Statistical Mechanics & Enumerative Geometry II: Combinatorial Construction of WZNW Fusion Rings

Christian Korff (c.korff@maths.gla.ac.uk)
University Research Fellow of the Royal Society
Department of Mathematics, University of Glasgow

joint work with C. Stroppel (U Bonn) Adv Math 225 (2010) 200-268 arXiv:0909.2347; arXiv:0910.3395; arXiv:1006.4710

July 2010

Outline

In the first talk we saw the combinatorial construction of the (small) quantum cohomology ring. In this talk we see that analogous structures appear in the $\widehat{\mathfrak{sl}}(n)_k$ WZNW fusion ring, albeit with some important differences.

- reminder: Sugawara construction of WZNW CFT
- affine plactic algebra and crystals
- affine plactic Schur polynomials and combinatorial fusion ring
- recursion identities for the fusion ring
- Summary

Reminder: Sugawara construction of WZNW CFT

$$T(z) = \sum_{n \in \mathbb{Z}} z^{-n-2} L_n, \ [L_m, L_n] = (m-n) L_{m+n} + \frac{c}{12} m(m^2 - 1) \delta_{m+n,0}$$

Sugawara construction for (quantum) WZNW models:

$$T(z) = \frac{1}{2(h+k)} \sum_{a} : J^{a}(z)J^{a}(z) : , \ J^{a}(z) = \sum_{n \in \mathbb{Z}} z^{-n-1}J_{n}^{a}$$

$$\hat{\mathfrak{g}}_k$$
: $[J_n^a, J_m^b] = i \sum_c f_{abc} J_{n+m}^c + kn \delta_{ab} \delta_{n+m,0}$, level $k \in \mathbb{Z}_{\geq 0}$

Primary fields \equiv highest weight vectors $(\hat{\lambda} \in P_k^+)$

$$J_0^a\phi_{\hat{\lambda}}=-t_{\hat{\lambda}}^a\phi_{\hat{\lambda}}, \qquad J_n^a\phi_{\hat{\lambda}}=0, \quad n>0 \ \Rightarrow \ L_n\phi_{\hat{\lambda}}=0, \ n>0$$

OPE and fusion rules:

$$\phi_{\hat{\lambda}} * \phi_{\hat{\mu}} = \sum_{\hat{\nu} \in P_k^+} \mathcal{N}_{\hat{\lambda}\hat{\mu}}^{(k)\hat{\nu}} \phi_{\hat{\nu}}$$

Result

Combinatorial and recursive computation of $\mathcal{N}_{\hat{\lambda}\hat{n}}^{(k)\hat{p}}$ for $\hat{\mathfrak{g}}=\widehat{\mathfrak{sl}}(n)$.

Alternative interpretations of fusion coefficients

Representation theory and algebraic geometry:

- fusion coefficient of tilting modules of quantum groups at roots of 1
- dimensions of moduli spaces for generalized θ -functions

Weights and partitions

$$\hat{\mathfrak{sl}}(n)=\mathfrak{sl}(n)\otimes \mathbb{C}[t,t^{-1}]\oplus \mathbb{C}\mathbf{C}$$

Define integral dominant weights of level k,

$$P_k^+ = \left\{ \hat{\lambda} = \sum_{i=1}^n m_i \hat{\omega}_i \mid \sum_{i=1}^n m_i = k \right\},$$

where $\hat{\lambda} = \lambda + k\hat{\omega}_n$.

The *n*-tuple $m = (m_1, \ldots, m_n)$ are called **Dynkin labels**.

Given $\hat{\lambda} \in P_k^+$ we identify weights with partitions:

$$\hat{\lambda}^t = (1^{m_1(\hat{\lambda})} \dots n^{m_n(\hat{\lambda})}), \quad m_i(\hat{\lambda}) = \# \text{ of } i\text{-columns}$$

Note that $\hat{\lambda}_1 = k$ and $\hat{\lambda}$ has at most n nonzero parts.

Example

Set
$$n=3,\ k=4$$
 and $m(\hat{\lambda})=(1,2,1).$ Then $\hat{\lambda}=$

∞-friendly walkers on the cylinder: the defector model

Consider an $(n-1) \times n$ square lattice $(n \ge 3)$ with quasi-periodic boundary conditions (twist parameter z) in the horizontal direction.

Here $a, b, c, d \in \mathbb{Z}_{\geq 0}$ and x_i is the spectral parameter in the i^{th} lattice row. (∞ -friendly walkers \rightarrow [Guttmann et al].)

Given $\hat{\mu}, \hat{\nu} \in P_k^+$, let $m(\hat{\mu}), m(\hat{\nu})$ be the Dynkin labels.

Boundary conditions: fix the values of the outer edges on the top and bottom to be $m(\hat{\mu})$ and $m(\hat{\nu})$, respectively.

∞-friendly walkers on the cylinder: transfer matrix

Example of an i^{th} lattice row configuration (n = 5, k = 7):

The variable x_i counts the number of horizontal edges, while the variable z counts the outer horizontal edges divided by 2.

Definition of the transfer matrix

Given $m=(m_1,\ldots,m_n), m'=(m'_1,\ldots,m'_n)\in\mathbb{Z}^n_{\geq 0}$, the transfer matrix $Q(x_i)$ is defined as

$$Q(x_i)_{m,m'} := \sum_{\textit{allowed row configuration}} z^{\frac{\# \text{ of outer edges}}{2}} x_i^{\# \text{ of horizontal edges}}.$$

∞-friendly walkers on the cylinder: partition function

The partition function is the weighted sum over all allowed lattice configurations and is given by

$$Z_{\hat{\nu}}^{\hat{\mu}}(x_1,\ldots,x_{n-1};z)=(Q(x_{n-1})\cdot Q(x_{n-2})\cdots Q(x_1))_{m(\hat{\nu}),m(\hat{\mu})}.$$

Theorem (Generating function for fusion coefficients)

The partition function has the following expansion in terms of Schur functions s_{λ} ,

$$Z_{\hat{\nu}}^{\hat{\mu}}(x_1,\ldots,x_{n-1};z)=\sum_{\hat{\lambda}\in P_{\nu}^+}z^d\mathcal{N}_{\hat{\lambda}\hat{\mu}}^{(k),\hat{\nu}}s_{\lambda}(x_1,\ldots,x_{n-1}),$$

where $\mathcal{N}_{\hat{\lambda}\hat{\mu}}^{(k),\hat{\nu}}$ are the Fusion coefficients and $d = |\lambda| + |\hat{\mu}| - |\hat{\nu}|$.

Here λ is the partition obtained from deleting all *n*-columns in $\hat{\lambda}$.

The phase algebra

Consider the quantum space $\mathcal{H}:=\mathbb{C}P^+=igoplus_{k=0}\mathcal{H}_k,\quad \mathcal{H}_k:=\mathbb{C}P_k^+.$

Define $N_j,\ arphi_j^*,\ arphi_j\in\operatorname{End}\mathcal{H}$ as $N_jm=m_jm$ and

$$\varphi_j^*m=(\ldots,m_j+1,\ldots),\quad \varphi_jm=\left\{egin{array}{ll} (\ldots,m_j-1,\ldots),&m_j>0\ 0,&m_j=0 \end{array}
ight.$$

Phase algebra relations, compare with [Bogoliubov et al]:

$$\varphi_i \varphi_j = \varphi_j \varphi_i, \quad \varphi_i^* \varphi_j^* = \varphi_j^* \varphi_i^*, \quad N_i N_j = N_j N_i$$
 (1)

$$N_i \varphi_j - \varphi_j N_i = -\delta_{ij} \varphi_i, \quad N_i \varphi_j^* - \varphi_j^* N_i = \delta_{ij} \varphi_i^*,$$
 (2)

$$\varphi_i \varphi_i^* = 1, \quad \varphi_i \varphi_j^* = \varphi_j^* \varphi_i, \tag{3}$$

$$N_i(1 - \varphi_i^* \varphi_i) = 0 = (1 - \varphi_i^* \varphi_i) N_i$$
 (4)

$$\langle \varphi_i^* \hat{\lambda}, \hat{\mu} \rangle = \langle \hat{\lambda}, \varphi_i \hat{\mu} \rangle, \qquad \langle \hat{\lambda}, \hat{\mu} \rangle = \delta_{\hat{\lambda}, \hat{\mu}}.$$
 (5)

Dynkin labels and particle configurations on a circle

Local affine plactic algebra

We define the local *affine* plactic algebra as the free algebra generated by $\{a_1, \ldots, a_n\}$ modulo the relations

$$\left\{ \begin{array}{l} a_{i+1}a_i^2 = a_ia_{i+1}a_i \\ a_{i+1}^2a_i = a_{i+1}a_ia_{i+1} \end{array} \right., \quad a_ia_j = a_ja_i, \ |i-j| \ \mathrm{mod} \ n > 1,$$

where all indices are understood to be in \mathbb{Z}_n . [CK, Stroppel] Restricting to $\{a_1, ..., a_{n-1}\}$ one obtains the relations of the local (finite) plactic algebra [Lascoux, Schützenberger][Fomin, Greene].

Proposition (CK, Stroppel)

A faithful representation is given by the maps $\mathcal{H}_k o \mathcal{H}_k$,

$$a_i = \varphi_i \varphi_{i+1}^*$$
 and $a_n = z \varphi_n \varphi_1^*$.

Physical interpretation: hopping of particles in clockwise direction on the $\widehat{\mathfrak{sl}}(n)$ Dynkin diagram.

Crystal structure: Kirillov-Reshetikhin modules

Let
$$\mathsf{Aff}(\mathfrak{B}_{1,k}) := \left\{ z^p \otimes (m_1,...,m_n) \; \middle| \; \sum_{i=1}^n m_i = k, \; p \in \mathbb{Z} \right\}$$

be the set of all k-particle configurations. This set gives rise to a directed, coloured graph by connecting two elements

$$\mathfrak{b} \stackrel{i}{\to} \mathfrak{b}', \quad \mathfrak{b}, \mathfrak{b}' \in \mathsf{Aff}(\mathfrak{B}_{1,k}) \qquad \text{if} \qquad \mathfrak{b}' = a_i \mathfrak{b} \; .$$

Proposition

 $Aff(\mathfrak{B}_{1,k})$ is the affinization of the Kashiwara crystal graph of the k-fold q-symmetric tensor product in the $U_q \hat{\mathfrak{sl}}(n)$ -module

$$V(zq^{-k+1}) \otimes V(zq^{-k+3}) \otimes \cdots \otimes V(zq^{k-1}),$$

where V(a) is the n-dimn'l vector evaluation module of $U_q \hat{\mathfrak{sl}}(n)$.

Example: n = 4 and k = 2

Example: n = 3

Noncommutative symmetric polynomials

Define generating functions of elementary and complete symmetric polynomials in the noncommutative alphabet $\{a_1, \ldots, a_n\}$,

$$T(x) = \prod_{1 \le i \le n}^{\circlearrowleft} (1 + xa_i) := \sum_{r=0}^{n} e_r(a)x^r,$$

$$Q(x) = \prod_{1 \le i \le n}^{\circlearrowleft} (1 - xa_i)^{-1} := \sum_{r > 0} h_r(a)x^r,$$

where $e_0(a) = h_0(a) = 1$, $e_n(a) = a_n a_{n-1} \cdots a_1 = z$ and

$$e_r(a) = \sum_{I=\{i_1,\ldots,i_r\}} \prod_{i\in I}^{\circlearrowleft} a_i, \qquad h_r(a) = \sum_{J=\{j_1,\ldots,j_r\}} \prod_{j\in J}^{\circlearrowleft} a_j.$$

The elements in I are mutually distinct, while those in J are not.

Proposition (Integrability)

The elements in the sets $\{e_r(a)\}\$ and $\{h_r(a)\}\$ commute pairwise.

Cyclic Ordering

Example

Set n = 4 then

$$e_2(a) = a_2a_1 + a_3a_1 + a_1a_4 + a_3a_2 + a_4a_2 + a_4a_3$$

$$h_3(a) = \sum_{i=1}^4 a_i^3 + a_1^2 a_2 + a_1 a_2^2 + a_1^2 a_3 + a_1 a_3^2 + a_4^2 a_1 + a_4 a_1^2$$

$$+ a_2^2 a_3 + a_2 a_3^2 + a_2^2 a_4 + a_4^2 a_2 + a_3^2 a_4 + a_3 a_4^2$$

$$+ a_1 a_2 a_3 + a_4 a_1 a_2 + a_2 a_3 a_4 .$$

For r > n we define

$$h_r(a) = \sum_{n \vdash r} (z\varphi_1^*)^{p_0} a_1^{p_1} \cdots a_{n-1}^{p_{n-1}} \varphi_n^{p_0} .$$

R-matrix and transfer matrix revisited

Set
$$\mathcal{M}_x:=igoplus_{m=0}^\infty \mathbb{C}(x)v_a$$
 and $\mathcal{R}(x/y):\mathcal{M}_x\otimes\mathcal{M}_y o\mathcal{M}_x\otimes\mathcal{M}_y$

$$\mathcal{R}(x) = \mathcal{P}\left[\sum_{\alpha \in \mathbb{Z}_{\geq 0}} (\varphi^*)^{\alpha} \otimes \varphi^{\alpha}\right] (x^N \otimes 1) ,$$

where $\mathcal{P}(v_m \otimes v_n) = v_n \otimes v_m$, $Nv_m = m v_m$, $\varphi^* v_m = v_{m+1}$, $\varphi v_m = v_{m-1}$ and $\varphi v_0 = 0$.

Proposition (CK)

Define
$$S(x) = (1-x)\mathcal{R}(x) + \mathcal{P}(x^{N+1} \otimes 1)$$
 then

$$S_{12}(x)\mathcal{R}_{13}(xy)\mathcal{R}_{23}(y) = \mathcal{R}_{23}(y)\mathcal{R}_{13}(xy)S_{12}(x)$$
.

Moreover, S is invertible, $S^{-1}(x) = \mathcal{P}S(x^{-1})\mathcal{P}$.

Transfer matrix Q of the ∞ -friendly walker model

$$Q(x) = \operatorname{Tr}_0 \left[z^{N \otimes 1} \mathcal{R}_{0n}(x) \cdots \mathcal{R}_{01}(x) \right] \in \operatorname{End} \mathcal{H}, \quad \mathcal{H} \cong \mathcal{M}^{\otimes n}.$$

Baxter's TQ equation in the crystal limit

What about the T-operator? T coincides with the transfer matrix of the phase model of Bogoliubov, Izergin, Kitanine; see Prop 5.13 in [CK, Stroppel, AIM 2010].

Proposition (TQ-equation at q=0)

Let π_k be the (orthogonal) projector onto $\mathcal{H}_k \subset \mathcal{H}$.

$$T(-u)Q(u) = 1 + (-1)^n z \sum_{k\geq 0} u^{n+k} h_k(a) \pi_k$$

 $\Rightarrow e_r(a) = \det[h_{1-i+j}(a)]_{1\leq i,j\leq r}$,

Note

Both models are obtained as a special crystal limit $(q \to 0)$ of the XXZ model with ∞ spin, $\mathcal{H} \cong \mathcal{M}^{\otimes n}$ [CK, to appear in JPA].

Noncommutative Schur polynomials

Proposition (Noncommutative Cauchy identities)

$$T(x_1)\cdots T(x_k) = \sum_{\lambda} s_{\lambda^t}(x_1,...,x_k)s_{\lambda}(a)$$

$$Q(x_1)\cdots Q(x_{n-1}) = \sum_{\lambda} s_{\lambda}(x_1,...,x_{n-1})s_{\lambda}(a).$$

Here the noncommutative Schur polynomials

$$s_{\lambda}(a) = \det(e_{\lambda_i^t - i + j}(a))_{1 \leq i, j \leq n} = \det(h_{\lambda_i - i + j}(a))_{1 \leq i, j \leq n}$$

form a commutative subalgebra of the affine plactic algebra,

$$s_{\lambda}(a)s_{\mu}(a) = s_{\mu}(a)s_{\lambda}(a)$$
.

Combinatorial construction of the Verlinde algebra

Theorem (CK, Stroppel)

Introduce on the set of basis elements in \mathcal{H}_k the following product,

$$\hat{\lambda} * \hat{\mu} := s_{\lambda}(a)\hat{\mu}, \qquad \hat{\lambda}, \hat{\mu} \in P_k^+.$$

This defines a unital, commutative, associative algebra V_k whose structure constants are given by the Verlinde formula (z = 1),

$$\langle \hat{\nu}, s_{\lambda}(a) \hat{\mu} \rangle = N_{\hat{\lambda}\hat{\mu}}^{(k)\hat{\nu}}, \quad N_{\hat{\lambda}\hat{\mu}}^{(k)\hat{\nu}} = \sum_{\hat{\sigma} \in P_{k}^{+}} \frac{S_{\hat{\lambda}\hat{\sigma}}S_{\hat{\mu}\hat{\sigma}}\bar{S}_{\hat{\nu}\hat{\sigma}}}{S_{0\hat{\sigma}}} \in \mathbb{Z}_{\geq 0} \ .$$

Here $S_{\hat{\lambda}\hat{\sigma}}$ is the modular S-matrix (Kac-Peterson formula).

Partition function of ∞-friendly walker model

The proof of the initial theorem now follows from the 2^{nd} nc Cauchy identity involving the Q-matrix (and not T).

Recursion identities for fusion coefficients

Recursion relation for complete symmetric functions:

$$h_r(a_1,...,a_n) = h_r(a_1,...,a_{n-1}) + z\varphi_1^*h_{r-1}(a_1,...,a_n)\varphi_n$$

Taking scalar products $\hat{\mu}, \hat{\nu} \in P_k^+$ on both sides yields

$$\mathcal{N}_{(r)\hat{\mu}}^{(k)\hat{
u}} = c_{(r)\hat{\mu}}^{\hat{
u}} + \mathcal{N}_{(r)\varphi_n\hat{\mu}}^{(k-1)\varphi_1\hat{
u}}.$$

General fusion coefficients are obtained as follows:

$$Q(x_1)\cdots Q(x_{n-1})=\sum_{\lambda}s_{\lambda}(x_1,...,x_{n-1})s_{\lambda}(a)$$

$$\begin{array}{rcl} h_{\alpha}(a)_{k} & = & h_{\alpha_{1}}(a)_{k} \cdots h_{\alpha_{r}}(a)_{k} = \sum\limits_{\hat{\lambda} \in P_{k}^{+}} \mathcal{K}_{\lambda \alpha} s_{\lambda}(a)_{k} \\ \\ & \Rightarrow & \sum\limits_{\hat{\rho}^{(i)}} \mathcal{N}_{(\alpha_{1})\hat{\rho}^{(1)}}^{(k)\hat{\rho}^{(1)}} \mathcal{N}_{(\alpha_{2})\hat{\rho}^{(2)}}^{(k)\hat{\rho}^{(1)}} \cdots \mathcal{N}_{(\alpha_{r})\hat{\mu}}^{(k)\hat{\rho}^{(r-1)}} = \sum\limits_{\hat{\lambda} \in P_{k}^{+}} \mathcal{K}_{\lambda \alpha} \mathcal{N}_{\hat{\lambda}\hat{\mu}}^{(k)\hat{\nu}} \end{array}$$

where $K_{\lambda\mu}$ are the (classical) Kostka numbers.

Summary

Quantum cohomology	Verlinde algebra
Clifford algebra $\{\psi_i, \psi_i^*\}_{i=1}^{n+k=N}$	Phase algebra $\{\varphi_i, \varphi_i^*\}_{i=1}^n$
affine nil-Temperley-Lieb algebra	local affine plactic algebra
$u_i = \psi_{i+1}^* \psi_i, \ u_N = (-1)^{k-1} q \psi_1^* \psi_N$	$a_i = arphi_{i+1}^* arphi_i, a_n = z arphi_1^* arphi_n$
<i>k</i> -particle space =	k-particle space $=$
$\widehat{\mathfrak{sl}}(N)$ evaluation module	affine $U_{v}\widehat{\mathfrak{sl}}(n)$ crystal
transfer matrices =	transfer matrix, Baxter's Q =
nc polynomials in u_i 's	nc polynomials in <i>a_i'</i> 's
combinatorial product:	combinatorial product:
$\lambda\star\mu=s_\lambda(u)\mu$	$\hat{\lambda} * \hat{\mu} = s_{\lambda}(a)\hat{\mu}$
Bethe ansatz \Rightarrow	Bethe ansatz \Rightarrow
Bertram-Vafa-Intrilligator formula	Verlinde formula
Λ_k quotient w.r.t.	Λ_k quotient w.r.t.
$h_{n+1}=\cdots=h_{n+k-1}=0,$	$h_{n+1}=\cdots=h_{n+k-1}=0,$
$h_{n+k} = (-1)^{k-1}q$	$h_n = 1, \ h_{n+k} = (-1)^{k-1} e_k$
nc Schur polynomial expansion:	nc Schur polynomial expansion:
$s_{\lambda}(u)s_{\mu}(u) = \sum_{ u} C_{\lambda,\mu}^{ u,d} s_{ u}(u)$	$s_{\lambda}(a)s_{\mu}(a) = \sum_{ u} N_{\lambda,\mu}^{(k) u} s_{ u}(a)$

Novel description in terms of integrable systems

Simplified, combinatorial approach using the physical picture of quantum particles hopping on Dynkin diagrams:

- integrability ⇒ simple proof of associativity
- Bethe ansatz ⇒ ring isomorphism, Verlinde formulae
- particle creation/annihilation operators ⇒ new identities
- Connection with small quantum cohomology and Gromov-Witten invariants: $\hat{\mathfrak{g}} = \widehat{\mathfrak{gl}}(n)$ (TFT)
- generalizations to other algebras + deformations (in preparation)

Thank you for your attention!