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Introduction

This paper is intended for two rather different audiences. First we aim to provide
algebraic topologists with a timely introduction to some of the algebraic ideas
associated with vertex operator algebras. Second we try to demonstrate to alge-
braists that many of the constructions involved in some of the most familiar vertex
operator algebras have topological (and indeed geometric) significance. We hope
that both of these mathematical groups will benefit from recognition of their links
in this area. Rather than simply attempting to survey the area, we have reworked
some aspects to emphasise integrality and other algebraic features that are less
well documented in the literature on vertex operator algebras, but probably well
understood by experts.

The notion of a vertex operator algebra is due to R. Borcherds and arose in the
algebraicization of structures first uncovered in the context of Conformal Field
Theory and representations of infinite dimensional Lie algebras and groups. A
spectacular example is provide by the Monster vertex operator algebra, V ] , whose
automorphism group is the Monster simple group M . As well as the book of
Frenkel, Lepowsky and Meurman [5], the paper of Dong [2] and the memoir of
Frenkel, Y.-Z. Huang, J. Lepowsky [4], provide algebraic details on vertex operator
algebras, and we take these as basic references.

The work of [6] already gives a hint that there is an ‘integral’ structure underly-
ing some of the algebraic aspects of Conformal Field Theory. In this paper we will
show that there are integral (at least after inverting 2) structures within some of
the most basic examples of vertex operator algebras associated to positive definite
even lattices. We will also interpret such algebras in terms of the (co)homology of
spaces related to the classifying space of K -theory. In future work we will further
clarify the topological connections by explaining their origins in the geometry of
certain free loop spaces as described in the work of Pressley and Segal [9],[8].

Although our topological interpretation of vertex operator algebras involves
homology, it could just as easily (and perhaps more naturally) be given in terms of
cohomology. We could even describe such structures in generalized (co)homology
theories, particularly complex oriented theories. There is some evidence that ver-
tex operators may usefully be viewed as giving rise to families of unstable op-
erations in such theories, perhaps leading to algebraic generalizations of vertex
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operator algebras appropriate to the study of some important examples, and we
intend to consider these issues in future work.

For the benefit of topologists we note that vertex operator algebras have ap-
peared in work of H. Tamanoi and others in connection with elliptic genera and
elliptic cohomology as well the study of loop spaces and particularly loop groups.
Indeed it is possible that a geometric model of elliptic cohomology will involve
vertex operator algebras and their modules.

My understanding of the material in this paper owes much to the encourage-
ment and advice of Jack Morava and Hirotaka Tamanoi, as well as the many
preprints supplied by Geoff Mason and Chongying Dong. I also wish to acknowl-
edge financial support from the EU, University of Glasgow, IHES, NSF, Ohio State
University and Osaka Prefecture. Finally I would like to thank Koichiro Harada
for organising the timely Ohio meeting for the Friends of the Monster.

§§§1 Vertex operator algebras and their modules

Let k be a field of characteristic 0. Let V = V• denote a Z -graded vector space
over k ; following [5], we denote the n th grading by V(n) and for v ∈ V(n) we
refer to n as the weight of v and write wt v = n . Whenever we refer to elements
of V , we always assume that they are homogeneous. Suppose that there is a
k -linear map

Y( , z): V −→ Endk(V)[[z, z−1]],

where for any abelian group M ,

M [[z, z−1]] =

{∑

n∈Z
mnzn : mn ∈ M

}
.

We write

Y(v, z) =
∑

n∈Z
vnz−n−1,

where vn ∈ Endk(V) , vnu = vn(u) and

Y(v, z)u =
∑

n∈Z
(vnu)z−n−1.

The pair (V, Y) gives rise to a vertex operator algebra if the following axioms are
satisfied.
VOA-1 For each n ∈ Z , dimk V(n) < ∞ .
VOA-2 For n ¿ 0 , dimk V(n) = 0 .
VOA-3 Given elements u, v ∈ V , unv = 0 for 0 ¿ n .
VOA-4 There are two distinguished elements 1, ω ∈ V and a rational number
rankV . We set ωn+1 = Ln .
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VOA-5 For any v ∈ V , we have the identities

Y(1, z) = IdV;
Y(v, z)1 ∈ V[[z]];
Y(v, 0)1 = lim

z−→0
Y(v, z)1 = v.

VOA-6 The following identity amongst operator valued Laurent series in the vari-
ables z0, z1, z2 holds:

z−1
0 δ

(
z1 − z2

z0

)
Y(u, z1)Y(v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
Y(v, z2)Y(u, z1)

= z−1
2 δ

(
z1 − z0

z2

)
Y(Y(u, z0)v, z2),

where the expansion of the Dirac function δ will be discussed below.
VOA-7 The elements Ln (as operators on V ) satisfy

[Lm,Ln] = (m− n)Lm+n +
(m3 −m)

12
(rankV)δm+n,0.

VOA-8 For v ∈ V(n) ,

L0v = nv = (wt v)v,

Ln1 = 0 if n > −1,
L−21 = ω,

L0ω = 2ω.

VOA-9 As formal series in z ,
d
dz

Y(v, z) = Y(L−1v, z),

[L−1,Y(v, z)] = Y(L−1v, z),
[L0,Y(v, z)] = Y(L0v, z) + zY(L−1v, z).

These axioms are essentially those of [3],[5]. We use the notation

(V•, Y,1, ω, rankV)

to denote such a vertex operator algebra, often just writing (V•, Y,1, ω) or even
(V•, Y) . For each element v ∈ V , the series Y(v, z) is called the vertex operator
corresponding to v . The operators Ln are called the Virasoro operators and
generate an action of the so-called Virasoro algebra on the vertex operator algebra.
Provided rank V 6= 0 , this action implies that dimk V(n) 6= 0 infinitely often (or
equivalently that V• is infinite dimensional); this is enough to ensure that a
vertex operator algebra is non-trivial, and indeed all examples are complicated to
construct.

To expand the Dirac function δ referred to in VOA-6, we define

δ(z) =
∑

n∈Z
zn,(1.1)
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and for three variables z0, z1, z2,

δ

(
z1 − z2

z0

)
=

∑

n∈Z
z−n
0 zn

1

(
1− z2

z1

)n

(1.2)

=
∑

n∈Z

∑

06k

(−1)k

(
n

k

)
z−n
0 zn−k

1 zk
2 .

In other words, we expand in terms of the second variable in the numerator of the
argument.

From [2] and [5], we also record the definition of a module (M, YM) over
a vertex operator algebra (V, Y,1, ω, rankV) . This consists of a Q -graded k -
module M = M• together with a k -linear map

YM:V −→ End(M)[[z, z−1]];

v 7−→ YM(v, z) =
∑

n∈Z
vnz−n−1,

satisfying the following conditions.
VOM-1 For each n ∈ Q , dimkM(n) < ∞ .
VOM-2 For n ¿ 0 , dimkM(n) = 0 .
VOM-3 Given elements u, v ∈ V , unv = 0 for 0 ¿ n .
VOM-4 We have the identity

YM(1, z) = IdM;

VOM-5 The following identity amongst Laurent series in z0, z1, z2 holds.

z−1
0 δ

(
z1 − z2

z0

)
YM(u, z1)YM(v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
YM(v, z2)YM(u, z1)

= z−1
2 δ

(
z1 − z0

z2

)
YM(YV(u, z0)v, z2).

VOM-6 The elements Ln = ωn+1 (as operators on M ) satisfy

[Lm,Ln] = (m− n)Lm+n +
(m3 −m)

12
(rankV)δm+n,0.

VOM-7 For w ∈ V(n) ,

L0w = nw = (wt w)w.

VOM-8 As formal series in z ,

d
dz

Y(v, z) = Y(L−1v, z),

[L−1,Y(v, z)] = Y(L−1v, z),
[L0,Y(v, z)] = Y(L0v, z) + zY(L−1v, z).

Actually, this ‘naive’ notion of module is insufficient for many purposes and
there is a more general one of a twisted module, which seems to occur in particular
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in connection with bundles over loop spaces and the elliptic cohomology of non-
simply connected spaces.

§§§2 The homology of the classifying space for KKK -theory

We take as a general reference for the topology of this section the classic work of
Adams [1], which contains full details on many of the points we mention.

We begin with the simplest case, which provides a starting point for several
generalizations. We assume throughout that k is a commutative, unital ring and
H∗( ) denotes the ordinary homology functor H∗( ; k) .

We recall the space BU× Z classifying the K -theory functor

KU0( ) ∼= [ ;BU× Z].

In homology we have

H∗(BU× Z) = H∗(BU)[[1], [−1]],

where [n] denotes the component of BU× Z =
∐

n∈Z BU× {n} , and we identify
BU with BU×{0} . We follow the notation of Ravenel and Wilson [7] by writing
[n] = [1]n . This homology ring is a Laurent polynomial ring over the ring H∗(BU)
on the generator [1] .

We assign the following new grading: an element x ∈ H2n(BU) is assigned
weight n and the element x[m] is assigned weight m2 + n . With this grading,
H∗(BU× Z) is no longer a graded ring. We will write H•(BU× Z) to emphasise
this regrading.

Now we recall the structure of the bicommutative Hopf algebra H∗(BU) . There
are standard algebra generators bn ∈ H2n(BU) (we set b0 = 1), coming from
complex projective space under the natural embedding in homology. These span
a binomial coalgebra, thus their generating function b(T ) =

∑
n>0 bnTn is a

grouplike element of H∗(BU)[[T ]] . There are also the primitive elements pn ∈
H2n(BU) , satisfying the Newton recurrence relation

(2.1)
p1 = b1,

pn = b1pn−1 − b2pn−2 + b3pn−3 − · · ·+ (−1)n−2bn−1p1 + (−1)n−1nbn.

When k is a Q -algebra, this is equivalent to the generating function identity

ln b(T ) =
∑

n>1

(−1)n−1pn

n
Tn,

where ln(1 + Z) =
∑

n>1(−1)n−1Zn/n is the formal logarithmic series. The
primitive submodule of H2n(BU) is generated by pn , but these elments are not
algebra generators of H∗(BU) over a general ring k , in particular over integers
Z . They do however generate over the rationals Q , which accounts for the fact
that in [5] they are used in giving explicit formulæ for vertex operators.

Dually, in H∗(BU) we have the universal Chern classes cn ∈ H2n(BU) , which
are also polynomials generators and generate a binomial coalgebra by the Cartan
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formula. The duality is given by the formula

〈cn, br1
1 · · · brk

k 〉 =
{

1 if br1
1 · · · brk

k = bn
1 ,

0 else.

The primitive submodule in H2n(BU) has generator sn satisfying the recurrence
relation

(2.2)
s1 = c1,

sn = c1sn−1 − c2sn−2 + c3sn−3 − · · ·+ (−1)n−2cn−1s1 + (−1)n−1ncn.

We also have the duality formula

〈sn, br1
1 · · · brk

k 〉 =
{

1 if br1
1 · · · brk

k = bn,
0 else.

We will find it convenient to use the total symmetric functions hn , recursively
defined by ∑

06k6n

(−1)kcn−khk = 0,

and also satisfying the recurrence relation

(2.3)
s1 = h1,

sn = nhn − (h1sn−1 + h2sn−2 + h3sn−3 + · · ·+ hn−1s1).

These formulæ combine to give the following remarkable result.

Theorem 2.1. There is an isomorphism of (graded) Hopf algebras

Φ: H∗(BU) −→ H∗(BU);
Φ(bn) = hn

under which Φ(pn) = (−1)n−1sn .

Let A be a Hopf algebra over a ring k and let A∗ = Homk(A, k) be its dual.
Then there is a k -algebra homomorphism

A∗ −→ Endk(A);
α 7−→ α· ,

where
α · a =

∑
α(a′)a′′,

with
∑

a′⊗a′′ denoting the coproduct on a . This gives a canonical action of A∗

on A .
In the case where A = H∗(BU) , and A∗ = H∗(BU) , this action agrees with

the cap product action of cohomology on homology. Thus, for u ∈ H2m(BU) and
x ∈ H2n(BU) we have u · x = u ∩ x .

Now given a k -algebra homomorphism ϕ:A −→ A∗ , we have an induced
action of A on itself given by

a · x = ϕ(a) · x, for a, x ∈ A.
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Taking the case of A = H∗(BU) , we obtain the action

u · x = Φ(u) ∩ x.

Proposition 2.3. We have the following formulæ.
1) For a, b, x ∈ H∗(BU) , (ab) · x = a · (b · x) . Hence · is a left action of

H∗(BU) on itself.
2) For the primitives pn (n > 0) ,

pm · pn = nδm,n.

3) For the standard generators bk ,

bm · bn = hm ∩ bn =





b0 = 1 if m = n,
bn−m if 0 6 m < n,
0 otherwise.

In terms of the generating function b(T ) , this formula is equivalent to

b(X) · b(Y ) = (1−XY )−1b(Y ).

In the statement of part (2), the Kronecker symbol δm,n is determined by

δm,n =
{

1 if m = n,
0 otherwise.

We can now describe a vertex operator algebra associated to H•(BU×Z) which
we take as the underlying k -module. We will define a linear map

Y( , z): H•(BU× Z) −→ End(H•(BU× Z))[[z, z−1]]

with the relevant properties. The indeterminate z may be interpreted as indexing
copies of BU× Z corresponding to the spaces classifying the functors KU−2k( ) .
Thus we can consider the graded space

BU× Z[z, z−1] = {BU× Z{zk}}k∈Z,

where

KU−2k( ) ∼= [ ;BU× Z{zk}] tk

−→∼= KU0( ),

with the latter being multiplication by the k th power of the Bott element. We
can therefore view z as t−1 and each vertex operator Y(u, z) as an element of
the graded tensor product

H•(BU× Z[z, z−1])⊗̂
k
H•(BU× Z) = H•(BU× Z)⊗̂

k
H•(BU× Z)[[z, z−1]],

which has an action on H•(BU× Z) induced by

(a⊗ c) · x = a(c ∩ x).

Using this interpretation, the normal ordering convention found in [5] becomes
the usual commutation rule in the tensor product.
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We begin by defining the operators Y([a], z) for a ∈ Z . Set

Y([a], z) = [a]b(z)a ⊗ h (−1/z)2a
z[a],

where z[a] is given by linearly extending the formula

z[a](x[n]) = x[n]z2an for x ∈ H∗(BU) and n ∈ Z .

This is essentially the formula found in [5, section 7.1]. Next we must explain
how to define the more general vertex operators Y(x[n], z) for arbitrary elements
x ∈ H∗(BU) and n ∈ Z . Again this is done in [5, section 8.5], at least on the
assumption that the ground ring k is a rational algebra. Our description is valid
for any ground ring k .

By linearity, it suffices to describe the elements Y(br1 · · · brk
[a], z) . This is

done using the generating function

b(w1) · · · b(wk) =
∑

rj>0

br1 · · · brk
wr1

1 · · ·wrk

k ,

and the formula

(2.4) Y(b(w1) · · · b(wk)[a], z)

= b(z + w1) · · · b(z + wk)⊗ h(−1/(z + w1)) · · ·h(−1/(z + wk))z[k]Y([a], z)
= [a]b(z + w1) · · · b(z + wk)b(z)a ⊗ h(−1/(z + w1)) · · ·

· · ·h(−1/(z + wk))h(−1/z)2az[a+k].

To determine Y(br1 · · · brk
[a], z) , we read off the term in the monomial wr1

1 · · ·wrk

k

appearing in the expansion of Y(b(w1) · · · b(wk)[a], z) in terms of the variable z ,
using Equation 2.4. Such ‘preferential’ treatment of certain variables lies at the
heart of the formal variable calculations of [5] and is related to normal ordering
and time ordering in Quantum Field Theory.

Given the structure we have described we obtain the following result. The
proof is essentially given in [5], where the case of a Q -algebra k is covered;
for the general case we need to verify that our integral formulæ agree with their
rational results. Set

V(Z)• = H•(BU× Z),
YZ = Y,

1 = [0],

ω =
1
2
b2
1.

Theorem 2.3. The quintuple (V(Z)•, YZ,1, ω, 1) is a vertex operator algebra over
any Z[1/2] -algebra k .

Remark 2.4. The attentive reader will have noticed the appearance of factors
of 2 in some of the above formulæ. This is not an accident and corresponds to
the fact that we are viewing the integers as the root lattice A1 of the simple Lie
algebra sl2 . In Section 3 we will make this more explicit. It is perhaps worth
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remarking that we could use the more ‘natural’ inner product 〈a, b〉 = ab to
define an algebraic object which is an example of a somewhat weaker notion, that
of a quasi-vertex operator algebra, as defined in [4] and possessing most of the
properties of a vertex operator algebra except for those involving the Virasoro
operators Ln , which are only required to occur for n = 0,±1 .

§§§3 Vertex operator algebras based on positive, even lattices

In this section we generalize the vertex operator algebra construction of Section 2
starting with a positive definite, even lattice (L, 〈 , 〉) in place of the integers Z .
Thus, L is a finite rank free abelian group equipped with a positive definite inner
product

〈 , 〉 :L× L −→ Z

which is even in the sense that for ` ∈ L ,

〈`, `〉 ∈ 2Z.

Following [5], we may construct a vertex operator algebra (V(L),YL) for which
the underlying k -module is

V(L) = k{L}⊗
k

S(L).

Here k{L} is the free k -module on the elements of L , given the weight grading
for which wt ` = 〈`, `〉 /2 . Also the factor S(L) is a infinite tensor product

S(L) =
⊗

k>1

k[b(`)k : ` ∈ L]/(relations)

where the symbols b(`)k stand for elements of weight k satisfying relations

b(`1 + `2)k =
∑

06j6k

b(`1)jb(`2)k−j .

Thus, if L has a basis `1, . . . , `rankL , we have

S(L) = k[b(`1)k, . . . , b(`rankL)k : k > 1].

The recursion of Equation 2.1 can be used to define elements p(`)k for which

(3.1)

p(`)1 = b(`)1,
p(`)n = b(`)1p(`)n−1 − b(`)2p(`)n−2 + b(`)3p(`)n−3 − · · ·

+ (−1)n−2b(`)n−1p(`)1 + (−1)n−1nb(`)n.

Our p(`)k is essentially equivalent to the element denoted `(−k) in [5]. We will
use the notation

b(T )` =
∑

k>0

b(`)kT k.
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We define elements c(`)k, h(`)k in the dual of S(L) by requiring that they satisfy
the formulæ

c(X)` =
∑

k>0

c(`)kXk,

〈
c(X)`, b(Y )`′

〉
= (1−XY )〈`,`′〉,

and

h(X)` =
∑

k>0

h(`)kXk,

〈
h(X)`, b(Y )`′

〉
= (1−XY )−〈`,`′〉.

and form divided power sequences under the coproduct, i.e., for any x, y ∈ S(L) ,
〈
c(X)`, xy

〉
=

〈
c(X)`, x

〉 〈
c(X)`, y

〉

and
〈
h(X)`, xy

〉
=

〈
h(X)`, x

〉 〈
h(X)`, y

〉
.

Using these together with the approach of Section 2, we have an action of S(L)
on itself by

(3.2) b(X)` · b(Y )`′ = (1−XY )−〈`,`′〉b(Y )`′ .

We can inflict K -theory with coefficients in L by forming the even degree
K -theory functors

KUL−2k( ) = KU−2k( )⊗
Z
L.

These are all represented by a space

BUL× L,

where BUL is connected. Of course, given a basis {`1, . . . , `rankL} for L , we
obtain a decomposition (of infinite loop spaces)

BUL ∼= BU× · · · × BU,

with one factor for each `j . The homology of this classifying space is of form

H∗(BUL× L, k) ∼= H∗(BUL)[[`j ], [`j ]−1 : 1 6 j 6 rankL],

where

H∗(BUL) = H∗(BU) ◦ [`1]⊗
k
· · · ⊗

k
H∗(BU) ◦ [`rankL].

Here the notation H∗(BU) ◦ [`] denotes the homology of the space

BU× {[`]} ⊂ BUL× {[`]}.
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This notation is suggested by the Hopf ring notation of [7]; we are working with a
‘Hopf module’ H∗(BUL×L) over the Hopf ring H∗(BU×Z) . We will frequently
write ` in place of [`] when there is no chance of confusion.

We now proceed to describe the vertex operators for this example. For ` ∈ L ,
let z` denote the operator for which

z` · (x[`′]) = x[`′]z〈`,`′〉,
where `′ ∈ L and x ∈ H∗(BUL) . We make the following definitions:

Y([`], z) = [`]b(z)` ⊗ h (−1/z)`
z`,

and

(3.3) Y(b(w1)`1 · · · b(wk)`k [`], z)

= b(z + w1)`1 · · · b(z + wk)`k⊗
h(−1/(z + w1))`1 · · ·h(−1/(z + wk))`kz`1+···+`kY([`], z)

= [`]b(w1 + z)`1 · · · b(wk + z)`kb(z)`⊗
h(−1/(w1 + z))`1 · · ·h(−1/(wk + z))`kh (−1/z)`

z`1+···+`k+`.

Also set

V(L)• = H•(BUL× L),
YL = Y,

1 = [0],

ω =
∑

16j6rankL

1
2 〈`j , `j〉b(`j)21,

where {`1, . . . , `rankL} is a basis for L .

Theorem 3.1. The quintuple (V(L)•, YL,1,ω, rankL) is a vertex operator alge-
bra over any Z[1/2] -algebra k .

Again, the proof is essentially given in [5].
The case discussed in Section 2 amounts to taking the lattice L = Z

√
2 , rather

than Z itself. This is the root lattice A1 , and root lattices of semi-simple Lie
algebras provide many interesting examples.

§§§4 Some modules over vertex operator algebras

In this section we briefly describe some modules over the vertex operator algebras
constructed earlier, including their irreducibles.

Again we assume the data of Section 3. In general, the linear map L −→
HomZ(L,Z) given by

` 7−→ `∗ = 〈`, 〉
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is injective but not surjective; if it is an isomorphism then the lattice L is said to
be unimodular. We also set

L0 = {` ∈ Q⊗ L : ∀`′ ∈ L, 〈`, `′〉 ∈ Z} ⊇ L.

The index |L0/L| is of course finite and equal to 1 if and only if L is unimodular.
We may generalize the definition of the vertex operator algebra

(V(L)•, YL,1,ω, rankL)

as follows. We replace the set of components L of BUL× L by a coset L+ ` of
L in L0 . Thus we take

V(L+ `) = k{L+ `}⊗
k

S(L),

where the k -module is free on the elements of the coset L+ ` . We grade V(L+ `)
by decreeing that wt ` = 〈`, `〉 /2 for ` ∈ L + ` and extending this to the whole
of V(L+ `) . Of course, this is now a grading over Q rather than just Z .

Theorem 4.1. The graded k -module admits the structure of a module (V(L +
`), Y) over the vertex operator algebra (V(L)•, YL,1, ω, rankL) . In the case of
L+ ` = L , this agrees with the adjoint module (i.e., the natural module structure
of a vertex operator algebra over itself).

These modules may be combined into a single V(L) -module

V(L0) =
⊕

L+`∈L0/L
V(L+ `)

graded by L0/L .
As a particular example, we may consider the situation of Section 2, in which

we are taking L = Z
√

2 . Then L0 = Z(1/
√

2) and

L0/L = {L,L+ (1/
√

2)}.
The following result of Dong [2] explains the significance of these examples.

Theorem 4.2. Over the vertex operator algebra (V(L)•, YL,1,ω, rankL) , each
of the modules (V(L + `), Y) (L + ` ∈ L0/L) is irreducible; moreover, every
irreducible module is isomorphic to precisely one of these.

For the root lattice An of sln+1 , A0
n/An

∼= Z/(n+1) ; hence there are exactly
n + 1 irreducibles. These are indexed by the fundamental weights associated to
the n + 1 nodes in the extended Dynkin diagram for An which has a rotational
symmetry of order n+1 ; this symmetry also appears in the vertex operator algebra
V(An) and has the effect of twisting these modules by shifting the indexing element
of Z/(n + 1) by 1 modulo (n + 1) .

In fact, it is possible to incorporate all such modules into a single Z/(n + 1) -
graded object which possesses the algebraic structure of what has been called an
Abelian intertwining algebra by Dong and Lepowsky [3]. In terms of the underly-
ing geometry of [8] this is probably the most natural algebraic object to study.
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