that is appropriate for the topological applications we have in
mind. Consequently, complexes have differentials which decrease degrees.

For a complex (C∗, d), we define its k-fold suspension (C[−k]∗, d[−k]) by

C[−k]n = Cn−k, d[−k] = (−1)kd : Cn−k −→ Cn−k−1.

For an R-module M , we sometimes view M as the complex with

Mn =







M if n = 0,

0 if n 6= 0.

1. A resolution for R/Is

In this section we describe an explicit R-free resolution for R/Is which allows homological
calculations. We begin with a standard result; actually the cited proof applies when I is finitely
generated, but the adaption to the general case is straightforward. We will always interpret
I0/I as R/I.

Lemma 1.1 ([4], Theorem 16.2). For s > 0, Is/Is+1 is a free R/I-module with a basis consisting
of the residue classes of the distinct monomials of degree s in the ui.

Corollary 1.2. For s > 0, there is a free resolution of Is/Is+1 over R of the form

Q(s)
∗ = K∗ ⊗U(s) −→ Is/Is+1 → 0,

where U(s) is a free R-module on a basis indexed by the distinct monomials of degree s in the
generators ui.

For a sequence i = (i1, . . . , is) and its associated monomial ui = ui1 · · ·uis , we will denote the
corresponding basis element 1⊗ ui1 · · ·uis of K∗ ⊗U(s) by ũi and more generally x⊗ ũi by xũi.
We will also denote the differential on Q(s)

∗ by d(s)
Q , noting that

(1.1) d(s)
Q xũi = (d x)ũi.

For s > 0, there is also a map

∂(s+1) : Q(s)
∗ −→ Q(s+1)

∗ ; ∂(s+1)
∑

i

yiũi =
∑

i

(d yi)ũi,

where we interpret the products for y(i1,...,is) ∈ K∗ according to the formula

(d y(i1,...,is))ũ(i1,...,is) =
∑

j

y(i1,...,is),j ũ(i1,...,is,j)

with

d y(i1,...,is) =
∑

(i1,...,is),j

y(i1,...,is),j ũj .

For s > 1, define

K(R; Is)∗ = Q(0)
∗ ⊕Q(1)

∗ ⊕ · · · ⊕Q(s−1)
∗ ,

with the differential d(s) given by

(1.2) d(s)(x0, x1, . . . , xs−1) = (x′0, x
′
1, . . . , x

′
s−1),
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where

x′k =







d(0)
Q x0 if k = 0,

∂(k)xk−1 + d(k)
Q xk otherwise.

We need to show that (d(s))2 = 0. This follows from the following easily verified identities which
hold for all r > 0:

d(r+1)
Q ∂(r+1) + ∂(r+1) d(r)

Q = 0,(1.3)

∂(r+1)∂(r) = 0.(1.4)

Then
(d(s))2(x0, x1, . . . , xs−1) = (x′′0, x

′′
1, . . . , x

′′
s−1),

where

x′′0 = (d(0))2x0 = 0,

x′′1 = ∂(1) d(0)
Q x0 + d(1) ∂(1)x0 + (d(1))2x1 = 0,

while for 2 6 k 6 s− 1,

x′′k = ∂(k)∂(k−1)xk−2 + ∂(k) d(k−1)
Q xk−1 + d(k)

Q ∂(k)xk−1 + (d(k)
Q )2xk) = 0.

There is an augmentation map

ε(s) : K(R; Is)0 −→ R/Is,

namely the R-module homomorphism

ε(s)



a0,
∑

(i1)

a(i1)ũ(i1),
∑

(i1,i2)

a(i1,i2)ũ(i1,i2), . . . ,
∑

(i1,i2,...,is−1)

a(i1,i2,...,is−1)ũ(i1,i2,...,is−1)





= a0 +
∑

(i1)

a(i1)u(i1) +
∑

(i1,i2)

a(i1,i2)u(i1,i2) + · · ·+
∑

(i1,i2,...,is−1)

a(i1,i2,...,is−1)u(i1,i2,...,is−1),

in which the sum
∑

(i1,i2,...,ik)

is taken over all the distinct monomials u(i1,i2,...,ik) = ui1 · · ·uik of

degree k and a(i1,i2,...,ik) ∈ R. Then ε(s) is surjective and in K(R; Is)0 we have

imd(s) ⊆ ker ε(s).

On the other hand, suppose that

a = (a0, ã1, . . . , ãs−1) ∈ ker ε(s),

where
ãk =

∑

(i1,...,ik)

a(i1,...,ik)ũ(i1,...,ik).

Then writing
ak =

∑

(i1,...,ik)

a(i1,...,ik)u(i1,...,ik),

we find
a0 + a1 + · · ·+ as−1 ∈ Is,

so a0 ∈ I. This means that

a ≡ (0,˜b1, ã2 . . . , ãs−1) mod im d(s) .
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Repeating this argument modulo higher powers of I, we find that

a ≡ (0, 0, . . . , 0,˜bs−1) mod imd(s),

where

˜bs−1 =
∑

(i1,...,is−1)

a(i1,...,is−1)ũ(i1,...,is−1)

and

bs−1 =
∑

(i1,...,is−1)

a(i1,...,is−1)u(i1,...,is−1) ∈ Is.

But taking

c =
∑

(i1,...,is−1)

a(i1,...,is−1)τis−1 ũ(i1,...,is−2),

we find

d(s)(0, . . . , 0, c) = (0, 0, . . . , 0,˜bs−1).

Hence a ∈ imd(s). This shows that

ker ε(s) = imd(s) .

Suppose that n > 1 and

x = (x0, x1, . . . , xs−1) ∈ K(R; Is)n

satisfies d(s) x = 0. Then x′0 = 0 and so by exactness of Q(0)
∗ ,

x0 = d(0)
Q y0

for some y0 ∈ Q(0)
n+1. Then

0 = x′1 = ∂(1) d(0)
Q y0 + d(1)

Q x1

= d(1)
Q (−∂(1)y0 + x1),

hence by exactness of Q(1)
∗ ,

x1 = d(1)
Q y1 + ∂(1)y0

for some y1 ∈ Q(1)
n+1. Continuing in this way, eventually we obtain an element

(y0, y1, . . . , ys−1) ∈ K(R; Is)n+1

for which

xk = d(k)
Q yk + ∂(k)yk−1 (1 6 k 6 s− 1).

Theorem 1.3. For s > 1,

K(R; Is)∗
ε(s)

−−→ R/Is → 0

is a resolution by free R-modules.

The complex (K(R; Is)∗,d(s)) has a multiplicative structure coming from the pairings

Q(p)
∗ ⊗Q(q)

∗ −→ Q(p+q)
∗ ; (xũ(i1,...,ip))⊗ (yũ(j1,...,jq)) 7−→ (xy)ũ(i1,...,ip,j1,...,jq).

Theorem 1.4. For s > 1, the complex (K(R; Is)∗, d(s)) is a differential graded R-algebra,
providing a multiplicative resolution free resolution of R/Is over R.
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Corollary 1.5. As an R/I-algebra,

TorR
∗ (R/I, R/Is) = H∗(R/I ⊗K(R; Is)∗, 1⊗ d(s)).

Notice that in the differential graded R/I-algebra (R/I ⊗K(R; Is)∗, 1⊗ d(s)) we have

(1.5) 1⊗ d(s)(t⊗ (x0, x1, . . . , xs−1)) = t⊗ (0, ∂(1)x0, ∂(2)x1, . . . , ∂(s−2)xs−2).

We will exploit this in the next section.

2. A spectral sequence

In order to compute TorR
∗ (R/I, R/Is) explicitly we will set up a double complex and consider

one of the two associated spectral sequences [8]. We begin by defining the double complex
(P∗,∗,dh,dv) with

Pp,q = Q(p)[−p]q+p(= Q(p)
q as R-modules),

dh = (−1)p∂(p+1)[−p] = ∂(p+1),

dv = (−1)p d(p)
Q [−p] = d(p)

Q .

Considered as a homomorphism

dv dh +dh dv : Pp,q −→ Pp+1,q+1,

we have from Equation (1.3),

dv dh +dh dv = d(p+1)
Q ∂(p+1) + ∂(p+1) d(p)

Q = 0.

As the associated (direct sum) total complex (Tot⊕ P∗,dTot) we obtain

Tot⊕ Pn =
⊕

k

Pk,n−k, dTot = dh +dv .

Notice that

Tot⊕ Pn = K(R; Is)n, dTot = d(s)

Hence

H∗(Tot⊕ P∗, dTot) = R/Is.

Applying the functor R/I ⊗ ( ) we obtain another double complex (P∗,∗, dh,dv) where

Pp,q = R/I ⊗ Pp,q.

The associated total complex (Tot⊕ P∗,dTot) has

Tot⊕ Pn = R/I ⊗K(R; Is)n, dTot = 1⊗ d(s)

and homology

H∗(Tot⊕ P∗, dTot) = TorR
∗ (R/I, R/Is).

Filtering by columns we obtain a spectral sequence with

(2.1) E2
p,q = Hp(Hq(P∗,∗,dv), dh) =⇒ TorR

p+q(R/I, R/Is).

Here

H∗(Pp,∗, dv) = H∗(R/I ⊗Q(p)
∗ , 1⊗ d(p)

Q ) = TorR
∗ (R/I, Ip/Ip+1)
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and H∗(Hq(P∗,∗, dv),dh) is the homology of the complex

0 → TorR
q (R/I,R/I)

∂(1)
∗−−→ TorR

q (R/I, I/I2) −→

· · · −→ TorR
q (R/I, I2/I3)

∂(s−1)
∗−−−−→ TorR

q (R/I, Is−1/Is) → 0.

Lemma 2.1. For s > 2, the complex of graded R/I-modules

0 → TorR
∗ (R/I, R/I)

∂(1)
∗−−→ TorR

∗ (R/I, I/I2) −→

· · · −→ TorR
∗ (R/I, I2/I3)

∂(s−1)
∗−−−−→ TorR

∗ (R/I, Is−1/Is) → 0

is exact, hence the spectral sequence of (2.1) collapses at E2 to give

TorR
n (R/I, R/Is) =







R/I if n = 0,

coker ∂(s−1)
∗ : TorR

n (R/I, Is−2/Is−1) −→ TorR
n (R/I, Is−1/Is) if n 6= 0.

With its natural R/I-algebra structure, TorR
∗ (R/I, R/Is) has trivial products.

Proof. Our proof uses the observation that this complex is equivalent to part of the Koszul
complex ΛR/I[eui:i](ẽi : i) which provides a free resolution of R/I = R/I[ũi : i]/(ũi : i) as an
R/I[ũi : i]-module. Up to a sign, the differential ˜d agrees with that of the complex in Lemma 2.1.
The result follows by exactness of the Koszul complex since the generators ũ1, ũ2, . . . form a
regular sequence in R/I[ũi : i]. We now proceed to give the details.

For a commutative unital ring k, make Λ|[eui:i](ẽi : i) a bigraded k-algebra for which

bideg ẽi = (1, 0), bideg ũi = (1,−1).

For each grading p > 0 of Λ|[eui:i](ẽi : i),

Λ|[eui:i](ẽi : i)p =
⊕

q>0

Λ|[eui:i](ẽi : i)p+q,−q

and the differential

dp : Λ|[eui:i](ẽi : i)p −→ Λ|[eui:i](ẽi : i)p+1

decomposes as a sum of components

dp+q,−q : Λ|[eui:i](ẽi : i)p+q,−q −→ Λ|[eui:i](ẽi : i)p+q,−q−1,

since

dp(ẽi1 · · · ẽip ũj1 · · · ũjq) =
p

∑

k=1

(−1)k−1ẽi1 · · · ẽik−1 ẽik+1 · · · ẽip ũik ũj1 · · · ũjq .

Exactness of d on Λ|[eui:i](ẽi : i) is equivalent to the fact that for all pairs p, q,

ker dp+q,−q = imker dp+q,−q+1 .

Hence for all q we have
⊕

p>0

ker dp+q,−q =
⊕

p>0

imdp+q,−q+1,

which is equivalent to the exactness of

Λ|[eui:i](ẽi : i)⊗
|
k[ũi : i]q−1

d−→ Λ|[eui:i](ẽi : i)⊗
|
k[ũi : i]q

d−→ Λ|[eui:i](ẽi : i)⊗
|
k[ũi : i]q+1,

where k[ũi : i]n ⊆ k[ũi : i] denotes the homogeneous polynomials of degree n.
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The statement about products is now immediate since the spectral sequence is clearly multi-
plicative. Actually the full force of this is not really needed since

TorR
∗ (R/I, R/Is) ∼= R/I ⊕ coker ∂(s−1)

∗

and products of elements in the bottom filtration coker ∂(s−1)
∗ are zero in E∞ = E2. �

We can strengthen our hold on TorR
∗ (R/I,R/Is) using the ideas in the last proof.

Proposition 2.2. For s > 1, TorR
∗ (R/I, R/Is) is a free R/I-module.

Proof. The case s = 1 is of course a consequence of Corollary 0.2.
Using the notation of the proof of Lemma 2.1, notice that in terms of the k-basis of elements

ẽi1 · · · ẽip ũj1 · · · ũjq , each dp+q,−q is actually given by a Z-linear combination. Therefore we can
reduce to the case where k = Z, and then tensor up over Z with an arbitrary k.

For each pair p, q > 0, ΛZ[eui:i](ẽi : i)p+q,−q breaks up into a direct sum of Z-submodules
Mp+q,−q(S) where S is a set of exactly p + q elements of the indexing set for the ui’s and
Mp+q,−q(S) is spanned by the finitely many elements ẽi1 · · · ẽip ũj1 · · · ũjq with

S = {i1, . . . , ip, j1, . . . jq}, i1 < i2 < · · · < ip.

Notice that on restriction we have

dp+q,−q
M(S) = dp+q,−q : Mp+q,−q(S) −→ Mp+q,−q−1(S).

By exactness, imdp+q,−q+1
M(S) = ker dp+q,−q

M(S) . Since Mp+q,−q(S) is a finitely generated free module,

ker dp+q,−q
M(S) is indivisible in Mp+q,−q(S) and so is a summand. Hence im dp+q,−q+1

M(S) is always a
summand of Mp+q,−q(S). Taking the sum over all S and then over all p we find that for each q,

imd: ΛZ[eui:i](ẽi : i)⊗
Z
Z[ũi : i]q−1 −→ ΛZ[eui:i](ẽi : i)⊗

Z
Z[ũi : i]q

is a summand in

ΛZ[eui:i](ẽi : i)⊗
Z
Z[ũi : i]q.

�

3. Appendix: Resolutions of extensions

In this Appendix we recall some standard facts about extensions of R-modules, see [8], and
also give an interpretation in terms of the derived category of complexes of R-modules. Our aim
is to put the construction of the complex (K(R; Is)∗,d(s)) into a broader context for the benefit
of those unfamiliar with such ideas. In fact, we found this complex by iterating the splicing
construction for the resolution of an extension given below; in our case this works well to give
a very concrete and manageable resolution.

Suppose that

(3.1) E : 0 → L −→ M −→ N → 0

is a short exact sequence of R-modules and

P∗
ε−→ N → 0
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is a projective resolution of N . Then there are homomorphisms ε0 : P0 −→ M and ε1 : P1 −→ L
which fit into a commutative diagram

(3.2)

0 ←−−−− N ←−−−− P0 ←−−−− P1 ←−−−− P2 ←−−−− · · ·
∥

∥

∥
ε0





y
ε1





y

0 ←−−−− N ←−−−− M ←−−−− L ←−−−− 0

Then ε1 is a cocycle in HomR(P1, L) which represents an element Θ(E) ∈ Ext1R(N, L) classifying
the extension E.

Now let Q∗
η−→ L → 0 be a projective resolution of L with differential dQ and Q[−1]∗ its

suspension. Then the differential dQ[−1] in Q[−1]∗ is given by

dQ[−1]x = −dQx.

It is well known that in the derived category D[(R) of bounded below complexes of R-modules,

(3.3) Ext1R(N, L) ∼= HomD[(R)(P∗, Q[−1]∗).

Given the diagram (3.2), there is an extension to a diagram

(3.4)

0 ←−−−− N ←−−−− P0 ←−−−− P1 ←−−−− P2 ←−−−− P3 ←−−−− · · ·
∥

∥

∥
ε0





y
ε′1





y
ε′2





y
ε′3





y

0 ←−−−− N ←−−−− M ←−−−− Q0 ←−−−− Q1 ←−−−− Q2 ←−−−− · · ·
and hence the element

0 ←−−−− P0 ←−−−− P1 ←−−−− P2 ←−−−− P3 ←−−−− · · ·
∥

∥

∥ 0





y
ε′1





y
ε′2





y
ε′3





y

0 ←−−−− 0 ←−−−− Q0 ←−−−− Q1 ←−−−− Q2 ←−−−− · · ·

which represents an element of HomD[(R)(P∗, Q[−1]∗). Conversely, a diagram with exact rows
such as (3.4) clearly gives rise to an extension of the form (3.2). Perhaps a more illuminating
way to view this morphism in D[(R) is in terms of the diagram

0 ←−−−− P0 ←−−−− P1 ←−−−− P2 ←−−−− P3 ←−−−− · · ·
∥

∥

∥ 0





y
ε1





y





y





y

0 ←−−−− 0 ←−−−− L[−1] ←−−−− 0 ←−−−− 0 ←−−−− · · ·
∥

∥

∥

x




ε
x





x





x





0 ←−−−− 0 ←−−−− Q[−1]0 ←−−−− Q[−1]1 ←−−−− Q[−1]2 ←−−−− · · ·

where the augmentation ε : Q[−1]∗ −→ L[−1] is a homology equivalence, hence an isomorphism
in D[(R), so the composite

P∗
ε1−→ L ε−1

−−→ Q∗

gives an element of HomD[(R)(P∗, Q[−1]∗). Of course all of these classes agree with Θ(E).
Notice that Θ(E) is determined by the homomorphism ε1 : P1 −→ Q[−1]1 = Q0 lifting the map
P1 −→ L.

We also recall a well known related result, see [8].

Proposition 3.1. For a ring R, let

0 ← A ←− B ←− C ← 0
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be short exact and P∗ −→ A → 0 and Q∗ −→ C → 0 projective resolutions. Then there is a
projective resolution of the form (P ⊕Q)∗ −→ B → 0 and a commutative diagram

0 ←−−−− P∗ ←−−−− (P ⊕Q)∗ ←−−−− Q∗ ←−−−− 0




y





y





y

0 ←−−−− A ←−−−− B ←−−−− C ←−−−− 0
Proof. The extension is classified by an element of HomD[(R)(P∗, Q[−1]∗) corresponding to a
chain map ∂∗ : P∗ −→ Q[−1]∗. Viewed as a sequence of maps ∂n : Pn −→ Q[−1]n−1, ∂∗ must
satisfy

(3.5) dQ ∂n + ∂n−1 dP = 0 (n > 1).

The formula
d(x, y) = (dx, ∂nx + dQ y) (x ∈ Pn, y ∈ Qn)

defines the differential in (P ⊕Q)∗. �
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