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H I G H L I G H T S

� We model genetic diversification of a multi-gene family by explicitly simulating the evolutionary processes of point mutation and gene conversion.
� We link the stochastic dynamics of diversification to the Wright–Fisher model in population genetics and the diffusion approximation.
� We compare simulations and the diffusion approach across many relevant parameter regimes, showing a very good match for large family size, long
gene sequences and small relative conversion tract length.

� We apply the diffusion approximation to estimate rates of diversification within the antigen gene family of African trypanosomes.
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a b s t r a c t

Genetic diversity in multigene families is shaped by multiple processes, including gene conversion and
point mutation. Because multi-gene families are involved in crucial traits of organisms, quantifying the
rates of their genetic diversification is important. With increasing availability of genomic data, there is a
growing need for quantitative approaches that integrate the molecular evolution of gene families with
their higher-scale function. In this study, we integrate a stochastic simulation framework with population
genetics theory, namely the diffusion approximation, to investigate the dynamics of genetic diversifica-
tion in a gene family. Duplicated genes can diverge and encode new functions as a result of point
mutation, and become more similar through gene conversion. To model the evolution of pairwise
identity in a multigene family, we first consider all conversion and mutation events in a discrete manner,
keeping track of their details and times of occurrence; second we consider only the infinitesimal effect of
these processes on pairwise identity accounting for random sampling of genes and positions. The purely
stochastic approach is closer to biological reality and is based on many explicit parameters, such as
conversion tract length and family size, but is more challenging analytically. The population genetics
approach is an approximation accounting implicitly for point mutation and gene conversion, only in
terms of per-site average probabilities. Comparison of these two approaches across a range of parameter
combinations reveals that they are not entirely equivalent, but that for certain relevant regimes they do
match. As an application of this modelling framework, we consider the distribution of nucleotide identity
among VSG genes of African trypanosomes, representing the most prominent example of a multi-gene
family mediating parasite antigenic variation and within-host immune evasion.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Quantifying the contributions of different evolutionary processes
to the generation of genetic diversity is important to understand the

evolution, adaptation and persistence of organisms. Key functions
are often encoded by multi-gene families such as the major
histocompatibility complexes (MHC) in man and mouse, the Amy
multigene family of Drosophila melanogaster, and variable antigen
genes of parasites such as Plasmodium falciparum and African
trypanosomes. Typically multigene families contain genes that have
arisen primarily via gene duplication, a driving force in molecular
evolution (Ohno, 1970; Lynch and Conery, 2000; Bailey et al., 2002).
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Gene duplication is then followed by gene conversion and point
mutation, besides other processes such as unequal crossing over,
recombination, random genetic drift and selection. Gene conversion
is a special type of non-reciprocal transfer of genetic material in
which one segment of DNA contributes genetic information to
another, making the recipient location identical to the donor, but
not altering the donor sequence. This process is very important for
the concerted evolution of gene families and the functions they
encode across organisms (Ohta, 2010). The combined effects of gene
conversion and point mutation determine the diversification of
duplicated genes, with gene conversion playing a major role in
accelerating the spread of beneficial mutations through all gene
family members.

Theoretical treatment of concerted evolution of multigene
families presents many challenges, because the pattern of poly-
morphism in multigene families is much more complicated than
that in single-copy genes. However some major advances using
population genetic approaches were accomplished as early as the
1970s and 80s (Ohta, 1976, 1983; Nagylaki, 1984; Walsh, 1983), and
modern approaches using the coalescent to understand multigene
family complexity and evolution are increasing (see e.g. Griffiths
and Watterson, 1990; Innan, 2002). Typical population genetic
analyses focus on fixation probabilities of alleles and equilibrium
identity coefficients under different scenarios (Mano and Innan,
2008; Innan, 2009). The picture of evolution gets complicated
when the gene copy number is not constant in time (see Tachida
and Kuboyama, 1998 for a gene duplication model), when gene
conversion occurs in a biased or sequence dependent manner
(Walsh, 1983, 1987), when mutation is biased and when selective
forces are at play.

Although many characteristics of identity coefficients have
been modelled, the temporal dynamics driving gene families
towards such equilibria have usually received more minor atten-
tion, and simulation of idealized single-nucleotide events, rather
than explicit whole genetic events has generally been adopted,
with few exceptions (Innan, 2002). Because of analytical tract-
ability, small multigene families with two copies of genes have
been modelled more frequently, and distribution of allele frequen-
cies between genomes rather than within genomes have been
investigated. Depending on whether gene homology is studied by
nucleotide identity or amino-acid identity, a K-allele model
(Kimura and et al., 1968) or an infinite-allele model (Kimura and
Crow, 1964) have been used respectively.

With the increasing availability of genetic data comes the
challenge of quantifying the rates and characteristics of mutation,
gene conversion, and other evolutionary forces that shape gene
families from the molecular signatures they leave on DNA
sequences. The rate and tract length of gene conversion between
duplicated genes are among the most difficult parameters to infer.
The empirical approach usually requires mutation accumulation
experiments in transgenic model systems, while polymorphism
(SNP) data is usually analyzed from a more theoretical standpoint,
when DNA sequence data are available. More recently maximum
likelihood methods have been proposed that overcome the limita-
tion of estimates being model-dependent (Mansai et al., 2011).
Empirical approaches for estimating tract length of gene conver-
sions rely on identification of donor and recipient genes and
involve the analysis of selected markers (see Song et al., 2011 for
a recent review). In contrast, evolutionary data are not very
informative for the tract length, mainly because of their depen-
dence on the overall accumulation of footprints of historical gene
conversions that potentially overlap with one another.

In this study, we investigate the dynamics of within-genome
diversification of a multi-gene family as a result of only two recurring
processes: point mutation and gene conversion among its members.
We adopt two approaches, one based on simulation of discrete

events and the other based on a diffusion approximation to extract
information about the magnitude of genetic diversity attainable in a
family of genes, and how it depends on the rates and characteristics
of these evolutionary forces and on the family size. We analyze the
role of various parameters, such as gene length, family size and
conversion tract length in the distribution of pairwise identity in a
gene family. We link the classical Wright–Fisher model (Fisher, 1930;
Wright, 1931) to the dynamics of multigene family diversification,
providing an avenue for further quantitative exploration of genomic
evolution.

Finally, we apply our modelling framework to the nucleotide
diversity of antigen (VSG) genes in African trypanosomes, to
examine the interplay of gene conversion and point mutation
within a group of related genes, representative of a multi-gene
family that has originated through duplication. The overall dis-
tribution of genetic identity in this antigen gene family has two
main implications for the fitness of the parasite: first, it interferes
with higher-scale processes such as mosaic gene formation, often
driven by identity-related recombination (Barbet and Kamper,
1993; Marcello and Barry, 2007a) involving pseudogenes; second,
it can determine antigenic cross-reactivity between parasite var-
iants that appear sequentially in infections and are targeted by the
host immune system. Applying the diffusion approximation to the
empirical genetic identity distribution of this multi-gene family,
we lay a new bridge between mathematical theory and parasite
genetic data, and are able to extract the rates of the evolutionary
processes that can shape antigen gene diversification.

2. Modelling framework

To model the evolution of pairwise genetic identity in a multi-
gene family we first consider all conversion and mutation events
as they happen, keeping track of the donors and times of their
occurrence; then we consider only the infinitesimal effect of these
processes on pairwise identity accounting for random sampling of
genes and positions. The first approach is purely stochastic, based
on many explicit parameters, such as conversion event rate and
mutation rate per unit of time, as well as conversion tract length,
gene length and gene number, and it serves to visualize exact
trajectories of the system of genes. The second approach is an
approximation of the biological stochastic process, implicitly
taking into account the characteristics of point mutation and gene
conversion, but depending basically on just three parameters:
mutation and conversion probabilities per base pair per generation
and gene length, which makes it more amenable to analytic
treatment.

2.1. Stochastic simulation of genetic events

Consider a population of N genes, each of length L, subject to
gene conversion between pairs of genes and random point muta-
tion. The state of a gene is represented by an array of L integers,
corresponding to the 4 nucleotide types (A–C–T–G), in line with
the K-allele (K¼4) model. At time 0 a random initial sequence of
length L is generated and applied to all genes, making them
identical. We model the stochastic occurrence of single genetic
events in such a multigene family as a Poisson process, which we
simulate using the Gillespie Algorithm (Gillespie, 1977). The rate at
which a gene is converted per unit of time is denoted by γ, while
the rate at which mutations occur is given by μ. The global event
rates of the two processes per unit of time are γN and μN.
Stochastic events (mutations and conversions) are indexed
1;2;…; TAZ, which occur at the times t1; t2;…; tT AR. The inter-
event times are exponentially distributed with mean 1=ðγNþμNÞ.
Only one event can happen at a time. Point mutation is chosen
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with relative probability μ=ðγþμÞ, whereas conversion events are
chosen with relative probability γ=ðγþμÞ. The gene where point
mutation occurs is randomly chosen out of N genes, and its
position is also uniformly drawn out of L possible sites. Any
nucleotide type can mutate to a specific one of the K�1; (3 in
our case) remaining types with equal probability 1=ðK�1Þ.

The length of a conversion tract is generally assumed fixed, and
is denoted by lc ð1r lcrLÞ, although this assumption can be easily
relaxed. Each conversion involves a donor and recipient gene,
chosen with probabilities 1/N and 1=ðN�1Þ respectively. Conver-
sion tracts are initiated at a random uniform site along the gene
and continued from left to right until lc sites are copied by the
recipient. To distinguish between family members and track the
ancestry of different gene segments, genes can be arbitrarily
indexed as 1;2;‥N, so after conversion events, both the state
sequence from the donor and the origin of the imported segment
are retained in the recipient. An illustration of the system evolu-
tion is given in Fig. 1.

Pairwise identity between the genes is computed after each
event by comparing their state sequences. Denoting by hij(t)
(0rhijr1), the relative frequency of identical sites between two
genes i and j at time t, the mean pairwise identity in the family is
given by

hðtÞ ¼ ∑N
i ¼ 1∑ja ihijðtÞ
NðN�1Þ : ð1Þ

The quantitative level of resolution of pairwise identity in this
model directly depends on the length of each gene, as the smallest
shift in pairwise identity equals 1/L. We note that both mutation
and conversion event rates are assumed to be independent of time
and of current identity between interacting sequences and that
family size, N, remains constant. The dynamics of mean pairwise
identity, summarizing one evolutionary realization of a gene
family, can be obtained analytically as a function of the number
of events that have occurred, or generally as a function of
continuous time (see Appendix A). Notice that the per-site rate
of gene conversion is γlc , while the per-site rate of point mutation
is μ. Using c¼ 2γlc=ðN�1Þ and m¼ 2μ as the corresponding rates
per pair of aligned sites on two genes, we have

hðtÞ ¼ cþm=3þme�ðcþ4m=3=LÞt

cþ4m=3
; ð2Þ

tending, as time tends to infinity, to the equilibrium value:

h
n ¼ cþm=3

cþ4m=3
: ð3Þ

The latter equilibrium identity formula matches the identity coeffi-
cient ĉ1 derived by Ohta (1982) in her K-allele model without
interchromosomal recombination. Notice that although the equili-
brium identity coefficient does not depend on the number of sites
in a gene, L, the temporal dynamics of approaching equilibrium are
gene length dependent: keeping c and m constant, when there are
more sites available for evolution, the dynamics is slower. Fig. 2
illustrates the dynamics of identity evolution in a gene family as a
function of time. Not only the mean identity but also the entire
distribution of identity among gene pairs changes through point
mutation and gene conversion, tending to a stationary distribution
as time increases. Notice that the fluctuations in pairwise identity
are higher when the conversion tracts are longer, even though the
number of events per unit of time is the same. Instead of a constant
conversion tract length, a random tract length can be assumed at
each event, for example a geometrically distributed tract length,
which is widely supported in the empirical and theoretical litera-
ture on gene conversion processes (Hilliker et al., 1994; Betran et al.,
1997; Song et al., 2011). However, simulations of multi-gene
dynamics with constant conversion tract length do not deviate
much from simulations with non-constant lengths, in particular in
parameter regions where lc=L is small, thus also the distributions of
identity at equilibrium are comparable (see for example Fig. S5).

2.2. Diffusion approximation for a single gene pair

A convenient analytical framework related to the evolution of
identity frequencies is the Wright–Fisher model (Fisher, 1930;
Wright, 1931) with asymmetric mutation. In the baseline gene family
evolution model described above, the L positions in any pairwise
alignment would correspond to ‘haploid individuals’, and the 0/1
identity indices are the analogous representations of ‘alleles’. Three
dynamic components affect the frequency of identical sites between
two genes at each generation: mutation driving towards low identity,
gene conversion driving towards high identity, and fluctuations
arising from random sampling of nucleotides involved in these
processes, analogous to random genetic drift.

Thus, focusing on just one gene pair, for a simpler analytical
description of identity evolution, we can consider the quantity
Pðx; tÞ, denoting the probability that at time t, the pairwise identity
between any two genes is x (0rxr1). Obtaining a formula for
Pðx; tÞ, directly from the stochastic event-based approach, account-
ing for all the process details is much more challenging. Denoting
the number of identical sites between two genes as Y, their
pairwise identity is then the frequency Y/L, a quantity that changes
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Fig. 1. The gene family changes as a function of stochastic events, comprising partial gene conversions and point mutations. Each gene is denoted by a particular colour at the
beginning of the simulation. After conversion events, besides changes in the state sequence of the recipient gene according to the imported segment from the donor, also the
colour information of that gene portion in the recipient is altered. The genes appear as mosaics in the long term as a result of imported segments of multiple origin.
Mutations are represented in a greyscale, with the more recent mutation being assigned a darker shade. Parameters used: γ ¼ 0:5; μ¼ 0:1, with lc ¼ 10;N ¼ 6;
L¼ 100; T ¼ 100. (a) Gene family at T¼0 and (b) gene family after 100 events. (For interpretation of the references to colour in this figure caption, the reader is referred
to the web version of this paper.)
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at each generation of the gene family. When a pair of genes
experiences random point mutation, some nucleotides that were
identical in the previous generation become different in the next
generation (1-0) with per-site probability ν10. When a gene pair
undergoes gene conversion, some nucleotides that were originally
different become identical (0-1), with per-site probability ν01
(see Table 1 for the link of these parameters with simulation).

A key mathematical approach to deal with genetic drift is the
diffusion approximation (Fisher, 1922; Wright, 1945; Kimura, 1955;
Crow and Kimura, 1970). Under this approximation, the proportion
of individuals of a particular allelic type is treated as a continuous
random variable whose distribution obeys a diffusion equation.
In the following, we describe the dynamics of fXðtÞ : tZ0g, where
t denotes time and X(t) the relative frequency of identical positions
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Fig. 2. Dynamics and distribution of pairwise identity in a multigene family at different time points. Each gene pair (coloured line) follows independently the same
stochastic processes of conversion and mutation. The simulation mean over gene pairs (green line) is very well approximated by our analytical expression for hðtÞ (given in
red). Parameters used in the simulation are N ¼ 20; μ¼ 0:3; γ ¼ 0:7 and L¼50 and lc¼1 (a), lc¼5 (b). The equilibrium mean pairwise identity is h

n ¼ 0:3133 (a), and
h

n ¼ 0:4865 (b). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Table 1
Summary of parameters and their relative scalings across the two modelling frameworks. Although the discrete event explicit simulation
approach is biologically more realistic, the advantage of the diffusion approximation is its analytical tractability.

Discrete event simulation Diffusion approximation

Length of one gene L Length of one alignment L
Nucleotide state f1;2;3;4g Identity state for base pair f0;1g
Number of genes N N¼2 (implicit)
Inter-event times ti � expð1=NðγþμÞÞ Discrete generations (τ)
General continuous time t Continuous time δt ¼ 1=L-0
Gene pairs: NðN�1Þ=2 One gene pair
Conversion tract length lc 1 base pair (implicit per-aligned sites)
Mutation rate per gene μ (t�1) Probability 1-0 per bp per generation
Mutation rate per pair of sites m¼ 2μ ν10 ¼mτ

Gene conversion rate per gene γ (t�1) Probability 0-1 per bp per generation
Per site pair conversion rate c¼ 2γlc=ðN�1Þ ν10 ¼ τðcþm=3Þ
No limits required limL-1Lν10 ¼ θ; limL-1Lν01 ¼ s
Minimum change of identity 1/L x¼ i=LAR
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in a typical gene pair. A diffusion process is characterized by two
basic quantities: the mean and the variance of the infinitesimal
displacement, corresponding to drift and diffusion. Let Y(n) be the
number of identical positions in the pairwise alignment of length L
at generation n. From random sampling, the transition probability
is given by

PðYðnþ1Þ ¼ jjYðnÞ ¼ iÞ ¼
L

j

 !
ϕj

1ð1�ϕ1ÞL� j; ð4Þ

where ϕ1 ¼ i=Lð1�ν10ÞþðL� iÞ=Lν01 is the proportion of nucleo-
tides that are of type 1 (identical) after mutation and conversion
have occurred. To go from discrete generations to continuous time
and calculate explicitly drift and diffusion, one studies the scaled
process where δt ¼ 1=L: XLðtÞ ¼ Yð⌊Lt⌋Þ=L; t40; and ⌊Lt⌋ denotes
the largest integer less than or equal to Lt. In this formulation, the
limit L-1 is equivalent to δt-0. The infinitesimal drift para-
meter a(x) and diffusion parameter b(x) can be easily derived for
this model, exploiting limL-1Lν10 ¼ θ and limL-1Lν01 ¼ s, and
substituting x¼ i/L:

aðxÞ ¼ �θxþð1�xÞs; bðxÞ ¼ xð1�xÞ; ð5Þ
leading finally to the diffusion approximation:

∂P
∂t

¼ 1
2
∂2

∂x2
½xð1�xÞP�� ∂

∂x
½ð�θxþsð1�xÞÞP�: ð6Þ

Eq. (6) describes how the distribution of pairwise identity changes
over time between two interacting genes under neutral evolu-
tionary forces. The initial condition is given by a Dirac delta
function at x¼1, as each gene pair starts at 100% identity.
The solution of this equationwith no-flux conditions at the boundaries
x¼0 and x¼1 has been obtained earlier (Crow and Kimura, 1956;
Goldberg, 1950). When t-1, Pðx; tÞ tends to an equilibrium, PnðxÞ,
yielding a balance between mutation and gene conversion indepen-
dent of initial conditions:

PnðxÞ ¼ Γð2sþ2θÞ
Γð2sÞΓð2θÞ x

2s�1ð1�xÞ2θ�1; ð7Þ

where θ; s40 and Γ denotes the gamma function. The probability
density in Eq. (7) corresponds to a beta distribution with mean
s=ðθþsÞ, and variance equal to sθ=½ðsþθÞ2ðsþθþ1Þ�. Different
values of the parameters s and θ lead to different shapes of the
stationary distribution. The ratio θ=s controls the mean of PnðxÞ: the
higher θ=s, the closer to 0 the mean is, and vice versa, the closer to 1.
The absolute magnitudes of these parameters, instead control the
variance of the distribution: low values of θ and s, lead to a wider

distribution, in particular values below 1 lead to a polarized U-shaped
distribution. The mathematical formula for the stationary identity
distribution illustrates perfectly the counter-balancing effects of muta-
tion and gene conversion. The high identity part of the spectrum
(x40:5) is more susceptible to the mutation process, constantly
pushing the distribution to the left, whereas the low-identity part of
the spectrum (xo0:5) is more affected by the gene conversion
process, pulling the distribution to the right.

2.2.1. Diffusion approximation with selection
In the presence of selection, favouring one of the two ‘alleles’ 0/1

per pair of aligned sites between two genes, the diffusion approx-
imation takes a different form. The proportion of nucleotides that
are of type 1 (identical) after mutation, conversion and selection have
occurred is ϕ1 ¼ ðið1þsÞ=ðið1þsÞþL� iÞÞð1�ν10ÞþððL� iÞ=ðið1þsÞ
þL� iÞÞν01, where s is the relative selective advantage of identical
sites vs. variable ones. Following the same steps as above, under the
assumption that limL-1sL¼ λ, we obtain

∂P
∂t

¼ 1
2
∂2

∂x2
½xð1�xÞP�� ∂

∂x
½ðλxð1�xÞ�θxþsð1�xÞÞP�; ð8Þ

with stationary distribution

PnðxÞ ¼ Ce2λxx2s�1ð1�xÞ2θ�1; ð9Þ

where C is a normalizing constant C ¼ ½Γð2sÞΓð2θÞ1F1ð2s;2sþ
2θ;2λÞ��1; where 1F1 denotes the hypergeometric function. Two
examples of the diffusion approximation with and without selection
can be seen in Fig. 3.

Simulation of the Wright–Fisher asymmetric mutation model
with selection is straightforward, as one always simulates changes
on a pairwise alignment, directly at the 0/1 allele level (mismatch
vs. match) with explicit rates. However, implementing selection in
the full simulation framework is less straightforward, as the basic
units of simulation in that case are individual genes, each with
their history and particular nucleotide array of length L (4 alleles).
It is possible to include selection with respect to pairwise identity
in the multi-gene simulation framework in the form of frequency-
dependent selection at each site: first, all genes can start off with
some random pairwise differences, then before mutation and gene
conversion events take place at each generation, for each position
from 1 to L, and each gene 1 to N, a new state is chosen with
multinomial probabilities given by f 1; f 2; f 3; f 4 denoting the fre-
quencies of each of the 4 alleles at that position across N genes.
If the more frequent allele is chosen with higher probability, then
we have positive frequency dependent selection, which selects for
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Fig. 3. The stationary distribution of pairwise identity in a multi-gene family as described by the diffusion approximation. (a) c¼ 0;m¼ 0:03 and (b) m¼ 0:02; c¼ 0:01. Gene
length equals L¼300. In the presence of selection against identity (s¼ �0:05), the mean identity at equilibrium and the variation around it can be much lower than the
expected mean in the no-selection case. When there is positive selection for identity instead (s¼0.05), the distribution shifts to the right, maintaining a similar variance as in
the no-selection case if c¼0 and reducing the variance if c40.
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more identity at each site. If the rarer allele out of the four is
chosen with higher probability instead, then we would have
negative frequency-dependent selection which selects for more
diversity at each site.

3. Results

3.1. Comparison of the simulation and diffusion approaches

In order to go from the discrete event framework to the
diffusion framework, we need to specify only the generation time
for the genes in question and take appropriate scalings of the
original parameters (Table 1). Instead, to go from the diffusion
approximation to a discrete event formulation, many more char-
acteristics of the system need to be specified. Thus, for each
diffusion approximation, there are many discrete event models,
making these two approaches only approximately equivalent.
It is easy to see that different combinations of event rates per
gene γ;μ and specific parameters such as lc;N and L can lead to the
same per-site rates in a pair of genes. For example, doubling the
conversion length can be compensated by reducing the rate of
gene conversion by a half, thus yielding the same average per-
nucleotide rate. But are the evolutionary dynamics of the system
the same?

With stochastic events randomly assigned to members of the
family during simulation, all gene pairs can be assumed to follow
approximately the same stochastic process, giving rise to indepen-
dent temporal trajectories (Fig. 2). As has been noted earlier in
studies of concerted evolution (Ohta, 1982), the diversity among gene
members is primarily determined by the balance between mutation,
gene conversion and population size. In the simulation framework,
increasing gene family size, N, serves to resolve the distribution of
identity, i.e. the proportion of gene pairs out of NðN�1Þ=2 at a
particular identity level, while increasing the number of sites per
gene, L, serves to approximate in a continuous manner shifts in
pairwise identity itself after each stochastic event. In our simulations,
we notice that the higher the mutation rate per gene in the family,
the higher the diversity that emerges and is maintained. In contrast,
high conversion rate and long average conversion tracts contribute to
maintain higher identity between genes.

Although we do not provide an expression for the variance of
pairwise identity in the system, model simulations show that the
variance in identity between genes is sensitive to the length of
conversion tracts exchanged: if short relative to the total gene length,
identity variation between different pairs is smaller, given the same
per-nucleotide probability. In contrast, when the converted tracts are
longer, even small conversion rates can bring about major

fluctuations in pairwise identity. When the number of genes is small,
such fluctuations across different gene pairs are correlated and this
can introduce a bias and affect the mean equilibrium identity,
bringing it below or above what is expected from the average of
per-nucleotide rates alone. However, this bias is corrected in large
gene families (N45), where a long conversion tract, despite accel-
erating diversification between the two interacting genes, affects a
smaller proportion of the total pool of gene pairs, hence contributes
less to changes in the overall identity distribution. When converted
segments are short relative to gene sequence length instead, the
mean and variance of pairwise identity appear independent of family
size, supporting independent evolution of pairwise identity between
family members.

Keeping other parameters fixed, the length of each gene seems
to have an effect only on the variance of pairwise identity.
Unsurprisingly, if L is short, the possible jumps in identity occur
only in steps greater than or equal to 1/L, increasing the variance.
This effect is reduced when considering larger L. Although we can
study and describe simulation statistics for many combinations of
parameters, the analytical challenge of the exact model compels us
to seek approximations in suitable parameter regimes, based on
averaging across gene pairs, therefore we use the diffusion approx-
imation. Recalling that the diffusion approximation is based on a
specific relation between L and the per-site probabilities of change:
limL -1Lν01 ¼ s and limL-1Lν10 ¼ θ, the match between the
simulations and the diffusion approximation is first dependent on
the fulfilment of this scaling criterion.

The approximation derived in section 2.2. for the pairwise
identity probability distribution can be tested by comparison of
the theoretical predictions to the results of computer simulations
of the gene conversion and mutation events. To obtain the
stationary identity distribution from simulations of the explicit
conversion/mutation events, we first have to estimate the approx-
imate time and the number of events it takes the system to reach
equilibrium, given c and m. From Eq. (2), we can compute the time
it takes for a typical pair to reach identity level within α of the
equilibrium value: tα ¼ �L lnðα=mðcþ4m=3ÞÞ=ðcþ4m=3Þ. Thus, in
a family of size N, given conversion length lc and generation time τ,
the minimal number of events to be simulated until equilibrium is
approximately Tmin ¼ tαN½cðN�1Þ=ð2lcÞþm=2�. We usually assume
α¼ 0:05 and simulate a number of events equal to 6Tmin and
compute the stationary distribution from the last Tmin events, for
different combinations of parameter values. We compute the
distribution from the proportion of gene pairs at given identity
levels between 0 and 1 in steps of 1=L over consecutive continuous
time intervals corresponding to these last events in the stationary
phase. The final simulation-derived distribution is calculated by
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taking the average of these consecutive distributions, which
should remove correlations between consecutive time points
along one pairwise trajectory. Notice that there is stochasticity in
the order, timing, location, and type of different events, even when
simulating with the same parameters. This has implications for the
resulting distribution (see Fig. S1 for an example). Thus, to get a
more accurate picture of the match between the two formulations,
we can simulate many runs from the same initial conditions, as
opposed to a single run, for each parameter combination, and
check whether the diffusion approximation is contained in the 90%
confidence region predicted by the simulations (Fig. 6).

Unsurprisingly, for the mutation-only case, the two approaches
agree very well. Fig. 4 shows the stationary distribution resulting
from one run of the gene family evolutionary dynamics through
mutation, with the diffusion approximation superimposed. As the
number of genes increases, variance between different runs is
reduced and the two distributions come closer (Fig. S2). Although
for a given combination of c, m and L, there is only one diffusion
approximation, the exact choice of conversion length lc and
number of genes N on the simulation-derived distribution leads
to a variable match between the two in some cases. In general, the
diffusion approximation agrees well with the simulation model for
N and L large, e.g. NZ6, LZ50, as the correlations between
individual trajectories of gene pairs vanish in these limits and
identity changes in smaller discrete jumps per unit of time (see
Fig. S3).

Another requirement to obtain a good match between the
theoretical and simulation-derived distribution is that of small
conversion length relative to L, for example when lc=Lr0:05.
Comparisons of theoretical and simulated distributions for a single
stochastic run are given in Fig. 5 and numerical comparisons of
parameter estimates for a set of true values are described in Table
S1. Notice, the requirement of small lc=L is stronger in the
parameter regimes where mutation events are more frequent
than gene conversion events, because longer conversion tracts in
that case transport a higher number of substitutions to the
recipient gene and affect more the new pairwise identity of that
gene with other genes in the family. However, our simulations

show that even for lc in the range of 10% of total gene length, when
the gene length is large, the diffusion approximation provides a
reasonably accurate description of identity at equilibrium (Fig. S3).
For illustration, we have also simulated the case of a geometric
distribution for conversion length, but this has not resulted in
major deviations from the expectations with a constant conversion
length (Fig. S4). In fact, if the mean conversion length is small
relative to total length (5–10%), and if the total gene length L is
large, we have a very good match between the diffusion approx-
imation and the stationary identity distributions from simulations
(Fig. S5), reflected also in parameter estimates close to the true
values (Table S2). We can expect that for a gene sequence of length
about 1000 bases, the diffusion approximation should hold for a
range of conversion lengths up to 50–100 nucleotides.

3.2. Application: VSG gene family of African trypanosomes

We apply the diffusion approximation to the diversity of genes in
the trypanosome antigen gene family assuming the current identity
distribution reflects equilibrium. African trypanosomes provide one
of the most prominent antigenic variation examples among parasites.
The antigen genes coding for the variable surface protein coat of
trypanosomes are the Variant Surface Glycoprotein (VSG) genes and
they form a multigene family. As antibody responses against an
antigenic variant accumulate, parasites switch to expression of a new
variant, evading current host immunity and producing a distinct
wave of parasitaemia. Through repeated iterations of this process,
where only one VSG gene is expressed at a time, the African
trypanosome is able to sustain chronic infection in its hosts for long
periods (see Lythgoe et al., 2007; Gjini et al., 2010 for within-host
models of this process). The structure and organisation of the huge
VSG archive (Z1600 genes) and molecular mechanisms that govern
its expression have been studied extensively (Barry, 1997; Borst et al.,
1997; Morrison et al., 2005), yet our quantitative understanding of
the evolutionary forces involved remains limited. Genomic sequence
determination of Trypanosoma brucei has now greatly expanded the
VSG sequence dataset, allowing for more in-depth analyses of
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sequence variability, which might shed light on the balance between
structural constraints, the processes of epitope diversification and the
potential for antigenic variation in this parasite (Carrington et al.,
1991). VSG genes contain an N-terminal domain of 350–400 residues,
encoding the portion of the VSG protein that contains exposed
surface loops with variable antigen epitopes (Miller et al., 1984;
Hsia et al., 1996), and a more conserved C-terminal domain of 40–80
residues, encoding the part of the protein anchored to the plasma
membrane (Carrington et al., 1991). N-terminal domains form three
subfamilies (nA, nB, nC) on the basis of their phylogenetic structure,
as shown by Marcello and Barry (2007b). Here, as an illustration of
our quantitative approach, we consider diversification of nA and nB
genes, within a single genome.

Using pairwise identity data from the nA and nB VSG subfami-
lies (gene sequences available on the VSGdb database: www.vsgdb.
net), obtained by aligning respectively their N¼412 and N¼362
gene sequences (Marcello and Barry, 2007a), we apply the diffu-
sion approximation to estimate mutation and gene conversion
rates in a real biological context. Allowing for variation across the
VSG family, we first apply the model separately to nA and nB N-
terminal domains and then to their combined distribution. We
assume that evolutionary parameters are constant over time. Each
N-domain varies in length between 900 and 1050 nucleotides,
thus we use the average L¼ 975. We first estimate s and θ as the
global rates of diversification by fitting the empirical identity
distribution of VSG N-domains, to the theoretical formula for
PnðxÞ given by Eq. (7). The fit is performed using a nonlinear least

square routine in MATLABs (The MathWorks, 2011). The best-
fitting estimates are the ones that minimize the sum of squared
deviations of the empirical distribution from the theoretical
formula. To test for selection and estimate selection strength, we

subsequently also apply the diffusion approximation with selec-
tion (Eq. (8)) to the empirical distribution and compare the results.
The details of the fits and the estimated diffusion approximation
parameters are presented in Fig. 7 and Table 2.

For nA gene sequences, given their extremely high nucleotide
diversity we obtain mτ¼ 0:0424, (95% CI: 0.0438, 0.0452) from the
diffusion parameter θ and derive cτ¼ s=L�mτ=3, resulting in a
negative estimate for this parameter equal to �0.0017, (95% CI:
�0.0008, 0.0001). For nB gene sequences we obtain mτ¼ 0:0267
(95% CI: 0.0276, 0.0285) and cτ¼ 0:0003 (95% CI: 0.0009, 0.0015),
supporting conversion event rates per pair of aligned sites in these
genes about two orders of magnitude less frequent than mutation
events. When the confidence intervals for the conversion event
probability per base pair per generation contain zero, we can infer
that this particular multigene family data supports only the action
of random mutation. Indeed, the mean identity of about 25% in
both nA and nB N-domains, matches the expectation of maximum
identity attainable under the neutral mutation-only model in a
4-allele system. If we treat nA and nB N-domains together, we obtain

mτ¼ 0:0324, (95% CI: 0.0316 , 0.0332) and cτ¼ 2:4479� 10�5 (95%

CI: �4:97� 10�4, 5:45� 10�4), again favouring a scenario of
hypermutation with almost no signature of gene conversion, that
could be driving the extreme genomic diversification we see in
N-domains of VSG genes.

When we allow for the combined action of mutation, selection,
and gene conversion, the model fitting procedure estimates much
lower mutation probabilities per bp per generation between

2:12� 10�16 and 7:78� 10�9, and high conversion probabilities

per bp per generation of the order of 2:2� 10�2, counterbalanced
by strong selection against identity in the range between 0.06 (nB)
and 0.09 (nA) per bp per generation. Such range of mutation rates
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per base pair seems comparable with the observed spontaneous
mutation rates per base pair in specific loci of higher eukaryotes
(Drake et al., 1998), although what we find is closer to the lower
end of the magnitude spectrum. Notice that in this crude
approach, a uniform selective pressure across all sites along the
sequences analyzed is assumed and no information about the
underlying DNA or amino-acid composition is used. Other statis-
tical techniques such as the ratio of nonsynonymous/synon-
ymous substitution rates might be more suitable for detecting
with confidence purifying, neutral or positive selection. However,
with the approaches described above, simple and quick evalua-
tion of different hypotheses concerning the evolutionary
dynamics of multigene families can be performed as a first step,
which can be subsequently validated with other more complex
datasets from multiple genomes and more sophisticated
statistical tools.

4. Discussion

We have presented a new modelling framework for the study
of global genetic diversification in a gene family shaped primarily
by mutation, gene conversion and genetic drift that integrates
simulation of discrete genetic events with population genetics
models, such as the Wright–Fisher asymmetric mutation model
and the diffusion approximation. Current approaches in the study
of multi-gene families typically focus on small family sizes and
treat genetic events in terms of per-site average rates only. Here
we have explored characteristics of evolutionary processes and
their implications for genetic diversification in larger gene families
and making explicit assumptions about gene conversion tract
length, overall gene length, mutation effects and the time-scale
of discrete event occurrence and distribution. The simulation of
genetic events is likely to be closer to biological reality, but it is
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Fig. 7. The diffusion approximation fit for two N-domain subfamilies (nA, nB). The best fitting parameters were found by applying lsqnonlin, a nonlinear least squares
optimization routine in MATLAB, to each empirical distribution (points): without selection (left panels) as specified by Eq. 7, and with selection (right panels) as specified by
Eq. 9. The solid lines give the best diffusion approximations. R2 denote the coefficients of determination for each model fit.

Table 2
Estimates of evolutionary parameters under the neutral and selection models for the two N-terminal domain types (nA and nB) of VSG genes in African trypanosomes.
When we scale s and θ derived from the fit of the diffusion approximation, by 1=L, we can obtain the effective 0-1 and 1-0 transition probabilities per base-pair per
generation: ν10 ¼ θ=L¼ τm, ν01 ¼ s=L¼ τðcþm=3Þ, where τ is the generation time of the parasite.

Parameter nA nB nAþnB

Neutral model
θ 51.2571 32.0886 37.7868
95% CI [49.6269, 52.8874] [31.0845, 33.0926] [36.8698, 38.7038]
s 16.1653 11.7094 12.6242
95% CI [15.6560, 16.6746] [11.3474, 12.0713] [12.3214, 12.9269]

Model with selection
θ 9.11�10�6 2.5�10�13 1.1019�10�13

95% CI [�48.7994, 48.7995] [�21.6118, 21.6118] [�22.1915, 22.1915]
s 21.3597 15.9918 16.8500
95% CI [16.4515, 26.2679] [13.0462, 18.9374] [14.3295, 19.3706]
λ �89.3712 �60.1042 �67.5652
95% CI [�174.2099, �4.5326] [�100.7529, �19.4555] [�107.3483, �27.7821]
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more challenging analytically as the signature of identity evolution
is confounded by gene conversion and correlations between gene
pairs. Under suitable parameter regimes, however, including long
gene sequences, many genes, and small relative conversion
lengths, we should be able to infer the per-site mutation and gene
conversion rates from the stationary pairwise identity distribution
in the multi-gene family. The mean of such a distribution contains
information about the ratio between the basic rates of these
opposing processes, while the variance has information about
their combined sum and genetic drift. The use of the diffusion
approximation however is likely to bias towards small values of
relative conversion tract length, lc=L, which may or may not
correspond to the truth of a given system; this could therefore
bias estimates of gene conversion probability per nucleotide c
regardless of gene length L. For trypanosome VSG N-domains, we
have recently inferred in another study relatively short, geome-
trically distributed conversion tract lengths (Gjini et al., 2012), in
the range of 14–80 bp, underlying local diversification of highly
related sequences, thus the application of the diffusion approx-
imation here to this global dataset is not unreasonable.

Although we have focused on the stationary distribution of
identity that is maintained in a gene family at equilibrium, with
the simulation framework proposed, it is possible to study in detail
also temporal characteristics of the process of diversification, the
interaction network between gene family members, emerging
phylogenetic relationships shaped by mutation and gene conver-
sion and the explicit sequence content in terms of nucleotides. The
simulation model can be extended to study different types of
genetic processes, such as identity-driven gene conversion events,
where only gene pairs that are sufficiently similar can interact via
gene conversion. Recombination processes dependent on the
pairwise identity between the interacting sequences have been
found to occur across many systems (Liskay et al., 1987; Datta
et al., 1997; Majewski and Cohan, 1999; Chen et al., 2007).
However, to appropriately include such processes in the diffusion
approximation framework, requires assuming an explicit function
when making the conversion probability c dependent on the
current identity level, for example a linear function or an expo-
nential, which would change significantly the current drift term.
It is thus necessary to obtain empirical gene conversion data on
the genes in consideration that can motivate the use of explicit
functions for the sequence identity dependence before a model
extension of this kind can be applied. Similarly, a different
distribution of gene conversion tract lengths, such as the geo-
metric distribution, could be used. Since the diffusion approxima-
tion is dependent only on the mean conversion length, such
extension should not affect the final analytical equilibrium that
we obtain. However, in some parameter regimes, as we have
shown, the variance of the stationary distribution is more sensitive
to the mean conversion length and its variance, in particular when
conversion events are rarer than mutation events, and further
work in this direction is needed.

Despite the mathematical techniques employed in this study
being classical, the application of this theory to the VSG antigenic
archive of African trypanosomes is novel. By using first an explicit
simulation approach for visualizing and intuitively understanding the
occurrence of genetic processes in a multigene family, and then
applying a diffusion approximation to the distribution of gene pairs
at various identity levels, assumed to be stationary, we are able to
quantify the evolutionary rates of mutation and gene conversion for
N-terminal VSG domains, consisting mainly of pseudogenes. Invoking
neutral molecular evolution at first (Kimura, 1985), we were able to
capture the distribution of pairwise genetic identity in the VSG
antigen archive by a simple difference in mutation and gene
conversion rates. Our estimates under this model support very high

probabilities of mutation per base pair per generationwithin genome

in the absence of selection, in the range 2:6� 10�2–4:2� 10�2, and
very little sign of homogenizing gene conversion. Although the
diffusion approximation appears not to detect signature of gene
conversion in terms of per-site probabilities, there exists a possibility
that random gene conversion of considerable lengths may be
occurring at high frequency and thereby spreading mutations
sufficiently fast across all genes, so that the homogenization signal
is lost over long timescales. What remains over long timescales is the
signature of an elevated mutation rate on VSG N-terminal domains,
making it a hypervariable genomic region. This is likely to have
critical implications for antigenic variation within hosts, especially in
the chronic stages of infection, by providing ready genetic and
antigenic diversity available for the expression of mosaic genes
(Marcello and Barry, 2007b). It is interesting to notice that the range
of mutation rate estimated for N-domains under the neutral model
very closely matches that of spontaneous antigen switching during

trypanosome infections, found to be in the order of 10�2 per cell
division (Turner and Barry, 1989).

When considering the possibility that selection may be acting to
favour hypervariability between gene sequences in the VSG archive,
our estimates of spontaneous mutation rates are much lower, at most

in the order of 7:8� 10�9 per bp per generation (nA N-domains),
but they are compensated by very high negative selection for identity
(s¼0.06) that maintains the stationary distribution shifted towards
the low-identity spectrum. This model can also explain the observed
variability in N-domains data, but such strong selection on genomic
regions that consist mainly of pseudogenes may be questionable, and
also harder to reconcile perhaps with the observation that any one
VSG gene is expressed rarely and for little time within a host, thus the
selection pressure on these genes is expected to be minimal (Barry
et al., 2012). However, diversifying selection has been found in
epitope-coding genes across many pathogen systems, most notor-
iously in viruses (Paolo et al., 1999; Fares et al., 2001; Haydon et al.,
2001; Anisimova and Yang, 2004), but also in other protozoa such as
Plasmodium falciparum (Hughes, 1992; Polley and Conway, 2001;
Baum et al., 2003). Thus, in light of this evidence, finding signatures
of selection in antigen genes of African trypanosomes would not be
that surprising. However, more thorough analyses and polymorph-
ism data from field isolates are needed to ultimately ascertain the
mode and action of selection in this multi-gene system and to tease
apart better the neutral evolution from the diversifying selection
hypotheses. In reality, members of a gene family are subjected to a
considerably more complex set of processes than the ones covered
by our models, thus the estimation process proposed here should be
taken with care and augmented with different methodologies when
available or possible.

Throughout our models and analyses, an important assumption
was that the rates of gene conversion and mutation are constant.
In fact, across organisms, rates of spontaneous mutation vary
widely and specific evolutionary forces are involved in shaping
them (Drake et al., 1998). An interesting question that arises also
for trypanosomes is whether these evolutionary rates are subject
to selection and to what extent they are adaptive. Mutation rates
must depend on an evolutionary compromise between the need to
create diversity – a basis for adaptive evolution as in the case of
surface protein genes – and the requirement to preserve core or
essential cellular functions, as in the case of genes encoding
nuclear proteins. A challenging avenue for further exploration is
to link such genetic processes at the DNA level to the explicit
functions they encode, such as antigenicity, attachment properties,
growth regulation, motility, or virulence, and finally to the fitness
effects they impose on an organism as a whole.

Future models considering identity and differences in the gene
family at the amino-acid level can help resolve such questions.
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Are there any environmental cues within hosts that trigger higher
mutation or alternatively higher conversion rates in the VSG genes
of trypanosomes? Are there any structural genomic constraints
that limit the generation of diversity, and if yes, what are their
features? Understanding these aspects of VSG archive diversifica-
tion could prove crucial in the design of control strategies, for
example drugs that interfere with the capacity of the pathogen to
mutate or diversify. In general, despite advances driven by mole-
cular biology and genomics, there is a need to gain a deeper
understanding of key mechanisms that may facilitate generation
of diversity across biological systems and scales. The characterisa-
tion of parasite surface protein families or other multigene families
on the basis of their capacity to generate variation is important,
and necessitates quantitative models for explaining the role of the
genetic processes involved. As illustrated in this paper, mathema-
tical frameworks may be implemented to explore, visualise and
estimate the dynamic diversification capacity of gene families.
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Appendix A. Dynamics of mean pairwise identity

A.1. As a function of stochastic events

The expected changes in nucleotide identity between any two
genes can be approximated as follows. Denote the current number
of identical sites shared by a gene pair after T events by n(T).
An identical nucleotide can be gained with per-site probability
1�nðTÞ=L, or lost with per-site probability nðTÞ=L. Gene conversion
and point mutation happen with respective probabilities γ=ðγþμÞ
and μ=ðγþμÞ. Note that a gene conversion involves lc nucleotides
out of L, whereas point mutation in either member of the pair
affects only one site, with 1/3 probability of change to the same
type as in the other gene. Thus the expected number of identical
sites in a gene pair after Tþ1 events is given by

nðTþ1Þ ¼ nðTÞþ 2γlc
ðγþμÞðN�1Þ þ

2μ
3ðγþμÞ

� �
1� nðTÞ

L

� �
� 2μ

ðγþμÞ
nðTÞ
L

:

ðA:1Þ

With initial condition nð0Þ ¼ n0, the solution of the above recur-
rence relation is

nðTÞ ¼ 1� 2
LðγþμÞ
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ðA:2Þ

for the expected number of identical nucleotides between two
genes after T stochastic events. The mean pairwise identity follows
easily from (A.2) from the ratio nðTÞ=L.

A.2. As a function of continuous time

Pairwise identity can be described as a function of continuous
time, tAR. Consider how nðtþΔtÞ depends on n(t), where Δt is an
infinitesimal time step. Recall that γ and μ are event rates per gene
per unit of time. Thus in the time interval ½t; tþΔt�, we expect γΔt
conversion events and μΔt mutation events on average. After
conversion and mutation have occurred, the expected number of
identical sites between two genes is

nðtþΔtÞ ¼ nðtÞþΔt
2γlc
N�1

þ 2μ
3

� �
1� nðtÞ

L

� �
�2μΔt

nðtÞ
L

: ðA:3Þ

We can substitute c¼ 2γlc=ðN�1Þ, m¼ 2μ. Then, rearranging,
dividing both sides by Δt and taking the limit Δt-0 gives a
differential equation whose solution is

nðtÞ ¼ nð0Þ cþm=3þme�ðcþ4m=3=LÞt

cþ4m=3
: ðA:4Þ

Dividing n(t) by L yields mean pairwise identity in continuous time
hðtÞ.

Appendix B. Supplementary material

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2013.10.001.
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