ON THE HOMOLOGY OF REGULAR QUOTIENTS
ANDREW BAKER

ABSTRACT. We construct a free resolution of R/I° over R where I <R is generated by a (finite
or infinite) regular sequence. This generalizes the Koszul complex for the case s = 1. For s > 1,
we easily deduce that the algebra structure of Tor®(R/I, R/I®) is trivial and the reduction map
R/I®* — R/I°*"! induces the trivial map of algebras.

INTRODUCTION

Let R be a commutative unital ring. We will say that an ideal 1< R is regular if it is generated
by a regular sequence w1, us, ... which may be finite or infinite. We will call the quotient ring
R/I a regular quotient of R. All tensor products and homomorphisms will be taken over R
unless otherwise indicated.

It is well known, see [8] for example, that there is a Koszul resolution

K. — R/I — 0,

where

K* = AR(ei ) 2 1)
is a differential graded algebra with e; in degree 1 and differential given by de; = wu;. The
following result is standard, see for example [4, 8].

Proposition 0.1. If I<R is reqular, then K, provides a free resolution of R/1 over R. Moreover,
(K., d) is a differential graded R-algebra.

Corollary 0.2. As R/I-algebras,
Tor®(R/I,R/I) = Agyr(e; i > 1).
We will generalize this by defining a family of free resolutions
K(R;I°)s — R/I° -0 (s>1),

which are well related and allow efficient calculation of the R/I-algebra Tor®(R/I, R/I®).

The resolution we construct may well be known, however lacking a convenient reference we
give the details. Our immediate motivation lies in topological calculations that are part of joint
work with A. Jeanneret and A. Lazarev [1, 2|, but we believe this algebraic construction may be
of wider interest. Our approach to this construction was suggested by derived category ideas and
in particular the construction of Cartan-Eilenberg resolutions [3, 8]. Tate’s method of killing
homology classes [7] seems to be related, as does Smith’s work on homological algebra [5], but

neither appears to give our result explicitly.
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Notation. Our indexing conventions are predominantly homological (i.e., lower index) as op-
posed to cohomological, since that is appropriate for the topological applications we have in
mind. Consequently, complexes have differentials which decrease degrees.

For a complex (Cy,d), we define its k-fold suspension (C[—k|.,d[—k]) by

Cl—klp = Ch_p, d[—k] = (—=1)kd: Cr_ — Cp_p_1.
For an R-module M, we sometimes view M as the complex with

M ifn=0,
0 ifn#0.

M, =

1. A RESOLUTION FOR R/I®

In this section we describe an explicit R-free resolution for R/I® which allows homological
calculations. We begin with a standard result; actually the cited proof applies when [ is finitely
generated, but the adaption to the general case is straightforward. We will always interpret

I°/T as R/I.
Lemma 1.1 ([4], Theorem 16.2). Fors > 0, I°/I5"! is a free R/I-module with a basis consisting
of the residue classes of the distinct monomials of degree s in the u;.

Corollary 1.2. For s > 0, there is a free resolution of I°/I*T' over R of the form
Q£S) —K,® U(s) N IS/IS-‘rl -0,

where U) is a free R-module on a basis indexed by the distinct monomials of degree s in the

generators u;.

For a sequence i = (i1, ...,1s) and its associated monomial u; = wu;, - - - u;,, we will denote the
corresponding basis element 1 ® wu;, - - - u;, of Ky ® U®) by %; and more generally = ® ¥; by 27;.
We will also denote the differential on Qis) by d(Qs), noting that

(L.1) dg) 2 = (d2) .

For s > 0, there is also a map

o+, Q) . @t pls+) Zyiﬂi = Z(d Yi) Ui,

i

where we interpret the products for y(;, € K, according to the formula

cois)

(d y(il,...,is))ﬁ(il,...,is) = Zy(il,m’is)jj ﬂ(il,m’isd)
J
with
dy(il,...,is) = Z y(ilp.,,is),jﬂj.

For s > 1, define
KR, =QYeQ e oV,
with the differential d*) given by

(1.2) A9 (o, 21, ..., wsm1) = (2, 2], 2h ),
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where

dg o if k=0,

/
€T, =
g Oz | + dg) x otherwise.

We need to show that (d®))2 = 0. This follows from the following easily verified identities which
hold for all r > 0:

(1.3) dgH) 9(r+1) + 9(r+1) dg) ~0,
(1.4) a(r—l—l)a(r) —0.
Then

(d(S))Q(Jfo,mh o mey) = (a2l 2,
where

x5 = (d©)’zg =0,
2y = oW dg) 2o +dM oWy + (AW)2zy = 0,
while for 2 <k <s—1,
xyp = oMk o+ o) dgfl) Tgp—1+ dg;) 0"y, _y + (dg))%k) = 0.
There is an augmentation map
e K(R; I*)g — R/I°,

namely the R-module homomorphism

e® aOaZa(il)ﬂ(il)v Z a(il,z‘z)a(il,iz), cee Z a(z‘l,z‘g,...,is,l)a(il,z‘z,...,z‘s,l)
(i1) (41,32) (31,82,--y05—1)
= o + Z a(il)u(il) + Z a(ilaiQ)u(ilaiZ) +ooet Z a(il7i2,...,i571)u(i1,7:2,...7i571)7
(i1) (41,2) (91,82, esbs—1)

in which the sum Z is taken over all the distinct monomials w, 4, . i) = Ui * -, of
(i17i27-“7ik)

degree k and a i) € . Then (%) is surjective and in K(R;I%)q we have

11,82,

imd® C kere®),
On the other hand, suppose that
a—= ((10,51, . ,5571) S kers(s),

where
ak = Z i vegip) Ui i)
(31 yeerk)
Then writing
ak = Z i) Y(in,emnip)
(7;17"’7i]€)

we find
ag+ay+---+as_q €1°,

so ag € I. This means that

a= (0,51,52 ...,as—1) mod imd®
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Repeating this argument modulo higher powers of I, we find that

a= (0,0,...,0,5371) mod imd®),

where
bs—1 = Z a(i1,~~~,i571)ﬂ(i1,m,i571)
(7:1 7i8*1)
and
bs—1 = Z Aigyeis—1) Uit ,eis—1) € I”.
(il ----- isfl)
But taking
c= Z a(il,...,is,l)ﬂ‘s,lﬁ(il,...,z’s_zy
(ilr--aisfl)
we find

d®)(0,...,0,¢) = (0,0,...,0,bs_1).

Hence a € imd®). This shows that
kere(®) = imd®) .
Suppose that n > 1 and

x = (zo,21,...,25-1) € K(R; I?),

satisfies d®®) x = 0. Then zy = 0 and so by exactness of ng),
To = dg) Yo

for some gy € Q7(10+)1- Then

0

7y = oW dg) Yo + dg) T
(

= dy) (~0Wyo + 1),

hence by exactness of Qg),

)

T = dg 1+ 0Wyq

for some y; € QS_)H. Continuing in this way, eventually we obtain an element

(Y0, Y15+ Ys—1) € K(R; %)y
for which
T = dg) Yk + 8(k)yk_1 (I1<k<s—1).
Theorem 1.3. For s > 1,
K(R: I*). ~5 R/ — 0
is a resolution by free R-modules.

The complex (K(R; I5),,d®) has a multiplicative structure coming from the pairings

Q5<p) ® Qﬁq) — ngpﬂ); (TUG,,..ip)) © (YU, 50) = BV UGy i iteda)-

Theorem 1.4. For s > 1, the complex (K(R; IS)*,d(S)) is a differential graded R-algebra,
providing a multiplicative resolution free resolution of R/I° over R.
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Corollary 1.5. As an R/I-algebra,
Torf(R/I, R/I°) = Ho(R/T @ K(R; I®),,1® d®).
Notice that in the differential graded R/I-algebra (R/I @ K(R;I*),,1® d®)) we have
(1.5) 10d® (@ (zo,21,...,25.1)) =t 2 (0,0Wx0, 0Py, ..., 80 D, ,).

We will exploit this in the next section.

2. A SPECTRAL SEQUENCE

In order to compute Torf(R/I, R/I?) explicitly we will set up a double complex and consider
one of the two associated spectral sequences [8]. We begin by defining the double complex
(P.,d", d¥) with

P,q= Q(p)[—p]qﬂo(: Qgp) as R-modules),

dP = (=1)PoPH[—p] = 9P+,

d" = (~1)Pd@)[-p] = d .
Considered as a homomorphism

A"dh +d"dV: Py, — Pprigiis
we have from Equation (1.3),
dVd"+dhd" = agt ot 4 o+ g®) = o,

As the associated (direct sum) total complex (Tot® P,, d™") we obtain

Tot® Pp = P Prpg, d™ =d"+d".
k

Notice that
Tot® P, = K(R; I*),, d™ =d®
Hence
H, (Tot® P,,d™% = R/I*.
Applying the functor R/I @ (') we obtain another double complex (P, .,d", d¥) where
Pp,q =R/IQPy,.
The associated total complex (Tot® P,,d™") has
Tot® P, = R/I @ K(R; I?),, d™ =1%d®
and homology
H, (Tot® P, d™%) = Torf(R/I, R/ I?).
Filtering by columns we obtain a spectral sequence with

(2.1) E}, = Hy(Hy(P.,d"),d") = Torf

R (R/I,R/I%).

Here

H,(Pp,d*) = Hu(R/I © QP 1® dY)) = Torl(R/1, 17/ 17*1)
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and H,(H,(P. ., d"),d") is the homology of the complex

R ot R 2
0 — Tor(R/I,R/I) — Tor(R/I,1/17) —

(s=1)
. — TorB(R/T, 1%/ 1%) Z— Tor®(R/1, 17 /1) —

Lemma 2.1. For s > 2, the complex of graded R/I-modules

(1)
0 — Tor®(R/I, R/I) & TorB(R/I,1/1%) —

(s—1)
- — Tor®(R/I, 1%/ 1%) & TorB(R/I, I /T%) — 0
is exact, hence the spectral sequence of (2.1) collapses at E? to give

R/I if n =0,

Tor(R/I,R/I®) = (s-1) ) ) 1 :
coker 9,° " : Tor®(R/I,1°72/1°"') — Tor®(R/I,I°"1/I®) ifn #0.

With, its natural R/I-algebra structure, Torf(R/I, R/I®) has trivial products.

Proof. Our proof uses the observation that this complex is equivalent to part of the Koszul
complex Ag/riz,.i(€; ¢ i) which provides a free resolution of R/I = R/I[u; : i]/(u; : i) as an
R/I[u; : i]-module. Up to a sign, the differential d agrees with that of the complex in Lemma 2.1.
The result follows by exactness of the Koszul complex since the generators uy,us,... form a
regular sequence in R/I[u; : i]. We now proceed to give the details.

For a commutative unital ring k, make Ayg,.;)(€; : 7) a bigraded k-algebra for which

bidege; = (1,0), bidegu; = (1,—1).
For each grading p > 0 of Ay, Z}(el 21),
A]k[ : @ A]k [;:4] 67, : p+q,
q=>0
and the differential
dP: Aggz,q) (€ 8)P — Ay, (€0 )P
decomposes as a sum of components

qrta—a. t Ay, (G L q)proa — Ay, (€ 0 d jypre—al

since
P

AP (@, g, Ug,) = (1) iy B T Ty T
k=1
Exactness of d on Ayg,.;)(€; : i) is equivalent to the fact that for all pairs p, g,

ker dPT% 9 = im ker 4P 9T

Hence for all ¢ we have

y—q — 1 +q,— 1
@kerdp+q q_@lmdp =g+l

p=>0 p=0

which is equivalent to the exactness of
Agfai,a (€ i)%k[ﬂz‘ ig1 5 Mg (& : i)%k[ﬂi Hilg S A @ i)%k[ﬁi tilgy1,

where k[u; : i], C k[u; : i| denotes the homogeneous polynomials of degree n.
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The statement about products is now immediate since the spectral sequence is clearly multi-
plicative. Actually the full force of this is not really needed since

Tor®(R/I,R/I°) = R/I & coker g~

and products of elements in the bottom filtration coker 8,2871) are zero in E® = E2. U

We can strengthen our hold on Tor®(R/I, R/I®) using the ideas in the last proof.
Proposition 2.2. For s > 1, Tor®(R/I, R/I®) is a free R/I-module.

Proof. The case s =1 is of course a consequence of Corollary 0.2.

Using the notation of the proof of Lemma 2.1, notice that in terms of the k-basis of elements
€iy - €3, g, - - - Uj,, each dPT®4 is actually given by a Z-linear combination. Therefore we can
reduce to the case where k = Z, and then tensor up over Z with an arbitrary k.

For each pair p,q > 0, Az[a,-:i} (€; : i)PT9~% breaks up into a direct sum of Z-submodules
MPT4=9(S) where S is a set of exactly p + ¢ elements of the indexing set for the w;’s and
MP*T4=4(S) is spanned by the finitely many elements &, - - - € uj, - - - u;, with

S:{il,...,ip,jl,...jq}, il<i2<'-'<ip.
Notice that on restriction we have

dPtae=d — grta—a; ppta—a(g) — prre-aTl(g),

M(S)
By exactness, im dﬂ(’fg’)_qﬂ = ker dlj’\j[r('g)_q. Since MPT%749(S) is a finitely generated free module,
ker d’]"}r(‘fg’)_q is indivisible in MP*%~9(S) and so is a summand. Hence im dﬁ}r&l)_qﬂ is always a

summand of MPT%~9(S). Taking the sum over all S and then over all p we find that for each ¢,
imd: Az, (& : LG : dg-1 — Agja) (€ : DDLU = dg

is a summand in

Az, (€ : i)%Z[ﬂi i

3. APPENDIX: RESOLUTIONS OF EXTENSIONS

In this Appendix we recall some standard facts about extensions of R-modules, see [8], and
also give an interpretation in terms of the derived category of complexes of R-modules. Our aim
is to put the construction of the complex (K (R; I®),,d®) into a broader context for the benefit
of those unfamiliar with such ideas. In fact, we found this complex by iterating the splicing
construction for the resolution of an extension given below; in our case this works well to give
a very concrete and manageable resolution.

Suppose that

(3.1) & 0—-L—M-—N-—=0
is a short exact sequence of R-modules and

P. S N—0
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is a projective resolution of N. Then there are homomorphisms eg: Py — M and e;: P, — L
which fit into a commutative diagram

0 N Py Py P
(3.2) H Eol Ell
0 N M L 0

Then &7 is a cocycle in Hompg(P;, L) which represents an element ©(€) € Exth(N, L) classifying
the extension €.
Now let Q. 2L — 0 bea projective resolution of L with differential dg and Q[—1]. its
suspension. Then the differential dg[—1] in Q[—1], is given by
dg[—1]z = —dg=.

It is well known that in the derived category D"(R) of bounded below complexes of R-modules,

(3.3) Extp(N, L) & Homgy gy (Ps, Q[—1].).
Given the diagram (3.2), there is an extension to a diagram
0 N Py Py Py Py
o |l el ol e
0 N M Qo Q1 Q2
and hence the element
0 Py P Py P
T
0 0 Qo o) Q2

which represents an element of Home( R) (Px, Q[—1]«). Conversely, a diagram with exact rows
such as (3.4) clearly gives rise to an extension of the form (3.2). Perhaps a more illuminating
way to view this morphism in D°(R) is in terms of the diagram

0 Py P, —— P e—— P e ...
|l A | |
0 0 L[-1] e— 0 «—— 0 ..
I f | |
0 0 Q1o «—— Q[-1i +—— Q1] & -+

where the augmentation ¢: Q[—1]. — L[—1] is a homology equivalence, hence an isomorphism
in D°(R), so the composite

P, L 25,
gives an element of Homuqpy g (Ps, Q[—1]s). Of course all of these classes agree with ©(E).
Notice that ©(€) is determined by the homomorphism e1: P — Q[—1]1 = Qo lifting the map
P1 — L.

We also recall a well known related result, see [8].

Proposition 3.1. For a ring R, let

0+—A+«—B+«—C+0
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be short exact and P, — A — 0 and Q, — C — 0 projective resolutions. Then there is a
projective resolution of the form (P @® Q). — B — 0 and a commutative diagram

0 «—— P, —— (P®Q)« Q-+ 0
| | |
0 — A «——— B C 0

Proof. The extension is classified by an element of Homqy gy (P, @[—1]+) corresponding to a
chain map 0,: P, — Q[—1]+. Viewed as a sequence of maps 0,: P, — Q[—1],—1, 05 must
satisfy

(35) dQ Op+ Op_1dp =0 (n = 1).

The formula
d(z,y) = (dz, 0z +dqy) (€ Py, y € Qn)
defines the differential in (P @ Q). O
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