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Part 1: Quantum Cohomology

Motivation

Vicious walkers on the cylinder
Gromov-Witten invariants

Fermions hopping on Dynkin diagrams

nil-Temperley-Lieb algebra and nc Schur polynomials

New recursion formulae for Gromov-Witten invariants

Part 2: sl(n)x Verlinde algebra/WZNW fusion ring

@ Relating fusion coefficients and Gromov-Witten invariants

New algorithm for computing Gromov-Witten invariants.
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Quantum cohomology originated in the works of Gepner, Vafa,
Intriligator and Witten (topological field & string theory).

@ Witten's 1995 paper The Verlinde algebra and the
cohomology of the Grassmannian:
The fusion coefficients of gl(n), WZNW theory can be defined
in geometric terms using Gromov's pseudoholomorphic curves.

e Kontsevich's formula ("big” quantum cohomology)
How many curves of degree d pass through 3d — 1 points in
the complex projective plane?

For more on big and small quantum cohomology see e.g. notes by
Fulton and Pandharipande (alg-geom/960811v2).
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Vicious walkers on the cylinder: the 5-vertex model

Define statistical model whose partition function generates
Gromov-Witten invariants.

Consider an n x N square lattice (0 < n < N) with quasi-periodic
boundary conditions (twist parameter g) in the horizontal direction.

Allowed vertex configurations and their weights

Here x; is the spectral parameter in the it lattice row.
(Vicious walker model, c.f. [Fisher|[Forrester|[Guttmann et al])
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Vicious walkers on the cylinder: transfer matrix

Example of an it" lattice row configuration (n =3 and N = 9):

| i
0 0

0 0
- :
T
0 0

0 0 1 0 0
1 0 1 0 1

The variable x; counts the number of horizontal edges, while the
boundary variable g counts the outer horizontal edges divided by 2.

Definition of the transfer matrix

Given a pair of 01-words w = 010---10,w’ = 011---01 of length
N, the transfer matrix Q(x;) is defined as

# of outer edges i of horizontal edges
Q(Xi)w,w’ = E q 2 & :

allowed row configuration
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Interlude: 01-words and Young diagrams

Row configurations are described through 0l-words w in the set

wl=>w=n, W;G{O,l}}.

W, = {W: WiWs - -« Wiy
Let /1 < ... <l with 1 < /; < N be the positions of 1-letters in a

word w. Then

WIO-“O}O"-O}O'--OHAI(/\1,...,An), /\,-:6,7+1_,-—i
1 n

defines a bijection from W, into the set
‘Bﬁn,k = {)\:()\1 Z)\QZ--'Z)\,,) |>\1 < kand)\,,ZO}

which are the partitions whose Young diagram fits into a n X k
bounding box with k = N — n.
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Vicious walkers on the cylinder: partition function

Given p,v € P<pk, let w(u), w(v) be the corresponding 01-words.

Boundary conditions: fix the values of the edges on the top and
bottom to be w(u) and w(v), respectively.

The partition function is the weighted sum over all allowed lattice
configurations and is given by

Z#(Xl, ey X, CI) = (Q(Xn) : Q(Xn—l) T Q(Xl))w(u),w(u) :

Theorem (Generating function for Gromov-Witten invariants)

The partition function has the following expansion in terms of
Schur functions sy,

ZF(x1, ... X q) = Z qu;l’LdsA(xl,...,x,,),
AE(n,k)

I/\|+IMI—IV\)
N :

where C)'\/l;d are 3-point Gromov-Witten invariants (d =

<
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Reminder: Schur functions

The ring of symmetric function A plays an important role in
representation theory, combinatorics and enumerative geometry.

A = limA,, Ao =Z[x1, ... Xn]>"
e

An important bases are Schur functions which we define as

s\(x) = Z xT, xT = X0 xan
ITI=A
where a(T) = (a1,...,q,) is the weight of a (semi-standard)

tableau T of shape A.

Let n=3and A = (2,1). Then

+ _ |il1] [1]2] [1]3] [1]2] [1]3] |2]2] [2]3]
2] '[2] "[2] "[3] "[3] "[3] '[3]
S(21) = XPxz + X1%6 + 2x10x3 + X1%G + X5X3 + X3

V.
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Special cases of Schur functions are the

@ elementary symmetric functions A = (1) = (1,...,1)
——
r
e(x)= Y o= Y X
ptr, pi=0,1 i< <y

e complete symmetric functions, A = (r,0,0,...)

hr(X):ZXfl"'Xﬁn: Z Xiy + X,
pr i <---<ir
Product of Schur functions via Littlewood-Richardson coefficients:

_ v
S\ Sy = E CrpSv -
v
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Schubert varieties and rational maps

Let Gr, n be the Grassmannian of n-dimn’l subspaces V' in CN.

Given a flag F; C Fo C --- C F, = CN the Schubert variety Qi(F)
is defined as

Q, = {V € GI‘,,JV ‘ dim(VﬂFk+i_)\i) >0, i = 1,2,.../7}.

Definition of 3-point Gromov-Witten invariants

Cj\j”i = # of rational maps f : P! — Grj, v of degree d which meet
the varieties Q) (F), Qu(F’), Q,v(F") for general flags F, F’, F"
(up to automorphisms in P).

If there is an co number of such maps, set CK”: =0.

vV =(k—vn,...,k—r1) (complement — Poincaré dual).
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Small Quantum (= g-deformed) Cohomology

Define gH*(Grp k) 1= Z[q] @z H*(Grp k).

Small quantum cohomology ring (Gepner, Witten, Agnihotri,. .. )

7d H .
The product oy oy = > qu)’:’” o, with oy = 1 ® [Q,],
turns gH*(Grp k) into a commutative ring.

Theorem (Siebert-Tian 1997)

Set N\, = Zle, ..., en] then o) — sy is a ring isomorphism

gH*(Grp,n) = (Z[q] ®z An)/(Pks1s o Pntk—1, hnrik +(—1)"q)

v
Specialisations

q = 0: cup product in cohomology ring H*(Grp nik).
q = 1: fusion product of the gauged gl(n)x WZNW model (TFT).
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Fermions on a circle

Consider a circular lattice with N sites, 0 < n < N particles (called
‘fermions’) and k = N — n ‘holes’.

(] )

S —>

w=010110011 A=(44,2,2,1)=[] :
n+k . i

Pauli’s exclusion principle: at each site at most one particle is
allowed (vicious walker constraint)!
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Fermion creation and annihilation

Consider the finite-dimensional vector space
N 2\@N
Szeagny gn:Can(C)(@a
n=0

where §o =C{0---0} =Cand w=0---0 is the vacuum @.
Define nj(w) = wi + - - - + w;, the number of 1-letters in [1, 1].

For 1 < i < N define the (linear) maps 7, ¢, : §n — Fnt1,

1/}*(W) — (71)ni71(W)W/’ w; = 0 and VVJ/ — VVJ + 6,7‘/
i 0, w; = 1

'l/}(W) = (_]-)r'ifl(W)W/7 w; = 1 and VVJ/ — VVJ - 6,7‘1
i 0, w; = 0.
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Take n=k =4 and = (4,3,3,1).

n=k=4 n=5k=3
0 | 0
w*-lo = - [0
3 [ 1o 1]0
w=01001101 w =01101101

The boundary ribbon (shaded boxes) starts in the (3 —n) = —1
diagonal. Below the diagram the respective 01-words w(u) and

w(t3p) are displayed.
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Clifford algebra

Proposition

The maps ;,; : §n — Fnz1 yield a Clifford algebra on
F= @OSnSNg”' i.e. one has the relations

Vi + Y = i +yiYi =0, Y7 + v =4 -

Introducing the scalar product
(w.0) = [y
1

one has (Yiw,w') = (w,y;w’) for any pair w,w’ € §.

The Clifford algebra turns out to be the fundamental object in the
description of quantum cohomology.
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Nil affine Temperley-Lieb algebra
Proposition (hopping operators)

The map u; — sz)?(-i—ld)h = 17 000 N — 15 un — (_1)n_1q¢I¢N
yields a faithful rep of the nil affine TL algebra in End(§,),

2 -
ur = Uujujp1U; = Uiyt =0, P E€Zy

TRy = R |i — jlmod N > 1

Proposition (nc complete symmetric polynomials)

The transfer matrix of the vicious walker model is given by

Q(xi))= > x‘h(u) with

0<r<N

he(u) = ;(q(—l)”_1¢w)p° ug g - uf (D)
ptr

Q possesses a complete eigenbasis independent of x;, hence
[Q(xi), Q(xj)] = O for any pair x;, x;.
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Noncommutative Schur functions

Define S,\(U) = det(hAi_,-_H(u))lg,-,jSN, note [h,(u), h,/(u)] =0.

Theorem (Postnikov 2005)

Combinatorial product formula for the quantum cohomology ring:

Axp=> quAVl;dV =sy(u)p.
d,v

Proposition (CK, Stroppel: noncommutative Cauchy identity)

Let Q be the transfer matrix of the vicious walker model, then

Q(x1) - Q(x2) -+ Q(xn) = Z}\: sa(u)sa(xa, ...y Xxn) .

Partition function of the vicious walker model

Taking the scalar product (v, ... u) in the nc Cauchy identity now
proves the earlier stated expansion of the partition function.
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Explicit construction of eigenbasis

Construct common eigenbasis {b(y)} of s\(u1,...,un)'s using
Clifford algebra (Jordan-Wigner transformation):

s\(u)b(y) = s\(¥)b(y),  b(y) =7 (1) D (va)2,
where 9" (yi) = 3, y7us and Y = - =y = (-1)"q.
~+ Siebert-Tian presentation of gH*(Gr, n)
hesr == hopko1 =0, hppe = (=1)""q
~> Bertram-Vafa-Intrilligator formula for C/'\j!’Ld

v,d <V75>\(u)b(y)><b()/)wu>
G = 000,600
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Fermion fields and nc Schur functions

The following commutation relation holds true,

170))
s\(u, Q)0 = isa(u,—q) + > _viy, Y su(u,—q)
r=1 A u=(r)

where we set ¢;’-‘+N = (—1)n+1qw}‘, n = particle number operator.

4
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Fermion creation of quantum cohomology rings

Y7, 1; induce maps gH*(Grp n) = gH*(Grpt1,n).

Corollary (Recursive product formula)

One has the following relation for the product in gH*(Grp n),

Ax i () = sa(u; Q)i (p) = Z 2 ¢:+r(V*M)

r=0X\/v=(

where * denotes the product in qH*(Grp_1,n) with g — —q.

Corollary (Recursion formula for Gromov-Witten invariants)
Suppose ¥;pu # 0 for some 1 < j < N. Then

v, u rud,
i (n, ) Z( N p;;u —1,N).
A p=(r)
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Example
Consider the ring gH*(Gra5). Via ¢7 : gH*(Gr15) — gH*(Gr25)
one can compute the product in gH*(Gry5) through the product

in gH*(Gry5):

A =H e ()
00010

00101 101010 00101
=5 (LT I*[ T T 1) +¥ss (T I*[ 1 11)

= —q¥347 (o%o) — QY343 (1090())
—aH+a[T 1.

Inductive algorithm
One can successively generate the entire ring hierarchy

{qH*(Grpn)}N_, starting from n = 0.
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Corollary (Fermionic product formula)

One has the following alternative product formula in gH*(Gr, n),

Axp= Z ¢21(M)+anw€2(ﬂ)+an—lwz3(u)+04n727’_/)e4(/1/)+an—3 9,
[T]=A

where {; are the particle positions in i, o is the weight of T,

Corollary (Quantum Racah-Speiser Algorithm)
Form € S, set aj(m) = (¢i(v) — £r(jy(1r)) mod N > 0 and
d(m) = #{i | ti(v) — Lx(;)(1) < O}. Then

C)I\I;’Ld = Z (_1)£(7r)+(n_1)dK>\,o¢(7r) )
TESy, d(m)=d

where K . are the Kostka numbers.
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Set N=7, n=N—k=4and A=(2,2,1,0), n=(3,3,2,1).

Step 1. Positions of 1-letters: ¢(p) = (¢1,...,0s) = (2,4,6,7).
Step 2. Write down all tableaux of shape A such that
U= (l1+an,.... 0o+ 1) mod N with £} # £’ for i # j .

[1] [1]1] [1]1] [1]1] [2]2] 2
[2]4] .. .. .. I .. 2 [4] 4]
4 4 4

(3 5 7,9) (3 4 8,9) (4 5 6,9) (3 6 7.,8) 3,6,7,8) (3, 6 8 7) 4,5,7 8) (4,5,7,8) (4,5,8,7)

7

r\)

(3,5

Step 3. Impose quasi-periodic boundary conditions, i.e. for each
¢ > N make the replacement

1
Gy @ = (1)U U2

Step 4. Let £” be the reduced positions in [1, N]. Choose permutation
7€ Sy st £ <. < £ and multiply with (=1)“7). Done.
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The three tableaux

yield the same 01-word w = 1001101, A(w) = (3,2,2,0) but with
changing sign,

* ¥ T 7k =k
Vi 12V, +100, 100,419 = Vi 20,410, 41%0,419 =
= % - %k
— Vi 42,100,120, D = q Y1VaV5YID

We obtain the product expansion

* =q +2q +q +q +q% 0 .
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