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Concordance groups of links

ANDREW DONALD

BRENDAN OWENS

We define a notion of concordance based on Euler characteristic, and show that
it gives rise to a concordance groupL of links in S3, which has the concordance
group of knots as a direct summand with infinitely generated complement. We
consider variants of this using oriented and nonoriented surfaces as well as smooth
and locally flat embeddings.

57M25, 57M27, 57N70

1 Introduction

A knot K in S3 is slice if it bounds a smoothly embedded disk∆ in the four-ball; it is
topologically slice if it bounds a locally flat embedded disk. Two oriented knotsK0,
K1 areconcordantif the connected sum−K0#K1 of one with the reverse mirror of
the other is slice. This is an equivalence relation, and Fox and Milnor showed that the
set of equivalence classes forms a groupC under connected sum [11, 12]. Our goal
in this paper is to generalise this construction in a naturalway to links. The starting
point is Lisca’s work [23, 24] on two-bridge links and lens spaces, as well as earlier
work of Florens [9, 10]. These indicate that the following is a natural generalisation of
sliceness to links.

Definition 1 A link L in S3 is χ-slice1 if L bounds a smoothly properly embedded
surfaceF in D4 without closed components, and withχ(F) = 1. If L is oriented we
requireF to be compatibly oriented.

Some examples ofχ-slice links are shown in Figure1. Note we do not in general
require thatF is connected or oriented. Observe however that ifL is a knot thenF is
a disk, so this notion of sliceness coincides with the usual one.

The set of oriented knots is an abelian monoid under connected sum, together with an
involution K 7→ −K . We wish to endow the set of links with a compatible monoid

1This is calledgeometrically bordantin [10], in the case that the surfaceF is orientable.

http://www.ams.org/mathscinet/search/mscdoc.html?code=57M25, 57M27, 57N70
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Figure 1: Some links boundingχ = 1 surfaces in the four-ball: connected
sum of two Hopf links, (2, 4)-torus link, Borromean rings and connected sum
of Hopf and Whitehead links.

with involution structure. We use the termpartly oriented linkto denote a link with a
marked oriented component and the remaining components unoriented, and the term
marked oriented linkto denote an oriented link with a marked component. Connected
sum is well-defined for these sets of links using the marked components. We define
−L to be the mirror ofL, with orientations reversed.

H = L1 =

H̃ = L̃1 =

Figure 2: Two partly oriented links H and L1 and two marked oriented links H̃ and L̃1 .

This gives the following commutative diagram of monoids with involution, where the
vertical arrow is the map given by forgetting the orientation on nonmarked components.
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We wish to quotient each of these link monoids by a suitable submonoid such that
the maps in (1) induce inclusions of the knot concordance groupC into two different
concordance groups of links. Roughly speaking we would liketo quotient out byχ-
slice links, but it turns out we must be a little more careful in order to get an equivalence
relation, and to preserve connected sums.

Definition 2 Let L0 and L1 be partly oriented or marked oriented links. We sayL0

and L1 are χ-concordant, written L0 ∼ L1, if −L0#L1 bounds a smoothly properly
embedded surfaceF in D4 such that

• F is a disjoint union of one disk together with annuli and Möbius bands;

• the boundary of the disk component ofF is the marked component of−L0 #L1;

• in the marked oriented case, we requireF to be oriented and−L0 #L1 to be the
oriented boundary ofF .

Note thatχ-concordance agrees with the usual definition of smooth concordance ifL0

andL1 are both knots. AlsoL0 ∼ L1 implies that−L0#L1 is χ-slice, but the converse
does not hold. We will elaborate on this point in Section6. We have the following
basic results.

Theorem 1 The set ofχ-concordance classes of partly oriented links forms an abelian
group

L ∼= C ⊕ L0

under connected sum which contains the smooth knot concordance groupC as a direct
summand. The inclusionC →֒ L is induced by the inclusion of oriented knots into
partly oriented links.

The complementL0 of C in L contains aZ/2 direct summand and aZ∞ ⊕ (Z/2)∞

subgroup.

Theorem 2 The set ofχ-concordance classes of marked oriented links forms an
abelian group

L̃ ∼= C ⊕ L̃0

under connected sum which contains the smooth knot concordance groupC as a direct
summand (withC →֒ L̃ induced by the inclusion of oriented knots into marked oriented
links). Forgetting orientations on nonmarked components induces an epimorphism
L̃ → L. In other words, we have the following group homomorphisms induced by(1):



CONCORDANCE GROUPS OF LINKS 4

C

L

L̃

�
t

''❖❖
❖❖

❖❖
❖❖

❖❖

*




77♦♦♦♦♦♦♦♦♦♦

����

The complement̃L0 of C in L̃ contains aZ⊕Z/2 direct summand and aZ∞ subgroup.

We find that many familiar tools from the study of knot concordance are applicable to
these link concordance groups. LetN < L andÑ < L̃ be the subgroups consisting of
classes represented by links with nonzero determinant. More generally forω ∈ S1\{1}
we let Ñω < L̃ be the subgroup of links with vanishing Levine-Tristram nullity nω ,
so thatÑ = Ñ−1. The following contains a collection of invariants that maybe used
in studyingL and L̃.

Theorem 3 Taking total linking number with the marked component giveshomomor-
phisms

l : L → Z/2,

l̃ : L̃ → Z.

Taking double branched covers gives group homomorphisms

F : N → Θ
3
Q,

F̃ : Ñ → Θ
3
Q,Spin

to the rational homology cobordism group (resp., spin rational homology cobordism
group) of (spin) rational homology three-spheres. Link signature and the Ozsváth-
Szab́o correction term of a spin structure in the double branched cover, give homomor-
phisms

σ, δ : Ñ → Z.

The sumσ + δ is divisible by 8 for all links with nonzero determinant and is zero for
alternating links.

For each prime-power root of unityω ∈ S1 \ {1}, the Levine-Tristram signatureσω
gives a homomorphism from̃Nω to the integers.

We note also that the Fox-Milnor condition on the Alexander polynomial of slice knots
extends to links bounding certain surfaces of Euler characteristic one in the four-ball
[27, 10]. We are currently investigating, jointly with Stefan Friedl, possible extensions
of the Fox-Milnor obstruction.
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We also consider topological link concordance groupsLTOP and L̃TOP, where we
replace smooth with locally flat embeddings. We state topological versions of Theorems
1 and2 in Section4 but for now we note some examples, based on work of Davis and
Cha-Kim-Ruberman-Strle, distinguishing the two categories.

Theorem 4 Let K be an alternating knot with negative signature (for examplethe right
handed trefoil), and letC be a knot with Alexander polynomial one andδ(C) 6= 0 (such
as the Whitehead double of the right handed trefoil [25, Theorem 1.5]). The partly-
oriented linksL2#H andL3#Hshown in Figure3 are trivial inLTOP and nontrivial in
L.

Orienting all components ofL2#H and L3#H results in marked oriented links which
are trivial in L̃TOP and nontrivial inL̃, under the same hypotheses onK andC.

C

K

Figure 3: Partly oriented links L2#H and L3#H . The band shown passing
through the box marked K is tied in the knot K with zero framing (cf. [ 6]).

Given a pair of coprime integersp> q> 1 we may take a continued fraction expansion

p
q
= a1 −

1
a2 − .. .

− 1
am

.

The two-bridge link (or 4-plat)S(p,q) is obtained by closing the four string braid

σ−a1
2 σ−a2

1 σ−a3
2 σ−a4

1 . . . σ−am
i
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at each end with two bridges. Thus for exampleS(3,1) is the left handed trefoil. In
generalS(p,q) is a knot if p is odd or else a two component link. For more details on
two-bridge links see for example [5, Chapter 12].

In [23], Lisca proved the slice-ribbon conjecture for two-bridgeknots. His results also
covered the case of two-bridge links. Combining his work with an observation in this
paper yields the following slice-ribbon result for two-bridge links.

Corollary 5 Let S(p,q) be a two-bridge link. IfF is a smoothly properly embedded
surface inD4 with χ(F) = 1 and no closed components, bounded byS(p,q), then the
link also bounds a ribbon embedding ofF .

Related work. The problem of knots and links bounding non-orientable surfaces in the
four-ball has recently been considered by Gilmer-Livingston [14] who study connected
nonorientable surfaces bounded by a knot. Orevkov and Florens [27, 9, 10] have
considered the problem of links bounding orientable surfaces of Euler characteristic
one. Baader [3] has defined a notion of cobordism distance between orientedlinks
such thatχ-sliceness is equivalent to cobordism distance zero from the unknot.

Hosokawa [17] gave a different definition of a concordance groupH of links containing
C as a direct summand, following a suggestion of Fox. Hosokawaalso showed that

H ∼= C ⊕ Z,

in contrast to our results.

Acknowledgements. This paper was inspired by Lisca’s work on two-bridge links
and lens spaces. We are grateful to Stefan Friedl, Cameron Gordon, Matt Hedden,
Slaven Jabuka, Paul Kirk, Paolo Lisca, Swatee Naik and Jake Rasmussen for helpful
comments and conversations. We also thank the referee for a careful reading and
helpful suggestions.

2 A link concordance group using smooth surfaces inD4

In this section we prove Theorem1. We show thatχ-concordance gives rise to a group
L which contains the classical knot concordance group as a direct summand, and we
describe some group homomorphisms fromL. We begin by describingχ-concordance
using embedded surfaces in the cylinderS3 × [0,1].

Lemma 2.1 Partly oriented linksL0, L1 areχ-concordant if and only if there exists
a smoothly properly embedded surfaceF0 in S3 × [0,1] satisfying
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• F0 is a disjoint union of annuli, including one oriented annulus A, and Möbius
bands;

• F0 ∩ S3 × {i} = Li × {i}, i = 0,1;

• ∂A = ~K1 ×{1} ∪ ~K0
r ×{0}, where~Ki is the oriented component ofLi and~K0

r

denotes the knot~K0 with the opposite orientation.

Proof This follows from Definition2 as in the standard knot situation: one passes
between (D4,F) and (S3 × [0,1],F0) by drilling out an arc ofA or attaching a (3,1)-
handle pair.

Lemma 2.2 χ-concordance is an equivalence relation.

Proof For any partly oriented linkL, −L#L is χ-nullconcordant (χ-concordant to
the unknot) by the usual argument for knots. That is to say, the connected sum may
be arranged so that it is symmetric about a plane containing two points on the oriented
component−~K#~K . Rotating the link about this plane in four-dimensional half-space
(which is diffeomorphic to the punctured four-ball) yieldsa surfaceF which is a disjoint
union of a disk bounded by−~K#~K and one annulus for each unoriented component of
L.

Symmetry is immediate from Definition2: applying an orientation reversing diffeo-
morphism to the four-ball takes a surface bounded by−L0#L1 to one bounded by
−L1#L0. Transitivity follows by composing the cobordismsF0 from Lemma2.1. Any
resulting closed components may be discarded.

Lemma 2.3 The set ofχ-concordance classes of partly oriented links is an abelian
groupL under connected sum, which contains the knot concordance group as a direct
summand. The direct complementL0 consists of equivalence classes of partly oriented
links L whose oriented component~K is a slice knot. An isomorphism

L
∼
=

−→ C ⊕ L0

is given by
[L] 7→ ([~K], [−~K#L]).

Proof Connected sum is well-defined, abelian, and associative forpartly oriented
links, by a variant of the usual proof for knots (see e.g. [5, Chapter 7A]). Suppose that
L, L0 andL1 are partly oriented links, and thatL0 ∼ L1. Let F0 be the cobordism in
S3 × [0,1] betweenL0 and L1, as in Lemma2.1, with oriented annulus component
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A. Taking connected sum “along the annulus”A shows thatL0#L ∼ L1#L. It follows
that connected sum gives a well-defined operation onL. The identity is given by the
class of the unknot and the inverse of [L] is [−L]. The inclusion of oriented knots into
partly oriented links induces a monomorphismC → L sinceχ-concordance of knots
is the same as knot concordance. A splitting homomorphism isgiven by

[L] 7−→ [~K],

taking theχ-concordance class of a partly oriented link to the concordance class of
its oriented component. It follows that [L] is in the direct complementL0 if and only
if the oriented component ofL is slice. For any partly oriented linkL with oriented
component~K we have [−~K#L] ∈ L0 and

L ∼ ~K#−~K#L

by associativity, from which the stated isomorphism follows.

We obtain aZ/2-valued homomorphism fromL using mod 2 linking numbers via the
following lemma.

Lemma 2.4 Let L be a link inS3 bounding a smoothly properly embedded surfaceF
in D4, and suppose thatF = F1 ⊔ F2 is a disjoint union. This gives a decomposition
of L into L1 ⊔ L2, whereLi = ∂Fi . Then the total mod 2 linking number ofL1 with
L2 is zero, i.e. ∑

Ki in Li

lk(K1,K2) ≡ 0 (mod 2).

Proof We may assume the radial distance functionr on D4 restricts to give a Morse
function onF with values in [0.5,1]. Let (F1)t (respectively, (F2)t ) be the level set
of r restricted toF1 (resp. F2) for eacht , so that (Fi)1 = Li and (Fi)0.4 is empty.
The mod 2 sums(t) of the linking numbers of each component in (F1)t with each
component in (F2)t is constant with respect to regular valuest since this sum does not
change at a maximum or minimum and changes by an even number ata saddle point
of F . Thus, ∑

Ki inLi

lk(K1,K2) = s(1) ≡ s(0.4) = 0 (mod 2).

It follows from Lemma2.4 that we get a homomorphism

l : L −→ Z/2
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by taking
l([L]) =

∑

K′ 6=~K

lk(~K,K′),

where~K is the oriented component ofL. The Hopf linkH (with one marked oriented
component) satisfiesH = −H and l(H) = 1, and thus generates aZ/2 summand of
L0.

Example 2.5 Figure1 shows a ribbon immersed disk disjoint union annulus bounded
by the connected sum of the Hopf and Whitehead links. Howeverthe Hopf link has
mod 2 linking numberl = 1 while the Whitehead link has vanishingl . It follows
that their sum is nontrivial inL. This illustrates a subtlety of the definition ofL: the
connected sum of the Hopf and Whitehead links is a partly oriented link which bounds
a surfaceF in the four-ball withχ = 1. However it does not bound any such surface
with its oriented component bounding a disk component ofF .

We recall that the groupΘ3
Q consists of smooth rational homology cobordism classes

of rational homology three-spheres under connected sum. Two rational homology
three-spheresY0 andY1 are rational homology cobordant if−Y0#Y1 bounds a rational
homology four-ball, or equivalently if−Y0 and Y1 cobound a rational homology
S3 × [0,1].

We next show that taking double branched covers yields a group homomorphism

F : N → Θ
3
Q,

whereN is the subgroup ofL consisting of classes represented by links with nonzero
determinant. This is a consequence of the following proposition, which is proved in
Section5. A proof was given by Lisca in [23] for the case of ribbon embedded surfaces.

Proposition 2.6 Let L be a link in S3 with nonzero determinant which bounds a
smoothly (or topologically locally flat) properly embeddedsurfaceF in D4 without
closed components, and withχ(F) = 1. Then the double cover ofD4 branched along
F is a smooth (or topological) rational homology four-ball.

One consequence of Proposition2.6 is that the determinant of anyχ-nullconcordant
link is a square.

It remains to be seen thatL0 contains aZ∞ ⊕ (Z/2)∞ subgroup.

Proposition 2.7 The two-bridge links{S(q2 + 1,q) |q odd} generate a(Z/2)∞ sub-
group ofL0.
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Proof Each partly oriented linkL = S(q2 + 1,q) for q odd satisfiesL = −L and
therefore has order one or two inL; since q2 + 1 is not a square the order is two,
by Proposition2.6. The components of a two-bridge link are one-bridge and hence
unknots, thus a two-bridge link represents an element ofL0. We could appeal to
Lisca’s results [24] to see that there are no other relations among these links but there
is an easier argument using determinants.

We will show that the subgroup ofL0 generated by{S(q2 + 1,q) |q odd} is infinitely
generated and hence is isomorphic to (Z/2)∞ . Suppose we have some finite subset
{S(q2

i + 1,qi )}. Choose a primep congruent to 1 modulo 4 which does not divide
q2

i +1 for eachi . Since−1 is a quadratic residue modulop there exists an odd positive
q < p with q2 + 1 divisible by p but not byp2. It follows, again using Proposition
2.6, that S(q2 + 1,q) is not in the subgroup ofL0 generated by{S(q2

i + 1,qi )}.

Proposition 2.8 (Corollary of [24, Theorem 1.1]) The subgroup of the rational ho-
mology cobordism group of rational homology 3-spheresΘ3

Q generated by lens spaces
is infinitely generated. In particular the set

{L(2k,1) | k > 2}

is independent inΘ3
Q .

Proof This follows from [24, Theorem 1.1] since fork > 2, L(2k,1) is not contained
in any of Lisca’s familiesR or Fn.

The lens spaceL(2p,q) is the double branched cover of the two-bridge linkS(2p,q)
each of whose components is an unknot. Combining Propositions 2.6 and2.8 we see
that the two-bridge links

{S(2k,1) | k > 2}

generate aZ∞ subgroup ofL0. (An argument with determinants can be used to show
the subgroup these links generate is not finitely generated,without appealing to [24].
However we require Lisca’s result to see that these links have infinite order.) This
completes the proof of Theorem1.

3 Using smooth oriented surfaces

In this section we prove Theorem2, and complete the proof of Theorem3.
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We use the termmarked oriented linkfor an oriented link inS3 with one marked
component. The marked components are used when taking connected sums. The
reverse mirror ofL, preserving the marked component, is denoted−L. Marked oriented
links L0 and L1 areχ-concordant if−L0#L1 bounds an oriented smoothly properly
embedded disjoint union of a disk with annuli inD4, with the marked component
bounding the disk. Modifying Lemma2.1, this is equivalent toL0

r ×{0} andL1×{1}
being the oriented boundary of a disjoint unionF0 of properly embedded annuli in
S3 × [0,1], with one component ofF0 connecting the marked components. It follows
that L0 andL1 have the same number of components modulo two.

Lemmas2.2and2.3can be restated for the case of marked oriented links and the same
proofs apply. The group ofχ-concordance classes of marked oriented links is denoted
L̃. Comparing the definitions we see that if marked oriented links L andL′ represent
the same class iñL then the embedded surface giving rise to theχ-concordance
also gives rise to aχ-concordance between the partly oriented links obtained from L
andL′ by forgetting orientations on nonmarked components. This forgetful map also
commutes with connected sum and so gives rise to an epimorphism from L̃ to L.

Lemma 3.1 Let L be aχ-nullconcordant marked oriented link with marked compo-
nentK . Then

∑
lk(K,K′) = 0, where the sum is taken over all componentsK′ 6= K

of L.

Proof This follows from a modification of the proof of Lemma2.4, taking F to be a
surface inD4 witnessing theχ-nullconcordance, withF1 the disk component bounded
by K . In the oriented case the sum of linking numbers between the level set ofF1 and
that of F2 does not change at any critical point ofr|F .

It follows from Lemma3.1 that the total linking number with the marked component
gives a homomorphism

l̃ : L̃ → Z

which is a lift of l : L → Z/2. A homomorphismµ to Z/2 is given by taking one
plus the number of components of a link modulo two.

The marked oriented (positive) Hopf linkH has l = µ = 1 and the marked oriented
two component unlinkU has l = 0, µ = 1 and order two inL̃. Thus these two links
generate aZ⊕ Z/2 summand ofL̃0.

Let ω ∈ S1\{1} be a prime-power root of unity. The Levine-Tristram signatureσω and
nullity nω are defined to be the signature and nullity of (1− ω̄)M + (1− ω)MT where



CONCORDANCE GROUPS OF LINKS 12

M is a Seifert matrix forL. It follows that both of these invariants are additive under
connected sum of marked oriented links. The nullity is invariant and the signature
changes sign underL 7→ −L. We let Ñω be the subgroup consisting of elements with
a representative with zero Levine-Tristram nullitynω (or equivalently, withω not a
root of the one-variable Alexander polynomial).

Lemma 3.2 Let L be an oriented link withnω(L) = 0. If L is χ-slice thenσω(L) = 0.
It follows that the Levine-Tristram signature gives a homomorphism

σω : Ñω → Z.

Proof The vanishing of the Levine-Tristram signature for aχ-slice link with nω(L) =
0 follows directly from the Murasugi-Tristram inequality,see [36, Theorem 2.27], also
[19, 13, 10, 7].

In [37, §2.2], Turaev constructed a bijection from the set of quasiorientations (orien-
tations up to overall reversal) on a linkL in S3 to the set of spin structures on the
double-branched coverΣ2(S3,L). In the following Proposition, the proof of which
closely follows [37], we extend this map to the case of an orientable surface in the
four-ball.

Proposition 3.3 Let F be an oriented smoothly properly embedded surface inD4

and letN be the double cover ofD4 branched alongF . There is a natural bijective
correspondence between quasiorientations ofF and spin structures onN. The spin
structure on∂N determined by the induced orientation on the linkL = ∂F ⊂ S3

admits an extension overN, which is unique ifF has no closed components.

Proof Let F1, . . . ,Fm be the components ofF and letµi be an oriented meridian of
Fi . The first homology ofD4 \ F is freely generated overZ by the meridians. Let
γ : H1(D4 \F) → Z be the homomorphism taking each meridian to 1. Denoting byF̃
the preimage ofF in N, the double covering

π : N \ F̃ → D4 \ F

corresponds to the mod 2 reduction ofγ . Hence a loopl in D4 \ F lifts to N \ F̃ if
and only if γ([l]) is even. Thus

(2) h =
γ ◦ π∗

2
(mod 2)

is an element ofH1(N \ F̃;Z/2) ∼= Hom(H1(N \ F̃),Z/2).
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Choose a meridional diskDi for each surface componentFi , with ∂Di = µi . Let D̃i

and µ̃i be the preimages ofDi and µi in N. A spin structures on N \ F̃ extends
uniquely overN if and only if its restriction to ˜µi extends over̃Di for eachi .

The frame bundle Fr(S1) of S1 is a copy ofS1. There are two spin structures on the
circle corresponding to the two double covers of Fr(S1). The unique spin structure on
D2 restricts to the nontrivial spin structure onS1. The pullback of this nontrivial spin
structure to the nontrivial double cover ofS1 is trivial.

Let s̃ be the spin structure onN \ F̃ pulled back fromD4 \ F . The spin structure on
D4 restricts to the nontrivial spin structure on eachµi , which pulls back to the trivial
spin structure on ˜µi . Thus s̃ does not extend over̃Di . However sinceh(µ̃i ) = 1 for
eachi , the spin structurẽs + h extends overN. The proof that this gives a bijection
between quasiorientations ofF and Spin(N) follows [37]: given two componentsFi

and Fj of F , changing orientation on just one of them will change the value of h on
a lift of µi + µj . This proves injectivity, and surjectivity follows since the order of
H1(N;Z/2) is 2m−1 (see for example [21, Theorem 1]).

The spin structure onY = Σ2(S3,L) described by Turaev in [37] is defined in exactly
the same way:γL : H1(S3 \ L) → Z takes each oriented meridian to 1 and this defines
hL ∈ H1(Y \ L̃;Z/2) as in (2). The spin structure pulled back fromS3, twisted byhL ,
extends uniquely overY. It is clear that this is the restriction ofs̃+ h. The uniqueness
of the extension in the case thatF has no closed components follows since restriction
of quasiorientations fromF to ∂F is injective.

Recall that the groupΘ3
Q,Spin consists of smooth spin rational homology cobordism

classes of spin rational homology three-spheres under connected sum. Two spin rational
homology three-spheresY0 and Y1 are spin rational homology cobordant if−Y0#Y1

bounds a spin rational homology four-ball, or equivalentlyif −Y0 and Y1 cobound a
spin rational homologyS3 × [0,1].

Given a marked oriented linkL with nonzero determinant, letsL denote the spin
structure onΣ2(S3,L) determined by the orientation ofL as in the proof of Proposition
3.3. It is not hard to see thatsL#L′ = sL#sL′ . If marked oriented linksL and L′ with
nonzero determinant areχ-concordant then by Propositions2.6 and3.3 we see that
(Σ2(S3,L), sL) is spin rational homology cobordant to (Σ2(S3,L′), sL′ ). Thus takingL
to the pair (Σ2(S3,L), sL) gives a group homomorphism

F̃ : Ñ → Θ
3
Q,Spin

from the subgroup ofL̃ represented by links with nonzero determinant to the spin
rational homology cobordism group of spin rational homology three-spheres.
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For a marked oriented linkL with nonzero determinant we define

δ([L]) = 4d ◦ F̃([L]) = 4d(Σ2(S3,L), sL),

whered is the correction term invariant of Ozsváth and Szab́o [28]. This is a composi-
tion of homomorphisms and thus a homomorphism fromÑ to Q. For a knotK , this is
double the concordance invariant studied in [25]; the basic properties ofδ for links are
established in a similar manner. From [19] and Proposition3.3, (Σ2(S3,L), sL) is the
boundary of the spin four-manifold given as the double branched cover ofD4 along a
Seifert surface forL; moreover the signature of this manifold is equal to the signature
of L. By [28, Theorem 1.2], it follows thatδ(L) is an integer and is congruent to minus
the signature ofL modulo 8.

Lemma 3.4 Let L be a nonsplit oriented alternating link. Thenσ(L) + δ(L) = 0.

Proof In the special case thatL is an arborescent link associated to a plumbing
graph with no bad vertices, this follows from results of Saveliev [34, Theorem 5] and
Stipsicz [35, Theorem 1.4], each of whom show that one ofσ(L), −δ(L) is equal to
the Neumann-Siebenmannµ-invariant of the plumbing tree.

We follow the proof of [25, Theorem 1.2] which establishes the result for alternating
knots. One may use the negative-definite Goeritz matrixG of an alternating diagram
for L to compute the signature, by a theorem of Gordon-Litherland[15], and also to
compute the correction terms of the double branched cover byresults of Ozsv́ath-Szab́o
[30, Proposition 3.2].

The proof given in [25] may be adapted virtually without change to the case of an
oriented alternating link and leads to the conclusion

σ(L) + 4d(Σ2(S3,L), s′L) = 0,

for somespin structures′L on the double branched cover. We will describes
′
L in terms

of a 4-manifold bounded byΣ2(S3,L) and confirm that it issL .

Choose an alternating diagram ofL and colour the complementary regions black and
white in chessboard fashion, with white regions to the left of the overpass after crossings
as shown in Figure4. Let X denote the double cover ofD4 branched along the properly
embedded surface obtained by pushing the interior of the black surface into the interior
of D4. There is a simple procedure (cf. [30]) for obtaining a Kirby diagram ofX from
the given diagram ofL: each crossing is replaced by a clasp as in Figure5, resulting
in a link with one component for each white region. The framing on each link is
minus the number of crossings adjacent to the correspondingwhite region. These are
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the two-handles ofX; we then add a single three-handle. Choose one white region
at random and label itr0. The two-handle corresponding to this region may be slid
off the other two-handles and cancelled with the three-handle. The intersection form
in the basis given by the remaining two-handles is given by the Goeritz matrix of the
diagram, withr0 as the “region at infinity”. We note each two-handle is attached along
an unknot and therefore there is a two-sphere inX obtained by gluing the core of the
two handle to a disk inD4 bounded by the attaching circle.

The spin structures′L is described by a characteristic sublink of this diagram. Given
any two white regions in the alternating diagram one may connect them by a path
consisting of crossings in the diagram. The orientation of the link determines a subset
Sof the white regions as follows: a regionr is in S if there is a path fromr0 to r using
an odd number of negative crossings (and any number of positive crossings). This in
turn determines a sublinkC of the Kirby diagram forX consisting of the components
corresponding to regions inS. It is easy to verify (see [25]) that this is a characteristic
sublink, or in other words if we letΣ be the union of two-spheres inX corresponding
to the components ofC then there is a spin structure onX \ Σ which does not extend
over Σ, i.e. which restricts to the trivial spin structure on any meridian of Σ. The
restriction of this spin structure to the boundary ofX is s

′
L .

To verify thats′L = sL we compare their restrictions to lifts of sums of two meridians
of L. It suffices to consider curves such asλ in Figure5 which link two adjacent white
regionsr, r ′ . This lifts to λ̃ in the Kirby diagram forX, shown also in Figure5. It
follows thats′L restricts to the trivial spin structure oñλ if and only if r andr ′ are both
in or both not inS. This is in turn equivalent tohL (as in the proof of Proposition3.3)
being nonzero, andsL having trivial restriction, oñλ.

Figure 4: Colouring convention for alternating diagrams.

We will use the homomorphisms̃l , σ and δ to exhibit a direct summand of̃N0 (this
is the subgroup of̃L represented by links with nonzero determinant and slice marked
component).
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−2

−2

−2

 ∪ 3-handle

λ λ̃

Figure 5: A link diagram and the double cover of D4 branched along the black
surface, showing the preimage of a curveλ.

The marked oriented links̃H and L̃1 from Figure2 have

(l̃, σ, δ)(H̃) = (1,−1,1)

(l̃, σ, δ)(L̃1) = (1,0,0).

Let L4 be the Montesinos link (see for example [25]) given by plumbing twisted bands
according to the positive-definite plumbing graph shown in Figure6. Each of its three
components is an unknot and its determinant is 4. The values of σ and δ for the four
quasiorientations onL4 may be computed using the plumbing graph ([34, Theorem 5],
[29, Corollary 1.5]); these turn out to be

σ = −8,0,0,4

δ = 0,0,0,−4.

It follows that H̃ , L̃1 andL4 (with some choice of orientation) generate aZ3 summand
of the direct complement̃N0 of C in Ñ .

1

22

2

4

6

Figure 6: The plumbing diagram for the Montesinos link L4 .
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A Z∞ subgroup ofL̃0 is given by a marked oriented version of that previously exhibited
in L0, i.e. it is generated by marked oriented two-bridge links

{S(2k,1) | k > 2}.

For an alternative argument that these links are independent in L̃, using Levine-Tristram
signatures, see the proof of Theorem4.2.

This completes the proof of Theorem2.

Remark 3.5 We note that the two-bridge linksS(q2 + 1,q) which were shown in
Proposition2.7 to generate(Z/2)∞ < L0 have nonzerõl and hence infinite order in
L̃.

Remark 3.6 The homomorphismsσ andδ do not directly “see” the marked compo-
nent of a marked oriented link but can give information aboutit nonetheless. There
is an involutionρ on L given by reversing orientation. This has two liftsρ̃ and ρ̃′

to L̃: the former by reversing the orientation of the marked component and the latter
by reversing the orientation on all components. A necessarycondition for a marked
oriented linkL to be trivial in L̃ is for σ andδ to vanish onL and also onρ̃(L). This
can be used to show which component of the connected sum of Hopf and Whitehead
links (see Figure1) may be marked for that link to be trivial iñL (though in this
example that is also determined by linking numbers, cf. Example 2.5).

Remark 3.7 One might also expect to obtain homomorphismsFpk from some sub-

group of L̃ to the rational homology cobordism group of rational homology three-
spheres, and possibly also to the spin cobordism groupΘ3

Q,Spin, by taking prime power
branched covers. One could then extend Jabuka’s homomorphisms [18]

δpn : C → Z

to a suitable subgroup of the link group̃L.

Remark 3.8 As we have seen, forgetting orientations on nonmarked components
gives a surjection from marked oriented links to partly oriented links, inducing an
epimorphism fromL̃ to L. One could also forget which component is marked, giving
a surjection from marked oriented links to oriented links. We note this doesnot induce
a homomorphism from̃L to Hosokawa’s link concordance groupH [17]. For example
the rightmost link in Figure1 is trivial in L̃ (with appropriate choice of orientation and
marked component), however it is nontrivial in Hosokawa’s group with any chosen
orientation since the sum of its pairwise linking numbers is±1 (it is shown in [17]
that this sum gives an epimorphism onto the direct complement of C in Hosokawa’s
group).
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4 Using locally flat surfaces

Replacingsmoothwith locally flat in Definition2 leads to topological link concordance
groupsLTOP andL̃TOP. We have the following topological versions of Theorem1 and
Theorem2:

Theorem 4.1 The set of locally flatχ-concordance classes of partly oriented links
forms an abelian group

LTOP
∼= CTOP⊕ (LTOP)0

under connected sum which contains the topological knot concordance groupCTOP as
a direct summand (withCTOP →֒ LTOP induced by the inclusion of oriented knots into
partly oriented links).

The complement(LTOP)0 of CTOP in LTOP contains a(Z/2)∞ subgroup.

Theorem 4.2 The set of locally flatχ-concordance classes of marked oriented links
forms an abelian group

L̃TOP
∼= CTOP⊕ (L̃TOP)0

under connected sum which contains the topological knot concordance groupCTOP as
a direct summand (withCTOP →֒ L̃TOP induced by the inclusion of oriented knots into
marked oriented links). Forgetting orientations on nonmarked components induces a
surjectionL̃TOP → LTOP.

The complement(L̃TOP)0 of CTOP in L̃TOP contains aZ/2 direct summand and aZ∞

subgroup.

Proof of Theorem 4.1 Most of the proof is the same as that of Theorem1, in particular
Lemmas2.2and2.3apply without modification. Proposition2.6gives us a topological
version of the branched double cover homomorphismF . Proposition2.7 shows that
the two-bridge links{S(q2 + 1,q)} generate a (Z/2)∞ subgroup in (LTOP)0.

One could presumably reprove Lemma2.4 using a mod 2 count of intersections of
locally flat surfaces and hence recover aZ/2 summand of (LTOP)0 as in the smooth
case. One can also show using linking forms and results from [2] or [26] that the
two-bridge links{S(2k,1) | k ≡ 3 (mod 4)} generate an infinitely generated subgroup
of (LTOP)0 consisting of elements of order at least 4.
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Proof of Theorem 4.2 This largely follows the proof of Theorem2 but this time we
make use of Levine-Tristram signatures to establish that the two-bridge links

{S(2k,1) | k > 0},

oriented so that the linking number is+k, are linearly independent iñLTOP.

The Levine-Tristram signatures of these links are computedby Przytycki in [32, Exam-
ple 11]. In particularσω(S(2k,1)) is a locally constant function ofω and changes when
ψ = (1−ω)/|1−ω| satisfiesψ4k = 1 andψ 6= ±1. Suppose

∑n
i=1 aiσ(S(2ki ,1)) = 0

for some integersai , with 0 < k1 < · · · < kn and an 6= 0. Choosingω such that
ψ = exp(it) with t ∈ [π/2kn, π/2kn−1], we find

n∑

i=1

aiσω(S(2ki ,1)) = an(σω(S(2kn,1))− σ(S(2kn,1))) 6= 0.

Linear independence iñLTOP then follows from Lemma3.2, which also holds in the
locally flat case.

Proof of Theorem 4 Each of the links shown in Figure3 is a connected sum of a
partly oriented linkLi and the Hopf linkH , and eachLi is a 2-component link with
the same linking number as the Hopf link.

Suppose that the partly oriented linkLi#H is (smoothly)χ-nullconcordant. Thus it
bounds a smoothly embedded surfaceF in D4 which is either one disk and two M̈obius
bands, or a disk and an annulus, in each case with the marked component bounding
the disk. The first possibility is ruled out by linking numbers as in Lemma2.4, and the
second is equivalent to existence of a concordance in the traditional sense, given by
two properly embedded annuli inS3 × I , betweenLi andH . This is ruled out in the
case ofL3 sinceδ(C) 6= 0 impliesC is not slice, and is ruled out in the case ofL2 by
recent work of Cha-Kim-Ruberman-Strle [6].

Each of L2 and L3 has Alexander polynomial one ([6]) and hence is locally flatly
concordant (in the traditional sense and hence alsoχ-concordant) to the Hopf link by
a theorem of Davis [8], from which it follows thatLi#H is trivial in LTOP and (with a
choice of orientation) iñLTOP.

5 Double branched covers of the four-ball

The following is a slight generalisation of Proposition2.6.
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Proposition 5.1 Let F be a locally flat properly embedded surface inD4 with no
closed components and Euler characteristicn. Suppose that the boundary ofF is a
link L with non-zero determinant. Then the double cover ofD4 branched alongF has
b1 = b3 = 0 andb2 = 1− n.

Note that the surface here does not have to be connected or oriented. In the case where
F is a ribbon surface withn = 1 this is proved in [24, Lemma 3.6]. For smoothly
embeddedF one could appeal to [21]. It follows from Proposition5.1 that theslice
Euler characteristicχs(L) of a link with nonzero determinant is bounded above by 1
(presumably this is well-known). Hereχs(L) is the maximal Euler characteristic of a
(smooth) surfaceF as in Proposition5.1.

Proof The general strategy of the proof follows that of [19, Theorem 3.6]. Let
N = Σ2(D4,F) be the double cover ofD4 branched alongF . We will constructN by
taking a double cover ofD4 \ νF , using a Gysin sequence to compute the homology,
before regluing a copy ofνF . We useZ/2 coefficients throughout.

The pair (D4,S3) can be decomposed as (D4 \ F ∪ νF,S3 \ L ∪ L × D2). Applying
the relative Gysin and Mayer-Vietoris sequences gives an isomorphism

(3) H1(∂νF,L × S1) ∼= H1(F,L),

and also
H1(D4 \ F,S3 \ L) = 0.

In addition the isomorphism in (3) is induced by the inclusion of∂νF into νF .

The relative Gysin sequence [1, Theorem 11.7.36] can also be applied to the pair
(D4 \ F,S3 \ L) with the real line bundle associated to the double cover. The relevant
part of the Gysin sequence is

H1(D4 \ F,S3 \ L) → H1(D̃4 \ F, S̃3 \ L) → H1(D4 \ F,S3 \ L),

whenceH1(D̃4 \ F, S̃3 \ L) = 0.

This can be used to calculate the Betti numbers ofN, which is constructed from the
double cover ofD4 \ F by attachingD2 × F . Applying the Mayer-Vietoris sequence
again gives

0 → H1(N, ∂N) → H1(D̃4 \ F, S̃3 \ L) ⊕ H1(F,L) → H1(∂νF,L × S1) → . . . .

Combining this with (3) we see thatH1(N, ∂N) = 0. SinceN is compact and orientable
with rational homology sphere boundary, we have

b1(N) = b3(N) = 0.
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The Euler characteristic ofN is given byχ(N) = 2χ(D4)−χ(F) = 2−n, from which
we see thatb2(N) = 1− n.

Proof of Corollary 5 Assumep is even, since the odd case was established in [23].
In order to have the correct Euler characteristic and numberof boundary components,
F must be the union of a disk and a Möbius band. By Proposition5.1, the double cover
of D4 branched overF is a rational homology ball and is bounded by the lens space
L(p,q). By a result of Lisca [23, Theorem 1.2], there is a ribbon embedding ofF in
D4.

In the wake of Lisca’s work, the slice-ribbon conjecture wasestablished by Greene and
Jabuka for three-strand pretzel knotsP(a,b, c) with a,b, c odd [16], and by Lecuona
for a different family of 3-tangle Montesinos knots [20]. It seems likely that their
methods may be combined with Proposition2.6 to prove a statement analagous to
Corollary5 for some 3-tangle Montesinos links.

6 Quotients of monoids with involution

The reader may have noticed that we have made use of various topological obstructions
to a link beingχ-slice, that is being the boundary of a properly embedded surface F
of Euler characteristic one inD4. Most of these obstructions do not take account of
the marked component. One may ask, why not simply take the quotient of links by
χ-slice links?

The first point to note is that in order for connected sum usingmarked components to
be well-defined on the quotient (see Lemma2.3), we need to specify that the marked
component of aχ-slice link is the boundary of a disk component ofF . The second
point regards transitivity of theχ-concordance relation. This may be understood in
terms of the following simple lemma about monoids with involution.

Lemma 6.1 Let (A,#,−) be a commutative monoid with involution and letB ⊂ A
be a submonoid closed under−. Let A/B denote the quotient ofA by

a1 ∼ a2 ⇐⇒ a1#b1 = a2#b2, for somebi ∈ B.

ThenA/B is an abelian group with−[a] = [−a] , and the equivalence relation can be
rewritten as

a1 ∼ a2 ⇐⇒ −a1#a2 ∈ B,

if the following conditions hold:
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(1) −a#a ∈ B, for all a ∈ A, and

(2) a#b,b ∈ B =⇒ a ∈ B.

Conversely, suppose there is a morphism of monoids with involution from A to a group,
where the involution on the group is given by sending each element to its inverse. The
kernel is a submonoid with involution satisfying(1) and (2).

Proof Straightforward exercise.

For example, one may takeA to be oriented knots, withB given by slice knots. One
may also takeA to be partly oriented or marked oriented links, withB given byχ-
nullconcordant links as in Definition2. As the following lemma shows, the smallest
submonoid satisfying the conditions of Lemma6.1which containsχ-slice links is “too
large”, in that the resulting quotient would be an uninteresting extension of the knot
concordance group.

Lemma 6.2 Let L be a partly oriented link with marked oriented componentK , and
let H be the Hopf link. Then for somel ∈ {0,1} and some unlinkU , L#−K#lH#U
is χ-slice. The same conclusion holds withl ∈ Z if L is a marked oriented link.

Proof The marked component (call itK′ ) of L′ = L#−K#lH is slice and has linking
number zero (respectively even) withL′ \ K′ , if l = −lk(L,K) (resp., modulo 2).
Let ∆ be a slice disk, and letF be a smoothly properly embedded orientable surface
bounded byL′ \ K′ , intersecting∆ transversely with algebraic intersection number
zero (resp., even). Adding handles toF to remove intersection points in pairs results
in an orientable (resp., a possibly nonorientable) embedded surfaceF′ bounded byL′

with Euler characteristicm, which we may assume to be negative after adding some
extra handles. Connect summingL′ with an unlink, and boundary summingF′ with a
union of disks, gives the result.

7 Open questions

Here are a few questions that seem interesting to the authors.

• What are the orders of the Whitehead link inL and the Borromean rings inL or
L̃? Their branched double covers have orders 2 and 1 inΘ3

Q . The referee pointed
out that since the Whitehead link has nonvanishing signature it has infinite order
in L̃ by Lemma3.2.
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• Is there any interesting torsion (not resulting from negative amphichiral links)
in eitherL or L̃?

• Does the Rasmussens invariant [33] (see also [4, 22]) give a homomorphism
from L̃ (or some subgroup of̃L) to Z? Is there a generalisation of the Ozsváth-
Szab́o τ invariant [31] to links which gives such a homomorphism?
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