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Several human genetic diseases are associated with inheriting an abnormally large unstable DNA simple se-
quence repeat. These sequences mutate, by changing the number of repeats, many times during the lifetime
of those affected, with a bias towards expansion. These somatic changes lead not only to the presence of
cells with different numbers of repeats in the same tissue, but also produce increasingly longer repeats, con-
tributing towards the progressive nature of the symptoms. Modelling the progression of repeat length
throughout the lifetime of individuals has potential for improving prognostic information as well as providing
a deeper understanding of the underlying biological process. A large data set comprising blood DNA samples
from individuals with one such disease, myotonic dystrophy type 1, provides an opportunity to parameterize
a mathematical model for repeat length evolution that we can use to infer biological parameters of interest.
We developed new mathematical models by modifying a proposed stochastic birth process to incorporate
possible contraction. A hierarchical Bayesian approach was used as the basis for inference, and we esti-
mated the distribution of mutation rates in the population. We used model comparison analysis to reveal,
for the first time, that the expansion bias observed in the distributions of repeat lengths is likely to be the
cumulative effect of many expansion and contraction events. We predict that mutation events can occur
as frequently as every other day, which matches the timing of regular cell activities such as DNA repair
and transcription but not DNA replication.

INTRODUCTION

Myotonic dystrophy type 1 (DM1) is one of over 20 diseases
[others include Huntington’s disease (HD) and fragile X syn-
drome] associated with inheriting an abnormally long, un-
stable DNA simple sequence repeat that mutates by
changing the number of repeats (1–3). In the case of DM1,
a CTG repeat tract is found in the non-coding region of a
gene called dystrophia myotonica protein kinase (DMPK)
(4–6). The number of repeats is polymorphic in the general
population lying between 5 and 37, but over a pathological

threshold of �50 repeats, there is disease, as comprehensively
discussed by Harper (7).

These DNA changes occur between generations, with
usually a higher repeat length passed on from the parent to
the child. This leads to an effect known as anticipation
where the symptoms are more severe and appear �30 years
earlier in the next generation (8–10). But during the lifetime
of individuals, the repeat lengths continue to evolve, with
what looks like an expansion bias, leading to the presence of
cells with different repeat lengths in the same tissue, known
as somatic mosaicism (11). Generally, an increase in the
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number of repeats passed on from one generation to the next
causes a decreasing age of disease onset (8,9), while an in-
crease in the number of repeats throughout the lifetime of an
individual contributes towards the progressive nature of the
symptoms (F. Morales et al., manuscript in preparation) and
similarly for HD (12). Kaplan et al. (13) proposed a mechan-
ism by which length-dependent somatic mosaicism drove cells
across a pathological threshold which is supported by experi-
mental and clinical data. A link between somatic mosaicism
and disease onset suggests that preventing the repeat lengths
from expanding might be therapeutic (1,14).

Length changes in other repetitive DNA sequences, or
microsatellites, occur more commonly than other types of
mutations such as individual base-pair substitutions, at
between 1022 and 1026 per locus per generation (15), but mu-
tation rates for DM1 are several orders of magnitude higher
occurring, as described above, not just between generations,
but also at a high rate during the lifetime of individuals.
This has led to the introduction of the descriptive term
‘dynamic’ to distinguish the properties of unstable DNA
sequences from other forms of mutation (16). The frequency
of the mutations at the DM1 locus makes them an excellent
model system. Hence, DNA samples from individuals with
one of these genetic diseases provide an unusual opportunity
to estimate the rates of mutation and the number of events
underlying the mechanism of DNA instability.

In DM1, the precise mechanism that causes the CTG units
to become inserted or deleted from the array is not known
(1–3). Expansions occur at different stages of human develop-
ment and within different tissues, and this instability has been
linked to DNA repair, transcription and replication, but the
same pathway is not necessarily at work within different
tissues (2). Secondary structures, with small loop outs,
formed by the expanded CTG repeat length may induce in-
stability through their interference with the DNA replication,
recombination and repair processes (17).

Currently, individuals finding out that they or their family
are affected by this disease, and wanting to know more
about the likely progression of the disease or their reproduct-
ive choices, have limited prognostic information available to
them. This is partly because variance in modal repeat length,
measured usually when the symptoms first present themselves,
only accounts for around 25% of the variance in age of onset
(18–20). A low correlation between the age of onset of symp-
toms and modal repeat length is in part due to the anticipation
associated with DM1 and sampling bias caused by the ten-
dency for people to be tested only when they or a member
of their family presents with symptoms. Thus, there is great
potential for more sophisticated modelling and inference tech-
niques to improve the prognostic value of genetic information.
More broadly, an accurate model for describing the mutation
mechanism in DM1 is likely to give insight into DNA instabil-
ity in general.

Our extensive data arises from elaborate small-pool poly-
merase chain reaction (PCR) analysis of repeat length in
blood cells from a cohort of 145 individuals with DM1 expan-
sions (F. Morales et al., manuscript in preparation). The cohort
includes affected individuals as well as asymptomatic carriers.
Since the first application of small-pool PCR to quantify vari-
ation at the myotonic dystrophy locus in 1995 (11), the

technique has become well established as robust and reliable
and has been used to quantify triplet repeat dynamics in a
wide range of scenarios and at various loci (21–29). For
each individual, we have used single-molecule analysis to
size the expanded CTG repeat tract in between 100 and 350
cells (Fig. 1B; Supplementary Material, Figs S2 and S3B),
providing a total data set of over 25 000 observations. These
data reveal the variation in repeat length between cells and
individuals. The shapes of the distributions of repeat length
depend on both age and the number of repeats. Older indivi-
duals with longer than average repeat lengths have broader
distributions than younger subjects with similar repeat
lengths, whereas older individuals with shorter repeat
lengths have narrow skewed distributions. Subjects from the
same family or with potentially the same inherited repeat
length can have quite different distributions. These data are
highly suited for quantitative treatment to develop mathemat-
ical models that capture the key features of the mutation mech-
anism underlying repeat length evolution.

We construct a model based on a stochastic birth and death
process of the form traditionally developed to model the
growth of a population (30). Because of their usefulness in
counting entities, birth and death models are now applied to
many other types of processes where the individuals can
involve anything from molecules, cells, tissues, organisms,
ecosystems or biospheres (31). Such stepwise models have
been used in population genetics to describe the evolution of
microsatellites (reviewed in 32) and generally focus on germ-
line mutations. Because the germline mutation frequencies of
microsatellites are very low, neutral drift can have a major
impact on the relative distribution of alleles in the population.
Thus, it is usual also to incorporate shared ancestry into
models of microsatellite mutation based on population data.
Here, however, we focus on mutations arising in the soma
during the lifetime of DM1-affected individuals. When the
cell mutation frequency is exceptionally high relative to the
number of cell divisions, it is not usual to include shared an-
cestry (13,33,34). Pathological mutations associated with
rapidly changing repeats arising during the lifetime of indivi-
duals have also been studied using alternative modelling fra-
meworks. Leeflang et al. (33) investigated germline
mutation frequency in HD using a simple Okazaki fragment
processing model of trinucleotide repeat instability supporting
a cell division-dependent mitotic origin for mutations in
sperm. More recently, Veytsman and Akhmadeyeva (34)
showed that a simple theoretical model of pathological micro-
satellite expansion based on hairpin formation could offer an
explanation for the observed phenomena of mosaicism, antici-
pation and rare reversions.

Our model builds on Kaplan et al. (13) who used a simple
birth process (expansion only) to describe repeat length evolu-
tion and derived expressions to fit basic clinical and genetic
data (age at onset and modal repeat length) for a range of dis-
eases associated with expanded repeats. They were able to
demonstrate that somatic mosaicism contributes to disease
onset and progression. However, their model is concerned
with only expansions, while there is evidence for intergenera-
tional contractions (11,35,36). Thus, we investigate here the
possibility that somatic variation is due to the difference
between expansion and contraction mutations. We use the
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same stochastic modelling framework as Kaplan et al. (13) but
extend it to include contractions (death process) and a thresh-
old below which expansion and contraction does not occur.
Such a threshold is consistent with the relative stability of
the normal allele (11). In the context of this work, we are
counting the number of CTG units in the mutant repeat tract
within each cell.

The overall aim of this work is to develop a mathematical
model that sheds light on the underlying dynamical process
of DNA mutation and calibrate it to a large data set. Unlike
other applications where only one population may be observed
over time, by sampling many cells from individuals, we have
many realizations of the same stochastic process at one point
in time. Hence, our data provide a unique opportunity to
access directly the inherent fluctuations that are required to
fit a stochastic process. This enables us to quantify several im-
portant biological parameters relating to the mechanism under-
lying repeat length evolution. This is an important step
towards understanding pathological mutations and ultimately
providing better prognostic information for individuals with
diseases arising from these mutations.

RESULTS

Modelling context for the results

To clarify the presentation and discussion of our results, we
begin by stating and justifying our key assumptions about
how the data arose. Our mathematical model quantifies the
probability of an increase or decrease in the repeat length in
blood cells. As circulating white blood cells typically do not
replicate, we assumed that the main mutational changes in
DNA occur in the progenitor stem cells before cell differenti-
ation and not in the relatively short window between cell dif-
ferentiation and cell release into the bloodstream. At puberty,
the steady-state number of haematopoietic stem cells is esti-
mated between 11 000 and 22 000 (37,38). These stem cells
give rise to differentiated multipotent clones that generate
around 100 billion blood cells per day over a few weeks
before the clone exhausts (37). These circulating blood cells,
including erythrocytes and nucleated white blood cells, have
lifespans typically ranging from days to weeks. As somatic
mosaicism accumulates with age (22,39,40), variation must
therefore be accumulating in the population of stem cells.

Figure 1. Parameter estimation results for representative individual CR35, aged 30. The data are presented in (B) as a histogram showing the distribution of
repeat lengths for individual CR35 (i ¼ 35). The posterior probability density distributions for parameters n

[35]
0 , the inherited repeat length, m[35], the rate of

contraction per CTG unit per year, and w[35], the rate of expansion minus contraction per CTG unit per year, marginalized for each parameter over the other
parameters, are shown in (A), (E) and (I), respectively. Marginalized joint posterior probability distributions for parameter pairs, m[35] and n

[35]
0 , w[35] and

n
[35]
0 , w[35] and m[35], and n

[35]
0 and a[35], the threshold number of repeats over which expansion and contraction occur, are shown in (D), (G), (H) and (F), re-

spectively, as contours with the dark to light direction representing increasing probability (the probability surface was smoothed slightly using a standard con-
volution filter to reduce noise). In (C), the data, shown as a cumulative distribution (jagged solid line), are compared with the inferred fit with the
maximum-likelihood value (dashed line) with associated parameter values m[35] ¼ 0.25, w[35] ¼ 0.0358, a[35] ¼ 41 and n

[35]
0 ¼ 209 and a[35].
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Stem cells replenish every 40 weeks or so, and hence, typically
for the individuals in our study, many generations will have
passed since the stem cells shared a common ancestor. At
birth, virtually no mosaicism is seen in blood in DM1 patients,
even those with the congenital form of the disease (39–42).
On this basis, it was reasonable to assume that the stem
cells effectively have independent mutational histories. Thus,
we interpreted our samples of between 100 and 350 cells as
a proxy representation of 11 000–22 000 ultra-progenitor
stem cells with each sample informing us about the underlying
process. Hence, the stochastic process model was derived
under the assumption that the cells have independent muta-
tional histories, and at each continuous point in time, a discrete
random variable represents the repeat lengths.

Another key issue for the model formulation was the number
of CTGs inserted or deleted at either mutational event. Studies
using microsatellite data (43,44) found that the majority of
insertions or deletions were of one repeat unit. Data from indi-
viduals with HD, where a similar mechanism underlies DNA in-
stability but where the alleles are smaller and there is less
variation, provided an opportunity to observe the possible
number of repeat units that might be inserted or deleted at
one mutation event. The patterns of length distribution in
these data (45,46) suggest that the inserted or deleted tracts
are predominantly one repeat unit long but may include occa-
sional longer lengths up to 5–15 repeat units. So, in our case,
it was a reasonable, working assumption that the birth and
death process treats one CTG as the individual unit and we as-
sociate ‘birth’ with expansion and ‘death’ with contraction.

The features of the mechanism underlying repeat length in-
stability are largely unknown. By fitting different models
which represent different hypotheses about this mechanism
to the data set, we can use model comparison methods to
rank the hypothetical models in order of best fit. Thus, we
can establish which models are more likely to explain the
data than others. Is the underlying process driven by expansion
only, as hypothesized by Kaplan et al. (13), or could it be a
combination of expansion and contraction? Are the rates of ex-
pansion and contraction universal or are there significant dif-
ferences between individuals indicating the influence of
individual-specific factors? Is there a fixed or individual-
specific number of repeats around the instability threshold of
40 CTGs?

To answer these questions, we defined the following eight
models: expansion only with a global parameter for expansion
and a fixed threshold (Model 1); expansion only with an
individual-specific parameter for expansion and a fixed thresh-
old (Model 2a); expansion only with individual-specific para-
meters for expansion and threshold (Model 2b); expansion and
contraction with global parameters for expansion and contrac-
tion, and a fixed threshold (Model 3); expansion and contrac-
tion with a global parameter for contraction and
individual-specific parameters for expansion and threshold
(Model 4); expansion and contraction with a global parameter
for expansion and individual-specific parameters for contrac-
tion and threshold (Model 5); expansion and contraction
with individual-specific parameters for expansion and contrac-
tion, and a fixed threshold (Model 6a); and finally, expansion
and contraction with individual-specific parameters for expan-
sion, contraction and threshold (Model 6b).

Model comparison

We used model comparison methods to evaluate several hy-
potheses relating to the mechanics of how the distributions
of repeat lengths arise in samples of blood DNA, the shape
of which can differ between individuals depending on their
age when the sample was taken and the size of the repeat
lengths. Since a likelihood arises naturally from the stochastic
process, both Bayesian and non-Bayesian likelihood methods
lend themselves to fitting the data to the model. We used the
maximized log-likelihood with the Akaike information criter-
ion (AIC) and the likelihood ratio test as the basis for model
comparison. The likelihood is also employed as part of a
Bayesian framework with prior information to provide param-
eter distributions.

Data comprising the distribution of CTG repeat lengths
within a blood sample from 142 individuals (out of 145 indi-
viduals tested) were used to fit the eight models, described
above, representing the different hypotheses. As detailed in
the Materials and Methods sections, three individuals were
excluded from this analysis. In the most general case, we
had the following unknown parameters for each individual:
the number of CTG units from which the process started,
otherwise known as the progenitor or inherited allele length,
n0; the threshold number of CTG units over which expansion
and contraction are non-negligible, a; the rates of expansion
and contraction, over this threshold, per CTG unit per year,
l and m, respectively, which define the net expansion rate,
w ¼ l 2 m. These parameters were treated as unknowns and
investigated over a broad range of values (Table 1). To formal-
ly compare the different models, we used the AIC (47,48) and
the likelihood ratio test (49) which both employ the maxi-
mized log-likelihood penalized by the number of parameters
in the model, summarized in Table 2. The likelihood of the

Table 1. Parameter estimation

Parameters Range for uniform
priora (small alleles)

Incremental step size
for parameter
exploration

Contraction, rate per CTG
unit per year, m

0.01–3.01 0.06

Expansion minus
contraction, rate per
CTG unit per year, w

0.001–0.061 0.0012

Threshold, number of CTG
units, a

0–50 1

Inherited repeat length,
number of CTG units, n0

82 to PALb + 2002

(51–81)1
8 (2)1

aThis range was adapted for some patients with: 1small alleles in order to
investigate smaller rates of contraction (see figures in parentheses); 2possibly
unreliable PAL estimates due to distributions that were spread out or
ambiguous in another way. This included both extending PAL + 200 up to the
maximum possible value (in an expansion and contraction model, this would be
the data mean) and down to the pathological disease threshold of 50.
bProgenitor allele length (PAL) was broadly estimated from the small-pool
PCR data which resolves the cells into different lengths based on the position of
the 10th percentile or a sharp lower bound if one existed. This measure can only
be considered a rough estimate and the priors are set wide of this mark to
eliminate any bias that this estimate could introduce into the inference
procedure.
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data given the model arose naturally from the stochastic
process and we obtained the maximized log-likelihood value
for each model. Further details of how the models and their
likelihood were derived are found in the Materials and
Methods section.

The size of the maximized log-likelihoods, around 21.35 ×
105, reflects the vast quantity of data (between 100 and 350
samples for each of the 142 individuals) and leads to corres-
pondingly large AICs. But what is important for model com-
parison is not the absolute value of AIC but the difference
between models, with more supporting evidence for the
model with the lowest value of AIC. To see this more
clearly, we adjusted each AIC by subtracting the lowest
value overall and ranked the models in order, with the smallest
difference and hence strongest model first. We conclude that
there is most support for Model 6a (expansion and contraction
with individual-specific parameters and a fixed threshold) and
Model 6b (expansion and contraction with individual-specific
parameters and a variable threshold) with adjusted AICs of 0
and 100, respectively, followed by Model 5 (expansion and
contraction with a global parameter for expansion, an
individual-specific parameter for contraction and a fixed
threshold) with an adjusted AIC of 1274. Expansion-only
Models 2a and 2b have adjusted AICs of 1930 and 1996, re-
spectively. Comparing Models 6a and 6b using the likelihood
ratio test indicates that the difference between these models is
of low significance (P ¼ 0.01). However, comparing Models
6a, 6b and 5 to Model 2a using the likelihood ratio test
gives a highly significant result (P , 10215). The Bonferroni
correction for eight multiple tests, applying the standard sig-
nificance level (a ¼ 0.05) to one test, is 0.00625. This strongly
supports the hypothesis that contractions are present in the
underlying process of repeat length evolution.

The models with individual-specific parameters, both with
and without contractions, are better supported by the AIC evi-
dence, ranging from 0 to 8194, than the models with global
parameters, AICs ranging from 9822 to 102 308 (ranked 7–
8 in Table 2). This suggests that there is significant parameter
variation between individuals. When considering the threshold
parameter, a, we observe that fixing the value at 40 CTGs pro-
vides as good a fit to the data as individual values, providing
support for the involvement of a universal length effect in the
mechanism of repeat instability. This finding is consistent
with the observed instability threshold of around 40 repeats
in DM1 (5,6).

Parameter estimation

The model fitting produces some evidence for individual vari-
ation in m and w. The maximum-likelihood approach provides
point estimates of parameters, but it is also desirable to have
information on the parameter distributions. We compute the
parameter distributions for each individual using a Bayesian
framework which fully takes into account any uncertainty
arising from the finite nature of the sample for each
DM1-affected individual and the PCR technique. As elabo-
rated in the Materials and Methods section, the effect of the
finite sample outweighs that of the PCR technique and simu-
lation experiments investigating sample size show that we
have enough individually sized alleles from each
DM1-affected individual to satisfactorily infer the parameters
of interest, namely, expansion and contraction rates, and the
inherited repeat length (Supplementary Material S1).

The parameters (l[i], m[i], a[i] and n
[i]
0 where a particular in-

dividual is denoted [i] and i ¼ 1, . . . , 142 corresponding to the
142 individuals analysed) were treated as unknowns and their

Table 2. Model comparison summary

Models, N ¼ 142 individuals Parameters Number of
parameters

Maximized
log-likelihood

AIC Adjusted
AIC1 (rank)

Likelihood
ratio test (rank)

6a. Expansion and contraction with
individual-specific parameters for expansion,
contraction and a fixed threshold

ag ¼ 40, l[i], m[i], n
[i]
0 427 2135 614 272 082 0 (1) (2)∗

6b. Expansion and contraction with
individual-specific parameters for expansion,
contraction and threshold

a[i], l[i], m[i], n
[i]
0 568 2135 523 272 182 100 (2) (1)∗

5. Expansion and contraction with a global
parameter for expansion, an individual-specific
parameter for contraction and a fixed threshold

ag ¼ 40, lg, m[i], n
[i]
0 286 2136 392 273 356 1274 (3) (3)∗

2a. Expansion only with an individual-specific
parameter for expansion and a fixed threshold

ag ¼ 40, l[i], n
[i]
0 285 2136 721 274 012 1930 (4) (5)

2b. Expansion only with individual-specific
parameters for expansion and threshold

a[i], l[i], n
[i]
0 426 2136 613 274 078 1996 (5) (4)

4. Expansion and contraction with a global
parameter for contraction, an individual-specific
parameter for expansion and a fixed threshold

ag ¼ 40, l[i], mg, n
[i]
0 286 2139 852 280 276 8194 (6) (6)

3. Expansion and contraction with global
parameters for expansion and contraction,
and a fixed threshold

ag ¼ 40, lg, mg, n
[i]
0 145 2140 807 281 904 9822 (7) (7)

1. Expansion only with a global parameter for
expansion and a fixed threshold

ag ¼ 40, lg, n
[i]
0 144 2187 051 374 390 102 308 (8) (8)

The models, listed in column 1, were ranked according to their AIC score which penalizes the maximized log-likelihood by the number of parameters.
∗Significantly (P , 10215) better than Model 2a.
1AIC adjusted by subtracting the lowest value overall (272 082 model 6a) from each model.
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probable values were inferred from the data using a Bayesian
framework and biologically informed prior for each parameter
(Table 1). This approach provided not only the most probable
value for each parameter but also a credible range. In some
cases, there is evidence of suboptimal solutions. By presenting
the results in this way, we retain a full picture of the parameter
solution space which is particularly important when the model
has non-linear components causing such suboptimal solutions
to arise. We report the parameter estimates as probability
density functions, or posterior distributions, the peaks of
which indicate the most probable parameter values while cap-
turing any uncertainty in the prediction. The results for indi-
vidual CR35 (i ¼ 35), (Fig. 1), are typical of many
individuals. The parameter with the highest posterior probabil-
ity peak, and hence for which the data are the most inform-
ative, is the contraction rate m[35] (Fig. 1E). The peak is
located at 0.25 contractions per CTG unit per year. For para-
meters n

[35]
0 and w[35] (Fig. 1A and I) peaking over 209

CTGs and 0.0346 expansions minus contractions per CTG
unit per year, respectively, the posterior distributions are
wider than that for m[35]. Given the range of repeat lengths
sampled for this individual (between 300 and 1300 CTGs),
the posterior distribution for a[35] is best viewed jointly with
n0 (Fig. 1F). The resulting contour is widely spread over the
range for a[35] (0–50 CTGs), implying that the observed
repeat lengths, for this particular individual, are not inform-
ative for this parameter. This is because the observed repeat
lengths are much greater in length than the plausible range
for the threshold (below 50 CTGs), and consequently, we con-
clude that parameter a[35] has little effect on the dynamics of
repeat length evolution for this particular individual. Inspec-
tion of the joint probabilities for pairs of parameters can indi-
cate interdependencies between parameters. For many
individuals, there is a trade-off between w and n0 concerning
the best fit, as illustrated by the skewed contour (Fig. 1G).

The parameter values associated with the maximum likeli-
hood are presented for each DM1 individual (Supplementary
Material, Fig. S3C). The average expansion rate is 0.53
CTGs per CTG unit per year, and the average contraction
rate is 0.51 CTGs per CTG unit per year. The resulting net ex-
pansion (expansion minus contraction) is 0.02 CTGs per CTG
unit per year. A relatively small gain is achieved by very many
expansions and contractions. Interestingly, although there is a
lot of individual-specific variation in the mutation rates, the
correlation between expansion rates and contraction rates
across the 142 DM1 individuals is very high (R2¼ 0.99,
P , 0.0001).

Model fit

Models 6a and 6b fitted the data equally well but as Model 6b
contains information about the threshold, we consider further
the fit of Model 6b (expansion and contraction with individual
parameters) to the data. The maximum-likelihood solution
(m ¼ 0.25, w ¼ 0.036, a ¼ 41 and n0 ¼ 209) traces closely
the rising slope of the cumulative data (Fig. 1C). As for every
individual (Supplementary Material, Fig. S3), the inferred
value of m is clearly non-zero under the expansion and contrac-
tion model. Further to this, the maximum log-likelihood of the
expansion and contraction model (21495) is greater than the

maximum log-likelihood of the expansion-only model
(21511); see individual CR35 Supplementary Material,
Table S1. Capturing the variance seen in the data is key to
fitting these models. In the expansion and contraction model,
the variance seen in the data is the result of both expansion
and contraction. The contraction process is playing an important
role in generating the variance in the data. In the expansion-only
model, the observed variance can only be explained by an
inherited repeat length below the lowest observed repeat
length. As well as a poorer fit, indicated by the AIC analysis,
the resulting predicted inherited allele length, n0, from the
expansion-only model is also implausibly close to the range
seen in the general population (5–37 CTGs) which would
argue against this being a disease allele in the first place. For
illustrative purposes, the time-dependent distribution generated
first by the expansion and contraction model and second by the
expansion-only model was simulated for 120 cells with an
initial repeat length of 160 CTGs over 30 years (Supplementary
Material S1 and Videos S1 and S2, respectively). In each scen-
ario, the expansion bias was set at 0.02 CTGs per CTG unit per
year. Inspection of the resulting distributions confirms that
repeat length variance is much greater under the expansion
and contraction model, whereas the mean repeat length is the
same for each model. Under expansion only, the distribution
lies above the initial repeat length. These simulations visually
confirm the higher plausibility of the expansion and contraction
model and support our more rigorous statistical finding that con-
tractions underlie this mutational mechanism. Further visual
evidence of the model fit is provided by comparing simulations,
based on the parameter estimates for six DM1 individuals with
different ranges of allele lengths, with the original autoradio-
graphs (Supplementary Material, Supporting Text S1 and
Fig. S2).

The full model (6b) assumed that the rates of expansion and
contraction are linearly proportional to the repeat length
beyond a threshold. Equivalently, each CTG unit beyond the
threshold is equally likely to give rise to an event. The
fitting of this model to the data suggests that this assumption
is a good approximation for the majority of individuals (121
out of 142) whose repeat lengths lie in the mid-range. This
excludes congential cases where the repeat length is very
high and asymptomatic individuals whose repeat lengths are
relatively low. For low-range individuals (allele lengths
,200 CTGs), contraction rates cluster around the low end
of the parameter spectrum (Fig. 2A). For high-range indivi-
duals (allele lengths .800 CTGs), expansion minus contrac-
tion values cluster around the low end of the spectrum
(Fig. 2B). In both cases, it is reasonable to expect these
rates to be randomly distributed throughout the spectrum.
These results provide an indication that the overall model
may be improved further by introducing a non-linear response
in line with differences in the biology of small alleles or large
alleles. Small alleles may have a reduced propensity to expand
or contract due to possible end effects and there may be a
mechanism either limiting the expansion of the large alleles
or causing more contraction. To fit fully such a non-linear re-
sponse requires additional analysis among low-range indivi-
duals and individuals bridging the mid-range and the high
range, and will be the focus of future work if appropriate
data can be collected.
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Hierarchical Bayesian analysis

Given there is support for individual variation in m and w, the
aim of the hierarchical Bayesian analysis was to use the data to
predict the probable range and distribution of m and w in the
general DM1 population. To do this, we make some assump-
tions about the shape and scale of the underlying distribution,
which are summarized as the prior information (Table 3). This
information reflects our knowledge about the mutation rates
before analysing the data. In our case, the gamma distribution
is a good choice as it necessarily lies over positive values and
allows for the possibility that the distribution may be skewed,
either towards zero or with a long tail. The shape and scale of
the gamma distribution ensures that a wide range of possibil-
ities were considered. This analysis effectively weights the
probability of each parameter value of interest by the probabil-
ity that it could have arisen from each of the underlying distri-
butions under consideration. For this analysis, we considered
first all our individuals together (N ¼ 142) and secondly, the
subset of individuals who do not have the congenital form
of the disease but do have symptoms (N ¼ 121). By excluding
those diagnosed at birth or those asymptomatic individuals
who have yet to develop symptoms, we focus on the group
for whom progression of the disease is most variable and
hence diagnosis most open and pertinent. The range of
shared values for all 142 individuals peaks at 0.14 contractions
per CTG unit per year, and the subgroup group of 121 indivi-
duals peaks at 0.25 contractions per CTG unit per year
(Fig. 3A). For w, the shared values peak at around 0.0026
expansions minus contractions per CTG unit per year (N ¼
142) and 0.0032 expansions minus contractions per CTG
unit per year (N ¼ 121) (Fig. 3B). The credible interval
(5th–95th percentile) for this prediction is shown as a
shaded grey area (Fig. 3). All distributions are skewed

towards the right with long tails. The lower rates, when all
individuals are included, indicate that something different is
happening with the very short and very long alleles.

DISCUSSION

We have shown that a thresholded stochastic birth and death
process, where birth represents expansion and death

Figure 2. Scatter plot of the maximum-likelihood parameter values. (A) Con-
traction, rate per CTG unit per year, m, on the vertical axis versus inherited
allele length n0 on the horizontal axis (n ¼ 142). (B) Expansion minus contrac-
tion, rate per CTG unit per year, w ¼ l 2 m.

Table 3. Hierarchical Bayesian analysis

Distribution Hyper
parameters

Range for
uniform prior

Incremental step size for
parameter exploration

Gm (am, bm) Mean ambm 0.3–0.8 0.01
Variance

ambm
2

0.05–0.55 0.01

Gw (aw, bw) Mean awbw 0.005–0.03 0.0005
Variance

awbw
2

0.0001–0.0006 0.00001

For the hierarchical Bayesian analysis, we require an assumption about the
shape of the distribution underlying the model parameters of interest, m and w,
and priors, which encapsulate any information we may have, for the parameters
of that distribution. We assume that the distribution underlying m, the rate of
contraction per CTG unit per year is a gamma distribution, Gm, defined by a
shape parameter am and a scale parameter bm, as the gamma distribution has
many different forms over positive values. The mean and variance of this
distribution are ambm and ambm

2, respectively, and we chose, for convenience,
to place our priors on the mean and variance, to ensure that we cover a range of
possible shapes for this distribution. For w, the rate of expansion minus
contraction per CTG unit per year, we also assume that the underlying
distribution is a gamma distribution, Gw, defined by shape parameters aw

and bw.

Figure 3. Hierarchical Bayesian analysis results. (A) The modal distribution of
the contraction rate (dark line) for all individuals except those who have had
DM since birth (congenital) or who have no symptoms yet (asymptomatic),
121 individuals in total. (B) The modal distribution of the expansion minus
contraction rate (dark line) for the same 121 individuals. The shaded area,
in both panels, represents the 5–95 percentile credible range. The modal dis-
tribution for all 142 individuals is shown by the dotted line.
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contraction, can explain a wide range of repeat length distribu-
tions arising in the blood cells of individuals with DM1. This
conclusion remains valid both when individuals and the popu-
lation as a whole are considered.

Alternative modelling frameworks for pathological muta-
tions associated with rapidly changing repeats have been pro-
posed. Leeflang et al. (33) investigated germline mutation
frequency in HD using a simple Okazaki fragment processing
model of trinucleotide repeat instability. This model could be
fitted very nicely to sperm data and revealed support for a
mitotic cell division-dependent mutational mechanism in the
rapidly dividing spermatogonial stem cells in the male germ-
line. In contrast, our data do not support an association with
mitotic cell division in the haematopoietic stem cell popula-
tion with hundreds of mutations predicted each year (see
below) relative to a stem cell renewal rate of once every
40 weeks (37). Interestingly though, Leeflang et al., did, as
did we, reveal evidence for individual-specific mutational
parameters, suggesting that both germline and somatic in-
stability are modified by as-yet unknown genetic and/or envir-
onmental factors. More recently, Veytsman and Akhmadeyeva
(34) showed that a simple theoretical model of pathological
microsatellite expansion based on hairpin formation, including
both expansions and contractions, could offer a qualitative ex-
planation for the observed phenomena of mosaicism, anticipa-
tion and rare reversions. However, this model did not
incorporate any in vivo somatic data and thus the actual para-
meters could not be calculated. Our model builds on Kaplan
et al. (13) who used a simple birth process to describe
repeat length evolution. Because their data were limited to
modal summaries, it did not indicate any variation that
might be present within an individual, making it impossible
to distinguish between expansion and contraction. Hence,
their work assumed that the expansion bias observed in indivi-
duals is solely due to expanding lengths. In contrast, for each
DM1 individual, the data that we use in our study effectively
provide between 100 and 350 outcomes of a stochastic process
in the somatic blood cells sampled at a single point in time. In
total, over 25 000 repeat lengths were sized representing one
of the largest databases of its kind. Of those alleles, around
20 000 are estimated to be de novo, having arisen during the
lifetime of individuals. So as well as information about the
mean behaviour of this process, we also have information
about the variation and distribution. This allows us to
uncover more aspects of the underlying mechanism, increase
the fitting capacity and obtain more information about the
parameters of the biological processes involved in DM1.

The key question we posed was whether the variation
observed in these repeat lengths is solely due to expansion,
as implicitly assumed in the model of Kaplan et al. (13), or
whether it is the combined result of expansions and contrac-
tions. We also wanted to establish how much variation
exists between individuals. To address these questions in a
rigorous, statistical way, we formulated the hypotheses as a
series of models and then ranked them using AIC and the like-
lihood ratio test. There was most support for the expansion and
contraction model with individual-specific parameters. Previ-
ously, it was thought that the expansion bias observed in indi-
viduals was mostly due to expansions with relatively rare
incidences of contractions. We show that the observed

expansion bias is actually the difference between expansions
and contractions. Consequently, there are many more muta-
tional events in total, comprising both expansions and contrac-
tions, than an expansion-only model would predict. Our results
suggest that a relatively small net gain of two repeats may
arise from 100 expansions and 98 contractions: in total 198
mutational events. This makes the DM1 locus even more
hypermutational than we thought and is a provocative hypoth-
esis for future experimental research. The closeness of the
contraction and expansion rates could be experimentally veri-
fied with various model systems such as transgenic mice, as-
suming that the mechanisms and dynamics are accurately
reflected in such models. While transgenic mouse models do
not usually show large intergenerational changes, substantial
expansion-biased and age-dependent somatic length changes
of many hundreds of repeats are observed in some somatic
tissues (but not usually in blood) (21,50,51).

The expansion and contraction rates are assumed to be con-
stant with age. With one sample from each patient, it is not
possible to distinguish clearly an age effect from another
effect (genetic or environmental). Repeat samples from the
same DM1 individuals at different ages would allow us to
test whether the individual-specific rates of contraction and ex-
pansion vary over time. With another time sample, we could
assume that other effects are constant and quantify temporal
changes. Collection of further samples is currently underway
in a longitudinal study which would address this issue.

For a 30-year-old individual with an inherited repeat length
of 200 and a net gain of two repeats per 100 expansions, the
model predicts �5500 expansion and contraction events per
cell during their lifetime, which is �1 event every other
day. Significantly, for establishing a causal link for instability
with DNA replication, this number is not consistent with the
number of stem cell divisions, once every 40 weeks (37).
Rather, this number links the mutation process with the time
scale of other more frequent cell activities such as DNA
repair and transcription. Compared with estimates of the
amount of DNA damage endured each day in a white blood
cell, which is thought to be over 104 events and may be as
many as 106, over the 3.2 × 109 bp of the genome, discussed
in (52) and (53), mutational events at the DM1 locus are oc-
curring between 10 and 100 times more frequently. The
strong link between expansion and contraction rates within
an individual may arise from similarities in the mutational
mechanism, suggesting that expansions and contractions may
result from the stochastic effects of one biological process
rather than two. Further support for this idea is provided by
studies of transgenic mice in which the expanded repeat is
completely stabilized in either an Msh2 or Msh3 null back-
ground (54,55), implying that both the underlying expansions
and contractions have been affected by loss of function of the
same pathway.

Longer DM1 alleles transmitted to the next generation result
in more severe symptoms and an earlier age at onset, an effect
compounded by somatic expansion (F. Morales et al., manu-
script in preparation). As such, suppression of somatic expan-
sion is expected to be therapeutically beneficial and induction
of contractions potentially curative (1,14). However, the feasi-
bility of suppressing expansions/inducing contractions remains
largely undetermined. Our results have revealed that the
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mutational pathway is even more dynamic than previously
envisioned and that although overall biased towards expan-
sion, net gains are the product of a very subtle bias towards
expansions relative to almost equally frequent contractions.
The high underlying frequency of contractions suggests there-
fore that a therapeutically beneficial impact may be mediated
by a relatively subtle shift in the relative bias from small
expansions towards small contractions. With the underlying
expansion and contraction frequencies so closely matched,
either a 3% decrease in the basal expansion frequency or a
3% increase in the basal contraction frequency would result
in a net loss of repeats over time. Such a subtle intervention
would appear more pharmacologically achievable than the
major suppression of expansions foreseen as required in an
expansion-only system.

The hierarchical analysis establishes the underlying distri-
bution for parameters m and w by effectively weighting the
evidence from individuals to form a population prediction.
This prediction is based on individuals who have developed
symptoms since birth and who represent the group for which
prognosis is most variable. The results for m suggest that
population rates peak at 0.25 contractions per CTG unit per
year. For w, which represents the difference between the ex-
pansion and the contraction rate, the values peak at 0.0032
per CTG unit per year. This analysis supports the model com-
parison finding that individual parameters give rise to the best
model fit. This indicates that individual-specific factors, either
environmental or genetic or both, may influence instability.

DM1 is a multisystemic disease with even patients from the
same family varying in age of onset, symptoms and the pro-
gression of the disease. Our model is calibrated to blood
which although not a primary target of the disease is easily ac-
cessible in a large number of patients and is a tissue within
which the repeat remains relatively stable compared with
other tissues in which the main symptoms of the disorder
are manifest. Analysing blood DNA thus gives us the best
chance to estimate the progenitor allele length which is most
indicative of age of onset (F. Morales et al., manuscript in
preparation). Future studies that collect data from different
tissues along with more detailed information about disease
progression would in theory allow us to investigate the under-
lying mechanism of instability in different tissues and deter-
mine stability in other tissues. However, there are several
challenges to measuring instability in other tissues. Not least
of these is the availability of large numbers of samples from
tissues not routinely sampled during the diagnostic procedure.
With the availability of genetic tests based on blood DNA,
muscle biopsies are considered far too invasive for routine
testing, and most other tissues are only available post-mortem.
In addition, more complex tissues often display multimodal
distributions (e.g. the bi-modal and tri-modal distributions typ-
ically observed in the mouse liver and kidney) (21,28), likely
reflecting the presence of very different cell types within the
same tissue. Dissecting the relative contribution of different
cell types with different mutational dynamics would be even
more challenging. In addition, the very large expansions
observed in most other tissues of DM1 patients (frequently
many thousands of repeats) (56,57) pose technical challenges
and are not amenable to routine small-pool PCR analysis. It is
not known why the lengths are so much longer in tissues such

as the muscle, but our work now provides two alternative
explanations. The basic mechanism may resemble that in
blood, with even greater underlying expansion and contraction
frequencies. Alternatively, a greater net expansion frequency
may be mediated by a greater difference in the underlying ex-
pansion and contraction ratio.

Our model could also be extended to other triplet repeat ex-
pansion diseases (such as HD) depending on the availability of
suitable data sets. However, compared with DM1, the
expanded repeat tract in most other triplet repeat diseases is
relatively stable, particularly in blood. Other tissues such as
the brain are difficult to obtain and have a greater complexity
than blood in terms of cell composition which would necessi-
tate adding additional parameters partitioning mutations
between cell types. If the model could be calibrated to
another disease, we would expect differences in the parameter
values but similarity in the underlying mechanism.

Mathematical modelling and inference of somatic DNA dy-
namics at the DM1 locus has enabled the estimation of bio-
logical parameters, inherited repeat length and mutation
rates, which could not otherwise be obtained. The level of
these measures provides a deeper understanding of the under-
lying mechanisms and we can use a calibrated model to
answer scenarios and to make predictions. F. Morales et al.
(manuscript in preparation) found that the inherited CTG
repeat length is potentially much better than the current
modal CTG repeat length measure taken during diagnosis of
the expansion repeat diseases at explaining the age of onset
and the progression of the disease. This is partly because the
analysis of the modal repeat length is confounded by the
tissue and age specificity of somatic mutations. With one
blood DNA sample, our method can broadly estimate the
most probable inherited repeat length. Data from another
time point could in principle narrow this estimate even
further, and future work will aim to establish this.

Further, these quantitative traits, m and w, are potential bio-
markers that can be used via the genome-wide association
study to identify trans-acting genetic factors thought to be
linked to this somatic variation (F. Morales et al., manuscript
in preparation). Our expectation is that these trans-acting
genetic modifiers will also apply in the general population
where they will affect ageing, cancer, inherited disease and
human genetic variation.

MATERIALS AND METHODS

Project data

The data analysed in this study (F. Morales et al., manuscript
in preparation) were derived from a large cohort of individuals
with DM1 expansions (.50 repeats). The total cohort com-
prised 145 individuals. In addition to a normal allele, two indi-
viduals (CR51 and CR115) presented an expanded allele with
two distinct modes. The two modes likely represent the pro-
ducts of an early embryonic mutation (58,59), and because
of our inability to clearly apportion additional variants to
either of these two progenitors, these individuals were
excluded from the model comparison analysis. In addition,
one other individual (CR105) who presented with very high
levels of instability despite their very young age at sampling
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was therefore also excluded from the model comparison ana-
lysis.

Small-pool PCR analysis was performed using oligonucleo-
tide primers DM-C and DM-BR, as described previously (11)
(Supplementary Material, Fig. S2). For the detailed quantifica-
tion of the degree of somatic variation, samples were amplified
with 10–70 pg DNA per reaction and at least 100 single
expanded alleles per individual were sized. PCR products
were sized using Kodak Molecular Imaging software 3.5.4
(Carestream Health, Inc.). Further details can be found in
(F. Morales et al., manuscript in preparation). The data can
be visualized as allele length frequencies in a histogram
format (Fig. 1B; Supplementary Material, Fig. S3B), and the
mathematical models describe these distributions using the
biological parameters of interest.

As discussed in the introduction, small-pool PCR is a well
proven method that provides a robust approach to quantifica-
tion of length variation in the blood DNA of myotonic dys-
trophy patients. However, PCR and other technical artefacts
(particularly PCR stutter) can confound the interpretation of
the data. When analysing the products of single molecules,
the effect of PCR stutter is greatly reduced and has been esti-
mated to be at most one single repeat at 35 cycles of PCR (27).
In our case, as well as minimizing PCR stutter by employing
fewer cycles of PCR [28 cycles], the underlying variation is
typically spread over many hundreds of repeats. We consider
that most of the uncertainty in our parameter estimation arises
from the finite sampling of a highly diverse distribution with
only a small contribution from PCR artefacts such as PCR
stutter. By applying our parameter estimation method to a syn-
thetic data set where the parameter values are known, we can
quantify this level of uncertainty and these results are dis-
cussed in Supplementary Material S1.

Mathematical model

Because of the inherent stochasticity in the observed data, with
individual cells evolving independently, we develop a model
using the framework of birth (expansion) and death (contrac-
tion) processes. We refer to Renshaw (30) for further motiv-
ation and explanation of the basic methodology. We depart
from the traditional linear model by introducing a threshold
for the birth and death process. No activity takes place for
repeat lengths below this threshold, and the general propensity
for expansion or contraction is proportional to the excess
length above the threshold, consistent with the inherent stabil-
ity observed in non-diseased individuals.

Suppose that the length, defined as the number of consecu-
tive CTG units, is n at time t. Let l be the rate of expansion
above the threshold length, a, m the rate of contraction
above a and s the step size. Then, at time t + dt:

† the probability that the length is n + s ≈ l(n − a)dt

† the probability that the length is n − s ≈ m(n − a)dt

† the probability that the length is n ≈ 1 − (l+ m)
(n − a)dt

For reasons covered in the introduction, the step size s in our
model is one CTG unit. However, the model could be

extended to other step sizes by appropriate adjustment to the
expressions above.

Let Pn(t) denote the probability that an allele has length n at
time t. Then, the rate of change of Pn(t) with respect to time is
governed by the master equation

dPn(t)
dt

= −(l+ m)(n − a)Pn(t) + l(n − a − 1)P(n−1)(t)

+ m(n − a + 1)P(n+1)(t), (1)

where Pk(t) ; 0 for all k , a, since n . a at t ¼ 0 for all indi-
viduals with the pathological condition. Given the allele length
at time zero, we may solve this infinite system of ordinary dif-
ferential equations numerically by truncating the system at a
suitably large value of n ¼ N, setting Pn(t) ¼ 0 for all n ≥
N + 1.

We can derive expressions for repeat length mean and vari-
ance from the first and second moments of Pn(t), denoted M(t)
and M2(t), respectively:

M(t) =
∑
n≥a

nPn(t), (2)

M2(t) =
∑
n≥a

n2Pn(t). (3)

Differentiating both Equations (2) and (3) with respect to t
and substituting Equation (1) into the result leads, after
some manipulation, to

dM(t)
dt

= (l− m) (M(t) − a), (4)
dM2(t)

dt
= 2(l− m)M2(t) + [l+ m− 2a(l− m)]M(t)

− a(l+ m). (5)

Solving Equations (4) and (5) with M(t ¼ 0) ¼ n0 and M2(t ¼
0) ¼ 0, where n0 is the length of the inherited repeat length
and setting V(t) ¼ M2(t) 2 (M(t))2 for the variance at time t
give the analytical expressions (6) and (7).

Analytical expressions for mean and variance

Equations (6) and (7) link measurable quantities of the mean
and variance found in the blood DNA samples to the biologic-
al parameters which underlie the mechanism of repeat length
evolution:

M(t) = (n0 − a) e(l−m)t + a, (6)

V (t) = (n0 − a) l+ m

l− m

( )
e2(l−m)t − e(l−m)t( )

(7)

where we recall that t is the age of the individual in years when
the samples were collected, n0 the repeat length at t ¼ 0,
which is referred to as the inherited repeat length, l and m
the rates of expansion and contraction, per CTG unit per
year, respectively, and a the threshold above which non-
negligible expansion and contraction occurs.
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We see from Equation (6) that the mean repeat length
changes exponentially over time at a rate determined by the
difference w ¼ l 2 m. It follows that values for l and m
cannot be extracted individually from the mean data alone.
Only the difference can be found this way. However, the vari-
ance depends on the difference between l and m, but also on
the sum, l + m. As our data comprises many samples,
resolved at the cell level, from individuals, it is possible to es-
timate both mean and variance making it feasible to fit l 2 m
and l + m and hence obtain l and m individually.

Model comparison and parameter estimation

We use likelihood methods to carry out model comparison and
parameter estimation. The likelihood is defined to be the prob-
ability that a repeat length has reached the length observed
given the model and its parameters. We can solve Equation
(1) numerically in order to obtain the probability distribution
function Pn(t) which is the probability that a repeat length is
length n at time t. The likelihood L[i] is then the product
over all the data dj, which denotes the repeat length for the
jth observation from individual i, of the probability

P
d
[i]
j

(t[i]; u[i])n≥a,where u[i] are the model parameters for that

individual and t[i] the age of the individual when the data
sample was taken. This gives the likelihood for individual i,

L[i] =
∏

j

P
d
[i]
j

t[i]; u[i]
( )

, (8)

and the overall likelihood L is the product over all individuals
in the population,

L =
∏

i

L[i]. (9)

The model parameters comprise the contraction rate, m[i], the
expansion minus contraction rate, w[i], the threshold, a[i], and
the inherited repeat length, n

[i]
0 .

As a proof-of-principle for the inference procedure, we per-
formed computational experiments on synthetic data, gener-
ated from the underlying stochastic birth–death process with
known parameter values (Supplementary Material S1). This
gives us an indication of the level of certainty available
from the inference procedure.

Model comparison

The AIC is used to assess the goodness of the fit of the model
(47). AIC uses the maximized value of the likelihood of the
model, Lmax, penalized by the number of model parameters,
k, to rank models, thus

AIC = 2k − 2 log Lmax. (10)

To confirm these findings, the likelihood ratio test statistic can
be estimated for pairs of nested models with maximized like-
lihoods Lmax1 and Lmax2 and number of independent para-
meters k1 and k2, respectively, as follows

2(log Lmax2 − log Lmax1). (11)

This statistic has asymptotically a x2 distribution with (k2 –
k1) degrees of freedom (49). Thus, the appropriate P-value
can be obtained and either Model 1 accepted or rejected ac-
cordingly.

We obtain the maximum value of the likelihood by evaluat-
ing the likelihood over a broad parameter space described in
Table 1. Maximization of the likelihood L in Equation (9) is
essentially the maximization of L[i], Equation (8), of each
data set from an individual.

Evaluation of the likelihood

Each individual has a unique age and inherited allele length
which means that the model is fitted over a different length
of time for each individual. Consequently, certain parameter
combinations are less viable than others, particularly concern-
ing n0. It is computationally very expensive to evaluate the full
likelihood equation (9) for reasons to do with the stiffness of
the ordinary differential equation problem. We therefore
propose a pragmatic approach, namely to approximate the
likelihood function in order to explore the full parameter
space and to narrow down the parameter space on which we
calculate the full likelihood, thereby making the problem com-
putationally feasible. Our approximation arises from quasi-
likelihood theory (60) where the relationship between the
mean and the variance can be used to inform a quasi-
likelihood which has the required properties of a full likeli-
hood. Rearranging the derived analytical expressions for
mean M and variance V, Equations (6) and (7), respectively,
give an expression for variance in terms of the mean adjusted
for the threshold, a, denoted by

M̂ = M − a (12)

V = l+ m

l− m

( )
M̂2

n0

− M̂

( )
. (13)

The equation for the variance is now a quadratic in M and the
theory behind quasi-likelihood informs us that the full likeli-
hood can be approximated by a negative binomial distribution
with parameters that depend directly on M and V. We therefore
approximate the full distribution, Pn(t), by a negative binomial
distribution with parameters P and r defined in terms of M̂
and V:

p = 1 − M̂

V
, (14)

r = M̂2

V − M̂
. (15)

This approximate likelihood has the advantage of introducing
the model parameters via the mean and variance into a likeli-
hood with, by definition, the properties of a likelihood in terms
of the error distribution and allows us to utilize all our data
when evaluating the parameter space. Simulations with a
range of individuals show this to be a good approximation,
capturing both the mean and variance of the full distribution.
The negative binomial distribution is also recommended for
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count data when there is overdispersion which applies in our
case as the variance exceeds the mean (61).

Parameter combinations with a quasi-likelihood value, Lq

that satisfies the condition

log(Lq) − log(max (Lq)) . k, (16)

were then subjected to the full likelihood computation. k was
chosen (typically k ¼ 22) to obtain computationally reason-
able sample sizes.

Bayesian parameter estimation

We use a Bayesian framework for parameter estimation.
Bayes’ theorem (62) states that the posterior distribution, p,
of the parameters u[i] given the observed data d

[i]
j is

p u[i]|d[i]
j

( )
=

L d
[i]
j |u[i]

( )
p u[i]
( )

f d
[i]
j

( ) , (17)

where L(d[i]
j |u[i]) is the likelihood of the data given the param-

eter values, p(u[i]) is the prior distribution of the parameters
representing our initial beliefs about the parameter values
before observing any data and f (d[i]

j ) is the normalizing con-
stant that makes the posterior distribution a valid probability
function, otherwise interpreted as the model evidence.
Within a model, the normalization includes a constant and
Equation (17) has the important consequence

p u[i]|d[i]
j

( )
/ L d

[i]
j |u[i]

( )
p u[i]
( )

. (18)

In the special case of a uniform prior, p(u[i]) is greater than
zero only for a truncated range of u[i] (Table 1), and hence,
a constant c can be chosen so that the probabilities sum to
unity and Equation (18) further simplifies to

p u[i]|d[i]
j

( )
/ L d

[i]
j |u[i]

( )
. (19)

Note that in this case, the posterior mode of the distribution p
is equal to the maximum-likelihood estimator of the param-
eter. Also, the posterior distribution can be said to be data-
driven as the likelihood now dominates the posterior.

Hierarchical Bayes

The underlying distribution of two parameters of particular
interest, m and w, within the population can be inferred
using a hierarchical Bayesian approach. We assume that
these are gamma distributions, in shape, chosen because the
gamma distribution is defined by two hyper-parameters and
hence offers flexibility as to the shape of this distribution.
We then infer these hyper-parameters, am and bm for param-
eter m and aw and bw for parameter w by a modification to

the posterior probability distribution function

p u[i]|d[i]
j

( )

/ L d
[i]
i |u[i]

( )
p u[i]|am,bm,aw,bw

( )
p am

( )
p bm

( )
p aw

( )
p bw

( )
.

(20)

In effect, we are weighting the likelihood on the strength of the
support for the parameters of interest from the underlying
gamma distributions.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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