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A CHARACTERISATION OF THE n〈1〉 ⊕ 〈3〉 FORM AND

APPLICATIONS TO RATIONAL HOMOLOGY SPHERES

Brendan Owens and Sašo Strle

Abstract. We conjecture two generalisations of Elkies’ theorem on unimodular
quadratic forms to non-unimodular forms. We give some evidence for these conjec-
tures including a result for determinant 3. These conjectures, when combined with
results of Frøyshov and of Ozsváth and Szabó, would give a simple test of whether
a rational homology 3-sphere may bound a negative-definite four-manifold. We
verify some predictions using Donaldson’s theorem. Based on this we compute the
four-ball genus of some Montesinos knots.

1. Introduction

Let Y be a rational homology three-sphere and X a smooth negative-definite
four-manifold bounded by Y . For any Spinc structure t on Y let d(Y, t) denote
the correction term invariant of Ozsváth and Szabó [10]. It is shown in [10,
Theorem 9.6] that for each Spinc structure s ∈ Spinc(X),

(1) c1(s)
2 + rk(H2(X ;Z)) ≤ 4d(Y, s|Y ).

This is analogous to a gauge-theoretic result of Frøyshov [5]. These theorems
constrain the possible intersection forms that Y may bound. The above in-
equality is used in [8] to constrain intersection forms of a given rank bounded
by Seifert fibred spaces, with application to four-ball genus of Montesinos links.
In this paper we attempt to get constraints by finding a lower bound on the
left-hand side of (1) which applies to forms of any rank. This has been done for
unimodular forms by Elkies:

Theorem 1.1 ([2]). Let Q be a negative-definite unimodular integral quadratic
form of rank n. Then there exists a characteristic vector x with Q(x, x)+n ≥ 0;
moreover, x can be chosen so that the inequality is strict, unless Q = n〈−1〉.

Together with (1) this implies that an integer homology sphere Y with d(Y ) <
0 cannot bound a negative-definite four-manifold, and if d(Y ) = 0 then the only
definite pairing that Y may bound is the diagonal form. Since d(S3) = 0 this
generalises Donaldson’s theorem on intersection forms of closed four-manifolds
[1].

In Section 2 we conjecture two generalisations of Elkies’ theorem to forms
of arbitrary determinant. We prove some special cases, including Theorem 3.1
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which is a version of Theorem 1.1 for forms of determinant 3. This implies the
following

Theorem 1.2. Let Y be a rational homology sphere with H1(Y ;Z) = Z/3 and
let t0 be the spin structure on Y . If Y bounds a negative-definite four-manifold
X then either

d(Y, t0) ≥ −1

2
,

or

max
t∈Spinc(Y )

d(Y, t) ≥ 1

6
.

If equality holds in both then the intersection form of X is diagonal.

In Section 4 we discuss further topological implications of our conjectures;
in particular some predictions for Seifert fibred spaces may be verified using
Donaldson’s theorem. We find two families of Seifert fibred rational homology
spheres, no multiple of which can bound negative-definite manifolds. We use
these results to determine the four-ball genus for two families of Montesinos
knots, including one whose members are algebraically slice but not slice.

This paper was written while both authors were Britton postdoctoral fellows
at McMaster University.

2. Conjectured generalisations of Elkies’ theorem

We begin with some notation. A nondegenerate quadratic form Q of rank n
over the integers gives rise to a symmetric matrix with entries Q(ei, ej), where
{ei} is the standard basis for Zn; we also denote the matrix by Q. Let Q′ denote
the induced form on the dual Zn; this is represented by the inverse matrix. Two
matrices Q1 and Q2 represent the same form if and only if Q1 = PTQ2P for
some P ∈ GL(n,Z).

We call y ∈ Z
n a characteristic covector for Q if

yT ξ ≡ Q(ξ, ξ) (mod 2) ∀ξ ∈ Z
n.

We call x ∈ Z
n a characteristic vector for Q if

Q(x, ξ) ≡ Q(ξ, ξ) (mod 2) ∀ξ ∈ Z
n.

Note that the formQ induces an injection x 7→ Qx from Z
n to its dual with the

quotient group having order | detQ|; with respect to the standard bases this map
is multiplication by the matrix Q. For unimodular forms this gives a bijection
between characteristic vectors and characteristic covectors; in general not every
characteristic covector is in the image of the set of characteristic vectors. Also
for odd determinant, any two characteristic vectors are congruent modulo 2; this
is no longer true for even determinant.

Let Q be a negative-definite integral form of rank n and let δ be the absolute
value of its determinant. Denote by ∆ = ∆δ the diagonal form (n − 1)〈−1〉 ⊕
〈−δ〉. Both of the following give restatements of Theorem 1.1 when restricted
to unimodular forms.
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Conjecture 2.1. Every characteristic vector x0 is congruent modulo 2 to a
vector x with

Q(x, x) + n ≥ 1− δ;

moreover, x can be chosen so that the inequality is strict, unless Q = ∆δ.

Conjecture 2.2. There exists a characteristic covector y with

Q′(y, y) + n ≥
{

1− 1/δ if δ is odd,
1 if δ is even;

moreover, y can be chosen so that the inequality is strict, unless Q = ∆δ.

We will discuss the implications of these conjectures in Section 4.

Proposition 2.3. Conjecture 2.1 is true when restricted to forms of rank ≤ 3,
and Conjecture 2.2 is true when restricted to forms of rank 2 and odd determi-
nant.

Proof. We will first establish Conjecture 2.1 for rank 2 forms. In fact we prove
the following stronger statement: if Q is a negative-definite form of rank 2 and
determinant δ, then for any x0 ∈ Z

2,

(2) max
x≡x0(2)

Q(x, x) ≥ −1− δ,

and the inequality is strict unless Q = ∆.
Every negative-definite rank 2 form is represented by a reduced matrix

Q =

(

a b
b c

)

,

with 0 ≥ 2b ≥ a ≥ c and −1 ≥ a. Any vector x0 is congruent modulo 2 to one of
(0, 0), (1, 0), (0, 1), (1,−1); all of these satisy xTQx ≥ a+ c− 2b. Thus it suffices
to show

(3) a+ c− 2b ≥ −1− δ.

Note that equality holds in (3) if Q = ∆. Suppose now that Q 6= ∆. Let

Qτ =

(

a+ 2τ b+ τ
b + τ c

)

, and let δτ = detQτ . Then aτ + cτ − 2bτ is constant

and δτ is a strictly decreasing function of τ . Thus (3) will hold for Q if it holds
for Qτ for some τ > 0. In the same way we may increase both b and c so that
a+ c− 2b remains constant and the determinant decreases, or we may increase
a and decrease c. In this way we can find a path Qτ in the space of reduced

matrices from any given Q to a diagonal matrix

(

−1 0

0 −δ̃

)

, such that a+b−2c

is constant along the path and the determinant decreases. It follows that (3)
holds for Q, and the inequality is strict unless Q = ∆.

A similar but more involved argument establishes Conjecture 2.1 for rank 3
forms. We briefly sketch the argument. Let Q be represented by a reduced
matrix of rank 3 (see for example [6]) and let x0 ∈ Z

3. By succesively adding
2τ to a diagonal entry and ±τ to an off-diagonal entry one may find a path of
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reduced matrices from Q to Q̃ along which max
x≡x0(2)

xTQx is constant and the

absolute value of the determinant decreases. One cannot always expect that
Q̃ will be diagonal but one can show that the various matrices which arise all
satisfy

max
x≡x0(2)

xT Q̃x ≥ −2− | det Q̃|,

(with strict inequality unless Q̃ = ∆) from which it follows that this inequality
holds for all negative-definite rank 3 forms.

Finally note that for rank 2 forms, the determinant of the adjoint matrix
adQ is equal to the determinant of Q. Conjecture 2.2 for rank 2 forms of odd
determinant now follows by applying (2) to adQ and dividing by the determinant
δ. �

3. Determinant three

In this section we describe to what extent we can generalise Elkies’ proof of
Theorem 1.1 to non-unimodular forms. For convenience we work with positive-
definite forms. We obtain the following result.

Theorem 3.1. Let Q be a positive-definite quadratic form over the integers of
rank n and determinant 3. Then either Q has a characteristic vector x with
Q(x, x) ≤ n + 2 or it has a characteristic covector y with Q′(y, y) ≤ n − 2

3 .
Moreover, either x or y can be chosen so that the corresponding inequality is
strict, unless Q is diagonal.

Given a positive-definite integral quadratic form Q of rank n, we consider
lattices L ⊂ L′ in R

n (equipped with the standard inner product), with Q the
intersection pairing of L, and L′ the dual lattice of L. The determinant of the
form Q is often referred to as the discriminant of the lattice L; however we will
use the word determinant in both contexts.

For any lattice L ⊂ R
n and a vector w ∈ R

n let θwL be the generating function
for the norms of vectors in w

2 + L,

θwL (z) =
∑

x∈L

eiπ|x+
w

2
|2z ;

this is a holomorphic function on the upper half-plane H = {z | Im(z) > 0}.
The theta series of the lattice L is θL = θ0L.

Recall that the modular group Γ = PSL2(Z) acts on H and is generated by
S and T , where S(z) = − 1

z and T (z) = z + 1.
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Proposition 3.2. Let L be an integral lattice of odd determinant δ, and L′ its
dual lattice. Then

θL(S(z)) =
(z

i

)n/2

δ−1/2θL′(z)(4)

θL(TS(z)) =
(z

i

)n/2

δ−1/2θwL′(z)(5)

θL′(T δS(z)) =
(z

i

)n/2

δ1/2θwL (z),(6)

where w is a characteristic vector in L.

Remark 3.3. Note that if w ∈ L is a characteristic vector, then θwL′ is a gener-
ating function for the squares of characteristic covectors. Under the assumption
that the determinant of L is odd, θwL is a generating function for the squares of
characteristic vectors.

Proof. All the formulas follow from Poisson inversion [12, Ch. VII, Proposition
15]. We only need odd determinant in (6). Note that in θL′(z + δ) we can use

(7) δ|y|2 ≡ |δy|2 ≡ (δy, w) ≡ (y, w) (mod 2)

and then apply Poisson inversion. �

Corollary 3.4. Let L1 and L2 be integral lattices of the same rank and the same
odd determinant δ. Then

R(z) =
θL1

(z)

θL2
(z)

is invariant under T 2 and ST 2δS. Moreover, R8 is invariant under (T 2S)δ and
ST δ−1ST δ−1S.

Proof. Since L is integral, θL(z + 2) = θL(z), hence R is T 2 invariant. The
squares of vectors in L′ belong to 1

δZ, so θL′(z + 2δ) = θL′(z). From (4) it

follows that R(S(z)) =
θ
L′

1

(z)

θ
L′

2

(z) , which gives the ST 2δS invariance of R.

To derive the remaining symmetries of R8 we need to use (5) and (6). Let w
be a characteristic vector in L. Clearly

δ|y + w

2
|2 = δ|y|2 + δ(y, w) +

δ

4
|w|2

holds for any y ∈ L′, so it follows from (7) that

θwL′(z + δ) = eiπδ|w|2/4θwL′(z).

Using (5) we now conclude that R8 is invariant under TST δST−1 = (ST−2)δ;
the last equality follows from the relation (ST )3 = 1 in the modular group. The
remaining invariance of R8 is derived in a similar way from (6). �

From now on we restrict our attention to determinant δ = 3. Consider the
subgroup Γ3 of Γ generated by T 2, ST 6S and ST 2ST 2S. Clearly Γ3 is a sub-
group of Γ+ = 〈S, T 2〉 ⊂ Γ.
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Lemma 3.5. A full set of coset representatives for Γ3 in Γ+ is I, S, ST 2, ST 4.
Hence a fundamental domain D3 for the action of Γ3 on the hyperbolic plane H
is the hyperbolic polygon with vertices −1,− 1

3 ,− 1
5 , 0, 1, i∞.

Proof. Call x, y ∈ Γ+ equivalent if y = zx for some z ∈ Γ3. For an element
x = T k1ST k2S · · ·T kn with all ki 6= 0 define the length of x, Sx, xS and SxS
to be n. Any element x ∈ Γ+ of length n ≥ 2 is equivalent to one of the form
ST kSy with k = 0,±2 and length at most n. If x = ST kST ly with k = ±2
and length n ≥ 2, then x is equivalent to ST l−ky, which has length ≤ n− 1. It
follows by induction on length that any element of Γ+ is equivalent to one with
length at most 1. Moreover, if the element has length 1, it is equivalent to ST k,
k = 2, 4.

Finally, recall that a fundamental domain for Γ+ is D+ = {z ∈ H | − 1 ≤
Re(z) ≤ 1, |z| ≥ 1} so we can take D3 to be the union of D+ and S(D+ ∪
T 2(D+) ∪ T 4(D+)). �

Proof of Theorem 3.1. Suppose that L is a lattice of determinant 3 and rank
n for which the square of any characteristic vector is at least n + 2 and the
square of any characteristic covector is at least n− 2

3 . Let ∆ be the lattice with
intersection form (n− 1)〈1〉 ⊕ 〈3〉; recall from [2] that θ∆ does not vanish on H .
Then

R(z) =
θL(z)

θ∆(z)

is holomorphic on H and it follows from Corollary 3.4 that R8 is invariant under
Γ3. We want to show that R is bounded. We will use the following identities
that follow from Proposition 3.2:

R(S(z)) =
θL′(z)

θ∆′(z)
, R(TS(z)) =

θwL′(z)

θw∆′(z)
, R(ST δS(z)) =

θwL (z)

θw∆(z)
.

Since the theta series of any lattice converges to 1 as z → i∞, R(z) → 1 as
z → 0, i∞. By assumption the square of any characteristic covector for L is at
least as large as the square of the shortest characteristic covector for ∆. Since
the asymptotic behaviour as z → i∞ of the generating function for the squares
of characteristic covectors is determined by the smallest square, it follows from
the middle expression for R above that R(z) is bounded as z → 1. Similarly,
using the condition on characteristic vectors and the right-most expression for R
as z → i∞, it follows that R(z) is bounded as z → − 1

3 . Note that T−2(1) = −1

and ST 6S(1) = − 1
5 , so R(z) is also bounded as z → −1,− 1

5 .

Let f be the function on Σ = H/Γ3 induced by R8. Then f is holomorphic
and bounded, so it extends to a holomorphic function on the compactification
of Σ. It follows that R(z) = 1, so the theta series of L is equal to the theta
series of ∆. Then L contains n − 1 pairwise orthogonal vectors of square 1, so
its intersection form is (n− 1)〈1〉 ⊕ 〈3〉. �
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4. Applications

In this section we consider applications to rational homology spheres and the
four-ball genus of knots. We begin with the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that Y = ∂X and that Q is the intersection
form on H2(X ;Z). Then Q is a quadratic form of determinant ±3. For any
s ∈ Spinc(X), let c(s) denote the image of the first Chern class c1(s) modulo
torsion. Then c(s) is a characteristic covector for Q; moreover if s|Y is spin then
c(s) is Qx for some characteristic vector x. The result now follows from Theorem
3.1 and (1). �

Conjectures 2.1 and 2.2 imply the following more general statement.

Conjecture 4.1. Let Y be a rational homology sphere with |H1(Y ;Z)| = h. If
Y bounds a negative-definite four-manifold X with no torsion in H1(X ;Z) then

min
t0∈Spin(Y )

d(Y, t0) ≥ (1− h)/4,

and

max
t∈Spinc(Y )

d(Y, t) ≥











(

1− 1

h

)

/4 if h is odd,

1/4 if h is even.

If equality holds in either inequality the intersection form of X is ∆h.

More generally if Y bounds X with torsion in H1(X ;Z), the absolute value
of the determinant of the intersection pairing of X divides h with quotient a
square (see for example [8, Lemma 2.1]). One may then deduce inequalities as
above corresponding to each choice of determinant; care must be taken since for
example not all spin structures on Y extend to spinc structures on X .

Remark 4.2. Given a rational homology sphere Y bounding X with no tor-
sion in H1(X ;Z), the intersection pairing of X gives a presentation matrix for
H2(Y ;Z) (and also determines the linking pairing of Y ). There should be ana-
logues of Conjectures 2.1 and 2.2 which restrict to forms presenting a given group
(and inducing a given linking pairing). These should give stronger bounds than
those in Conjecture 4.1.

4.1. Seifert fibred examples. In Examples 4.5 and 4.6 we list families of
Seifert fibred spaces Y which bound positive-definite but not negative-definite
four-manifolds. It follows as in [4, Theorem 10.2] that for any m > 0, the
connected sum of m copies of Y cannot bound a negative-definite four-manifold.
In Examples 4.7 through 4.9 we list families of Seifert fibred spaces which can
only bound the diagonal negative-definite form ∆δ (or sometimes ∆1). We found
these examples using predictions based on Conjecture 4.1 and verified them using
Donaldson’s theorem via Proposition 4.4. Finally, in Example 4.10 we exhibit a
family of Seifert fibred spaces which according to the conjecture can only bound
∆δ. For this family the method of Proposition 4.4 does not apply.
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In what follows we extend the definition of ∆1 to include the trivial form on
the trivial lattice. Also note that a lattice uniquely determines a quadratic form,
and a form determines an equivalence class of lattices; in the rest of this section
we use the terms lattice and form interchangeably.

Definition 4.3. Let L be a lattice of rank m and determinant δ. We say L is
rigid if any embedding of L in Z

n is contained in a Z
m sublattice. We say L is

almost-rigid if any embedding of L in Z
n is either contained in a Z

m sublattice,
or contained in a Z

m+1 sublattice with orthogonal complement spanned by a
vector v with |v|2 = δ.

Proposition 4.4. Let Y be a rational homology sphere and let h be the or-
der of H1(Y ;Z). Suppose Y bounds a positive-definite four-manifold X1 with
H1(X1;Z) = 0. Let Q1 be the intersection pairing of X1 and let m denote its
rank.

If Q1 does not embed into Z
n for any n then Y cannot bound a negative-

definite four-manifold.
If Q1 is rigid and Y bounds a negative-definite X2 then h is a square and

Q2 = ∆1; if h > 1, then there is torsion in H1(X2;Z).
If Q1 is almost-rigid and Y bounds a negative-definite X2 then either

• Q2 = ∆h or
• Q1 embeds in Z

m, h is a square and Q2 = ∆1; if h > 1, then there is
torsion in H1(X2;Z).

Proof. Suppose Y bounds a negative-definite X2 with intersection pairing Q2.
Then X = X1∪Y −X2 is a closed positive-definite manifold. The Mayer-Vietoris
sequence for homology and Donaldson’s theorem yield an embedding ι : Q1 ⊕
−Q2 → Z

m+k, where k is the rank of Q2.
If the image of Q1 under ι is contained in a Z

m sublattice, then the image
of −Q2 is contained in the orthogonal Zk sublattice. Now consider the Mayer-
Vietoris sequence for cohomology:

0 −→ H2(X ;Z) −→ H2(X1;Z) ⊕ H2(X2;Z) −→ H2(Y ;Z),
‖ ‖
Q′

1 −Q′
2 ⊕ T2

where T2 is the torsion subgroup and Q′ denotes the dual lattice to Q. This
yields an embedding ι′ : Zm+k → Q′

1 ⊕ −Q′
2. The mapping ι′ is hom-dual to ι

and hence also decomposes orthogonally, sending Z
m to Q′

1 and Z
k to −Q′

2. The

image of Zm in Q′
1 has index

√
h, since h is the determinant of Q1. (In general

if L1 ⊂ L2 are lattices of the same rank then the square of the index [L2 : L1]
is the quotient of their determinants.) The restriction map from H2(X1;Z) to

H2(Y ;Z) is onto, so its kernel K is a subgroup of Zm of index
√
h. It follows

that Z
m/K injects into T2 and that the image of T2 in H2(Y ;Z) has order

t ≥
√
h. Then by [8, Lemma 2.1], t =

√
h and Q2 is unimodular. Since −Q2 is

a sublattice of Zk we have Q2 = ∆1.
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Suppose now that the image of Q1 under ι is contained in a Z
m+1 sublattice,

and its orthogonal complement in Z
m+1 is spanned by a vector v with |v|2 = h.

Then the image of −Q2 is a sublattice of (k − 1)〈1〉 ⊕ 〈h〉; it therefore has
determinant at least h. On the other hand its determinant divides h [8, Lemma
2.1]. It follows that Q2 is equal to ∆h. �

If Y is the Seifert fibred space Y (e; (α1, β1), (α2, β2), (α3, β3)), let

k(Y ) = eα1α2α3 + β1α2α3 + α1β2α3 + α1α2β3.

If k(Y ) 6= 0 then Y is a rational homology sphere and |k(Y )| is the order of
H1(Y ;Z). Furthermore, if k(Y ) < 0 then Y bounds a positive-definite plumbing.
For our conventions for lens spaces and Seifert fibred spaces see [8]. Recall in
particular that (αi, βi) are coprime pairs of integers with αi ≥ 2. We will also
assume here that 1 ≤ βi < αi.

Example 4.5. Seifert fibred spaces Y = Y (−2; (α1, β1), (α2, β2), (α3, β3)) with

α1

β1
≤ 2,

α2

β2
,
α3

β3
< 2, k(Y ) < 0,

cannot bound negative-definite four-manifolds.

uv1v2vp w1 w2 wq

x1

xr

• • • ••

•

•

••••

Figure 1. Plumbing graph.

Proof. Note that Y is the boundary of the positive-definite plumbing shown in
Figure 1, where vertices u, v1, w1 and x1 have square 2 and v2 and w2 have
square at least 2. This lattice does not admit an embedding in any Z

n. To see
this let e1, . . . , en be the standard basis of Zn. The vertex u must map to an
element of square 2, which we may suppose is e1 + e2. The 3 adjacent vertices
must be mapped to elements of the form e1 + e3, e1 − e3 and e2 + e4. Now we
see that it is not possible to map the remaining 2 vertices v2 and w2; we are
only able to further extend the map along the leg of the graph emanating from
the vertex mapped to e2 + e4. �
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Example 4.6. Seifert fibred spaces Y = Y (−2; (α1, β1), (α2, α2−1), (α3, α3−1))
with

α2, α3 ≥ α1

β1
, α3 ≥ 3, k(Y ) < 0,

cannot bound negative-definite four-manifolds unless

β1 = 1, min(α2, α3) = α1.

In the latter case, if Y bounds a negative-definite X then the intersection pairing
of X is ∆1 and the torsion subgroup of H1(X ;Z) is nontrivial.

Proof. In this case Y is again the boundary of a positive-definite plumbing as in
Figure 1. The vertices u, vi and wj have square 2, and p = α2 − 1, q = α3 − 1.
Vertex x1 has square a = ⌈α1

β1

⌉. If α1

β1

= min(α2, α3) = a then by inspection

this pairing is rigid with determinant a2 > 1; otherwise it does not admit any
embedding into Z

n. For more details see the proof of Example 4.8. �

Example 4.7. The only negative-definite pairing that L(p, 1) can bound is the
diagonal form ∆p unless p = 4 in which case it may also bound ∆1. (Note
that L(p, 1) is the boundary of the disk bundle over S2 with intersection pairing
〈−p〉.)
Proof. By Am we denote the plumbing according to a linear graph with m
vertices whose weights are 2. Observe that L(p, 1) is the boundary of the positive-
definite plumbing Ap−1. If p 6= 4 then up to automorphisms of Z

n there is
a unique embedding of Ap−1 in Z

n; the image is contained in a Z
p and its

orthogonal complement in Z
p is generated by the vector (1, 1, . . . , 1). Hence

Ap−1 is almost-rigid and does not embed in Z
p−1. However, A3 also admits an

embedding in Z
3. �

Example 4.8. If Y = Y (−2; (α2β1 + 1, β1), (α2, α2 − 1), (α3, α3 − 1)) with
α3 > α2, then the only negative-definite pairing that Y may bound is the diagonal
form ∆|k(Y )| unless

β1 = 1, α3 = α2 + 1.

In the latter case the only negative-definite pairings that Y may bound are ∆|k(Y )|

and ∆1.

Proof. Note this is a borderline case of Example 4.6. In the notation of that
example α2 = a−1. The positive-definite plumbing is similar to that in Example
4.6 with r = β1; also the vertices xl with l > 1 all have square 2. Denote the
pairing associated to this plumbing by Q. We consider an embedding of Q into
Z
n. Let ei, fj and gl denote unit vectors in Z

n. Without loss of generality the
vertex u maps to e1 + f1. Then vi maps to ei−1 + ei and wj maps to fj−1 + fj .

Now consider the image of x1. This may map to e1 − e2 + · · · ± ea−1 + g1;
then xl maps to gl−1 + gl for l > 1. Thus the image of Q is contained in a
Z
p+q+r+2 sublattice. The determinant of Q is |k(Y )| = α2

2β1 + α2 + α3 (note
k(Y ) < 0). The orthogonal complement of Q in Z

p+q+r+2 is spanned by the
vector

∑

(−1)i−1ei +
∑

(−1)jfj + α2

∑

(−1)lgl, whose square is |k(Y )|. Up to
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automorphism this is the only embedding of Q into Z
n unless α3 = a and β1 = 1.

In this case x1 may map to the alternating sum f1 − f2 + · · · ± fa; the image of
the resulting embedding is contained in Z

p+q+r+1. �

Example 4.9. If Y = Y (−1; (3, 1), (3a+ 1, a), (5b+ 3, 2b+ 1)) with k(Y ) < 0,
then the only negative-definite pairing that Y may bound is the diagonal form
∆|k(Y )| unless a = b = 1 in which case it may also bound ∆1.

Proof. Note that the condition k(Y ) < 0 implies a = 1 or b = 0 or a = b+1 = 2.
Again, Y is the boundary of a positive-definite plumbing as in Figure 1, with
p = a, q = b + 1 and r = 1. The vertex u has square 1, w1 and x1 have square
3, v1 has square 4. If a > 1 then vj has square 2 for j > 1. If b > 0 then w2 has
square 3, and any remaining wi has square 2. Denote the pairing associated to
this plumbing by Q. We consider an embedding of Q into Z

n. Let ei denote unit
vectors in Z

n. Without loss of generality the vertex u maps to e1, x1 maps to
e1+e2+e3 and w1 maps to e1−e2+e4. Then v1 has to map to e1−e3−e4+e5.
Now w2, if present, has to map to e4 + e5 + e6 or −e2 + e3 + e5; the second
possibility only works if a = b = 1. Finally v2, if present, has to map to e5 − e6.
The reader may verify that Q is almost-rigid. �

Example 4.10. Let Ya = Y (−2; (2, 1), (3, 2), (a, a − 1)) with a ≥ 7. Then
h = k(Y ) = a− 6,

min
t0∈Spin(Y )

d(Y, t0) = (1− h)/4

and

max
t∈Spinc(Y )

d(Y, t) =











(

1− 1

h

)

/4 if h is odd,

1/4 if h is even.

If a is 7 or 9 then the only negative-definite form Ya bounds is ∆h. If Conjecture
4.1 holds then the same is true for all Ya.

Proof. Ya is the boundary of the negative-definite plumbing with intersection
pairing given by

Q =









−1 1 1 1
1 −2 0 0
1 0 −3 0
1 0 0 −a









,

which represents 3〈−1〉 ⊕ 〈−a+ 6〉. The computations of d(Y ) follow as in [11].
The claim for Y7 follows from the discussion following Theorem 1.1. The claim
for Y9 follows from Theorem 1.2. �

4.2. Four-ball genus of Montesinos knots. Let K be a knot in S3 and let
g denote its Seifert genus. The four-ball genus g∗ of K is the minimal genus of
a smooth surface in B4 with boundary K. A classical result of Murasugi states
that g∗ ≥ |σ|/2, where σ is the signature of K. If this lower bound is attained
then the double branched cover of S3 along K bounds a definite four-manifold
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with signature σ. The double branched cover of the Montesinos knot or link
M(e; (α1, β1), (α2, β2), (α3, β3)) is Y (−e; (α1, β1), (α2, β2), (α3, β3)). (For more
details see [8].)

The following generalises an example of Fintushel and Stern [4].

Example 4.11. The pretzel knot K(p,−q,−r) = M(2; (p, 1), (q, q−1), (r, r−1))
for odd p, q and r satisfying

q, r > p > 0 and pq + pr − qr is a square

is algebraically slice but has g∗ = 1.

Proof. The knot has a genus 1 Seifert surface yielding the Seifert matrix

M =

(p−r
2

p+1
2

p−1
2

p−q
2

)

.

The vector x = (p − l, r − p), where l =
√
pq + pr − qr, satisfies xTMx = 0,

demonstrating the knot is algebraically slice. The double branched cover Y of
the knot has k(Y ) = −l2. From Example 4.6 we see that Y does not bound a
rational homology ball. It follows that 0 < g∗ ≤ g = 1.

It is shown by Livingston [7] that K(p,−q,−r) has τ = 1, where τ is the
Ozsváth-Szabó knot concordance invariant. This also gives g∗ = 1. �

In the following example m(K) refers to a knot invariant due to Taylor (see
for example [8]). This is computable from any Seifert matrix for K and satisfies
the inequalities

g∗ ≥ m ≥ |σ|/2.

Example 4.12. The Montesinos knot Kq,r = M(2; (qr−1, q), (r+1, r), (r+1, r))
with odd q ≥ 3 and even r ≥ 2, has signature σ = 1− q and has

g = g∗ =
q + 1

2
.

Computations suggest that Taylor’s invariant m(Kq,r) is
q−1
2 .

Proof. The knot Kq,r is equal to M(0; (qr − 1, q), (r + 1,−1), (r + 1,−1)). It is

easily seen that Kq,r has a spanning surface with genus q+1
2 . Using the resulting

Seifert matrix one gets the formula for the signature. The double branched cover
Y of Kq,r has k(Y ) < 0. From Example 4.6 we see that Y does not bound a
negative-definite four-manifold; the genus formula follows.

We have computed m(Kq,r) for q < 10000 and any r. �

Remark 4.13. We have discussed Conjectures 2.1 and 2.2 with Noam Elkies.
He has suggested an alternative proof of Theorem 3.1 using gluing of lattices [3].
His proof works for odd determinants δ up to 11, under the additional assumption
that there is an element of L′ whose square is congruent to 1/δ modulo 1.

A proof of Conjecture 2.2, using gluing of lattices, will appear in [9].
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