Statistical Mechanics \& Enumerative Geometry II:
 Combinatorial Construction of WZNW Fusion Rings

Christian Korff (c.korff@maths.gla.ac.uk)
University Research Fellow of the Royal Society Department of Mathematics, University of Glasgow
joint work with C. Stroppel (U Bonn)
Adv Math 225 (2010) 200-268
arXiv:0909.2347; arXiv:0910.3395; arXiv:1006.4710

July 2010

Outline

In the first talk we saw the combinatorial construction of the (small) quantum cohomology ring. In this talk we see that analogous structures appear in the $\widehat{\mathfrak{s l}}(n)_{k}$ WZNW fusion ring, albeit with some important differences.
(1) reminder: Sugawara construction of WZNW CFT
(2) ∞-friendly walkers on the cylinder
(3) affine plactic algebra and crystals
(9) affine plactic Schur polynomials and combinatorial fusion ring
(3) recursion identities for the fusion ring
(0) Summary

Reminder: Sugawara construction of WZNW CFT

$$
T(z)=\sum_{n \in \mathbb{Z}} z^{-n-2} L_{n},\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12} m\left(m^{2}-1\right) \delta_{m+n, 0}
$$

Sugawara construction for (quantum) WZNW models:

$$
T(z)=\frac{1}{2(h+k)} \sum_{a}: J^{a}(z) J^{a}(z):, J^{a}(z)=\sum_{n \in \mathbb{Z}} z^{-n-1} J_{n}^{a}
$$

$$
\hat{\mathfrak{g}}_{k}:\left[J_{n}^{a}, J_{m}^{b}\right]=i \sum_{c} f_{a b c} J_{n+m}^{c}+k n \delta_{a b} \delta_{n+m, 0}, \text { level } k \in \mathbb{Z}_{\geq 0}
$$

Primary fields \equiv highest weight vectors $\left(\hat{\lambda} \in P_{k}^{+}\right)$

$$
J_{0}^{a} \phi_{\hat{\lambda}}=-t_{\hat{\lambda}}^{a} \phi_{\hat{\lambda}}, \quad J_{n}^{a} \phi_{\hat{\lambda}}=0, \quad n>0 \Rightarrow L_{n} \phi_{\hat{\lambda}}=0, n>0
$$

OPE and fusion rules:

$$
\phi_{\hat{\lambda}} * \phi_{\hat{\mu}}=\sum_{\hat{\nu} \in P_{k}^{+}} \mathcal{N}_{\hat{\lambda} \hat{\mu}}^{(k) \hat{\nu}} \phi_{\hat{\nu}}
$$

Result

Combinatorial and recursive computation of $\mathcal{N}_{\hat{\lambda} \hat{\mu}}^{(k) \hat{\nu}}$ for $\hat{\mathfrak{g}}=\widehat{\mathfrak{s l}}(n)$.

Alternative interpretations of fusion coefficients

Representation theory and algebraic geometry:

- fusion coefficient of tilting modules of quantum groups at roots of 1
- dimensions of moduli spaces for generalized θ-functions

Weights and partitions

$\hat{\mathfrak{s l}}(n)=\mathfrak{s l}(n) \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} \mathbf{C}$
Define integral dominant weights of level k,

$$
P_{k}^{+}=\left\{\begin{array}{l|l}
\hat{\lambda}=\sum_{i=1}^{n} m_{i} \hat{\omega}_{i} & \sum_{i=1}^{n} m_{i}=k
\end{array}\right\},
$$

where $\hat{\lambda}=\lambda+k \hat{\omega}_{n}$.
The n-tuple $m=\left(m_{1}, \ldots, m_{n}\right)$ are called Dynkin labels.
Given $\hat{\lambda} \in P_{k}^{+}$we identify weights with partitions:

$$
\hat{\lambda}^{t}=\left(1^{m_{1}(\hat{\lambda})} \ldots n^{m_{n}(\hat{\lambda})}\right), \quad m_{i}(\hat{\lambda})=\# \text { of } i \text {-columns }
$$

Note that $\hat{\lambda}_{1}=k$ and $\hat{\lambda}$ has at most n nonzero parts.

Example

Set $n=3, k=4$ and $m(\hat{\lambda})=(1,2,1)$. Then $\hat{\lambda}=$

∞-friendly walkers on the cylinder: the defector model

Consider an $(n-1) \times n$ square lattice $(n \geq 3)$ with quasi-periodic boundary conditions (twist parameter z) in the horizontal direction.

Allowed vertex configurations and their weights (\mathcal{R}-matrix)

Here $a, b, c, d \in \mathbb{Z}_{\geq 0}$ and x_{i} is the spectral parameter in the $i^{\text {th }}$ lattice row. (∞-friendly walkers \rightarrow [Guttmann et al].)

Given $\hat{\mu}, \hat{\nu} \in P_{k}^{+}$, let $m(\hat{\mu}), m(\hat{\nu})$ be the Dynkin labels.

Boundary conditions: fix the values of the outer edges on the top and bottom to be $m(\hat{\mu})$ and $m(\hat{\nu})$, respectively.

∞-friendly walkers on the cylinder: transfer matrix

Example of an $i^{t h}$ lattice row configuration $(n=5, k=7)$:

The variable x_{i} counts the number of horizontal edges, while the variable z counts the outer horizontal edges divided by 2 .

Definition of the transfer matrix

Given $m=\left(m_{1}, \ldots, m_{n}\right), m^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right) \in \mathbb{Z}_{\geq 0}^{n}$, the transfer matrix $Q\left(x_{i}\right)$ is defined as

$$
Q\left(x_{i}\right)_{m, m^{\prime}}:=\sum_{\text {allowed row configuration }} z^{\# \frac{\# \text { outer edges }}{2}} x_{i}^{\# \text { of horizontal edges }}
$$

∞-friendly walkers on the cylinder: partition function

The partition function is the weighted sum over all allowed lattice configurations and is given by

$$
Z_{\hat{\nu}}^{\hat{\mu}}\left(x_{1}, \ldots, x_{n-1} ; z\right)=\left(Q\left(x_{n-1}\right) \cdot Q\left(x_{n-2}\right) \cdots Q\left(x_{1}\right)\right)_{m(\hat{\nu}), m(\hat{\mu})} .
$$

Theorem (Generating function for fusion coefficients)

The partition function has the following expansion in terms of Schur functions s_{λ},

$$
Z_{\hat{\nu}}^{\hat{\mu}}\left(x_{1}, \ldots, x_{n-1} ; z\right)=\sum_{\hat{\lambda} \in P_{k}^{+}} z^{d} \mathcal{N}_{\hat{\lambda} \hat{\mu}}^{(k), \hat{\nu}} s_{\lambda}\left(x_{1}, \ldots, x_{n-1}\right),
$$

where $\mathcal{N}_{\hat{\lambda} \hat{\mu}}^{(k), \hat{\nu}}$ are the Fusion coefficients and $d n=|\lambda|+|\hat{\mu}|-|\hat{\nu}|$.

Here λ is the partition obtained from deleting all n-columns in $\hat{\lambda}$.

The phase algebra
Consider the quantum space $\mathcal{H}:=\mathbb{C} P^{+}=\bigoplus_{k=0}^{\infty} \mathcal{H}_{k}, \quad \mathcal{H}_{k}:=\mathbb{C} P_{k}^{+}$.
Define $N_{j}, \varphi_{j}^{*}, \varphi_{j} \in \operatorname{End} \mathcal{H}$ as $N_{j} m=m_{j} m$ and

$$
\varphi_{j}^{*} m=\left(\ldots, m_{j}+1, \ldots\right), \quad \varphi_{j} m=\left\{\begin{array}{cl}
\left(\ldots, m_{j}-1, \ldots\right), & m_{j}>0 \\
0, & m_{j}=0
\end{array}\right.
$$

Phase algebra relations, compare with [Bogoliubov et al]:

$$
\begin{gather*}
\varphi_{i} \varphi_{j}=\varphi_{j} \varphi_{i}, \quad \varphi_{i}^{*} \varphi_{j}^{*}=\varphi_{j}^{*} \varphi_{i}^{*}, \quad N_{i} N_{j}=N_{j} N_{i} \tag{1}\\
N_{i} \varphi_{j}-\varphi_{j} N_{i}=-\delta_{i j} \varphi_{i}, \quad N_{i} \varphi_{j}^{*}-\varphi_{j}^{*} N_{i}=\delta_{i j} \varphi_{i}^{*}, \tag{2}\\
\varphi_{i} \varphi_{i}^{*}=1, \quad \varphi_{i} \varphi_{j}^{*}=\varphi_{j}^{*} \varphi_{i}, \tag{3}\\
N_{i}\left(1-\varphi_{i}^{*} \varphi_{i}\right)=0=\left(1-\varphi_{i}^{*} \varphi_{i}\right) N_{i} \tag{4}\\
\left\langle\varphi_{i}^{*} \hat{\lambda}, \hat{\mu}\right\rangle=\left\langle\hat{\lambda}, \varphi_{i} \hat{\mu}\right\rangle, \quad\langle\hat{\lambda}, \hat{\mu}\rangle=\delta_{\hat{\lambda}, \hat{\mu}} . \tag{5}
\end{gather*}
$$

Dynkin labels and particle configurations on a circle

Example

Set $n=k=3$ then

and

$$
m=(2,1,1)
$$

$\mathrm{m}=(1,0,1)$

Local affine plactic algebra

We define the local affine plactic algebra as the free algebra generated by $\left\{a_{1}, \ldots, a_{n}\right\}$ modulo the relations

$$
\left\{\begin{array}{c}
a_{i+1} a_{i}^{2}=a_{i} a_{i+1} a_{i} \\
a_{i+1}^{2} a_{i}=a_{i+1} a_{i} a_{i+1}
\end{array}, \quad a_{i} a_{j}=a_{j} a_{i},|i-j| \bmod n>1,\right.
$$

where all indices are understood to be in \mathbb{Z}_{n}. [CK, Stroppel] Restricting to $\left\{a_{1}, \ldots, a_{n-1}\right\}$ one obtains the relations of the local (finite) plactic algebra [Lascoux, Schützenberger][Fomin, Greene].

Proposition (CK, Stroppel)

A faithful representation is given by the maps $\mathcal{H}_{k} \rightarrow \mathcal{H}_{k}$,

$$
a_{i}=\varphi_{i} \varphi_{i+1}^{*} \quad \text { and } \quad a_{n}=z \varphi_{n} \varphi_{1}^{*}
$$

Physical interpretation: hopping of particles in clockwise direction on the $\widehat{\mathfrak{s l}}(n)$ Dynkin diagram.

Crystal structure: Kirillov-Reshetikhin modules

Let $\quad \operatorname{Aff}\left(\mathfrak{B}_{1, k}\right):=\left\{z^{p} \otimes\left(m_{1}, \ldots, m_{n}\right) \mid \sum_{i=1}^{n} m_{i}=k, p \in \mathbb{Z}\right\}$ be the set of all k-particle configurations. This set gives rise to a directed, coloured graph by connecting two elements

$$
\mathfrak{b} \xrightarrow{i} \mathfrak{b}^{\prime}, \quad \mathfrak{b}, \mathfrak{b}^{\prime} \in \operatorname{Aff}\left(\mathfrak{B}_{1, k}\right) \quad \text { if } \quad \mathfrak{b}^{\prime}=a_{i} \mathfrak{b}
$$

Proposition

Aff $\left(\mathfrak{B}_{1, k}\right)$ is the affinization of the Kashiwara crystal graph of the k-fold q-symmetric tensor product in the $U_{q} \hat{\mathfrak{s l}}(n)$-module

$$
V\left(z q^{-k+1}\right) \otimes V\left(z q^{-k+3}\right) \otimes \cdots \otimes V\left(z q^{k-1}\right)
$$

where $V(a)$ is the n-dimn'l vector evaluation module of $U_{q} \hat{\mathfrak{s l}}(n)$.

Example: $n=4$ and $k=2$

Example: $n=3$

Noncommutative symmetric polynomials

Define generating functions of elementary and complete symmetric polynomials in the noncommutative alphabet $\left\{a_{1}, \ldots, a_{n}\right\}$,

$$
\begin{aligned}
& T(x)=\prod_{1 \leq i \leq n}^{\circlearrowleft}\left(1+x a_{i}\right):=\sum_{r=0}^{n} e_{r}(a) x^{r} \\
& Q(x)=\prod_{1 \leq i \leq n}^{0}\left(1-x a_{i}\right)^{-1}:=\sum_{r \geq 0} h_{r}(a) x^{r}
\end{aligned}
$$

where $e_{0}(a)=h_{0}(a)=1, e_{n}(a)=a_{n} a_{n-1} \cdots a_{1}=z$ and

$$
e_{r}(a)=\sum_{I=\left\{i_{1}, \ldots, i_{r}\right\}} \prod_{i \in I}^{\circlearrowleft} a_{i}, \quad h_{r}(a)=\sum_{J=\left\{j_{1}, \ldots, j_{r}\right\}} \prod_{j \in J}^{\circlearrowright} a_{j} .
$$

The elements in I are mutually distinct, while those in J are not.

Proposition (Integrability)

The elements in the sets $\left\{e_{r}(a)\right\}$ and $\left\{h_{r}(a)\right\}$ commute pairwise.

Cyclic Ordering

Example

Set $n=4$ then

$$
\begin{gathered}
e_{2}(a)=a_{2} a_{1}+a_{3} a_{1}+a_{1} a_{4}+a_{3} a_{2}+a_{4} a_{2}+a_{4} a_{3} \\
h_{3}(a)=\sum_{i=1}^{4} a_{i}^{3}+a_{1}^{2} a_{2}+a_{1} a_{2}^{2}+a_{1}^{2} a_{3}+a_{1} a_{3}^{2}+a_{4}^{2} a_{1}+a_{4} a_{1}^{2} \\
+a_{2}^{2} a_{3}+a_{2} a_{3}^{2}+a_{2}^{2} a_{4}+a_{4}^{2} a_{2}+a_{3}^{2} a_{4}+a_{3} a_{4}^{2} \\
\\
+a_{1} a_{2} a_{3}+a_{4} a_{1} a_{2}+a_{2} a_{3} a_{4}
\end{gathered}
$$

For $r>n$ we define

$$
h_{r}(a)=\sum_{p \vdash r}\left(z \varphi_{1}^{*}\right)^{p_{0}} a_{1}^{p_{1}} \cdots a_{n-1}^{p_{n-1}} \varphi_{n}^{p_{0}} .
$$

R-matrix and transfer matrix revisited

Set $\mathcal{M}_{x}:=\bigoplus_{m=0}^{\infty} \mathbb{C}(x) v_{a}$ and $\mathcal{R}(x / y): \mathcal{M}_{x} \otimes \mathcal{M}_{y} \rightarrow \mathcal{M}_{x} \otimes \mathcal{M}_{y}$

$$
\mathcal{R}(x)=\mathcal{P}\left[\sum_{\alpha \in \mathbb{Z}_{\geq 0}}\left(\varphi^{*}\right)^{\alpha} \otimes \varphi^{\alpha}\right]\left(x^{N} \otimes 1\right)
$$

where $\mathcal{P}\left(v_{m} \otimes v_{n}\right)=v_{n} \otimes v_{m}, N v_{m}=m v_{m}, \varphi^{*} v_{m}=v_{m+1}$, $\varphi v_{m}=v_{m-1}$ and $\varphi v_{0}=0$.

Proposition (CK)

Define $\mathcal{S}(x)=(1-x) \mathcal{R}(x)+\mathcal{P}\left(x^{N+1} \otimes 1\right)$ then

$$
\mathcal{S}_{12}(x) \mathcal{R}_{13}(x y) \mathcal{R}_{23}(y)=\mathcal{R}_{23}(y) \mathcal{R}_{13}(x y) \mathcal{S}_{12}(x)
$$

Moreover, \mathcal{S} is invertible, $\mathcal{S}^{-1}(x)=\mathcal{P S}\left(x^{-1}\right) \mathcal{P}$.
Transfer matrix Q of the ∞-friendly walker model

$$
Q(x)=\operatorname{Tr}_{0}\left[z^{N \otimes 1} \mathcal{R}_{0 n}(x) \cdots \mathcal{R}_{01}(x)\right] \in \text { End } \mathcal{H}, \quad \mathcal{H} \cong \mathcal{M}^{\otimes n} .
$$

Baxter's $T Q$ equation in the crystal limit

What about the T-operator? T coincides with the transfer matrix of the phase model of Bogoliubov, Izergin, Kitanine; see Prop 5.13 in [CK, Stroppel, AIM 2010].

Proposition ($T Q$-equation at $q=0$)

Let π_{k} be the (orthogonal) projector onto $\mathcal{H}_{k} \subset \mathcal{H}$.

$$
\begin{aligned}
T(-u) Q(u) & =1+(-1)^{n} z \sum_{k \geq 0} u^{n+k} h_{k}(a) \pi_{k} \\
& \Rightarrow e_{r}(a)=\operatorname{det}\left[h_{1-i+j}(a)\right]_{1 \leq i, j \leq r}
\end{aligned}
$$

Note

Both models are obtained as a special crystal limit $(q \rightarrow 0)$ of the XXZ model with ∞ spin, $\mathcal{H} \cong \mathcal{M}^{\otimes n}$ [CK, to appear in JPA].

Noncommutative Schur polynomials

Proposition (Noncommutative Cauchy identities)

$$
\begin{aligned}
T\left(x_{1}\right) \cdots T\left(x_{k}\right) & =\sum_{\lambda} s_{\lambda^{t}}\left(x_{1}, \ldots, x_{k}\right) s_{\lambda}(a) \\
Q\left(x_{1}\right) \cdots Q\left(x_{n-1}\right) & =\sum_{\lambda} s_{\lambda}\left(x_{1}, \ldots, x_{n-1}\right) s_{\lambda}(a) .
\end{aligned}
$$

Here the noncommutative Schur polynomials

$$
s_{\lambda}(a)=\operatorname{det}\left(e_{\lambda_{i}^{t}-i+j}(a)\right)_{1 \leq i, j \leq n}=\operatorname{det}\left(h_{\lambda_{i}-i+j}(a)\right)_{1 \leq i, j \leq n}
$$

form a commutative subalgebra of the affine plactic algebra,

$$
s_{\lambda}(a) s_{\mu}(a)=s_{\mu}(a) s_{\lambda}(a)
$$

Combinatorial construction of the Verlinde algebra

Theorem (CK, Stroppel)

Introduce on the set of basis elements in \mathcal{H}_{k} the following product,

$$
\hat{\lambda} * \hat{\mu}:=s_{\lambda}(a) \hat{\mu}, \quad \hat{\lambda}, \hat{\mu} \in P_{k}^{+}
$$

This defines a unital, commutative, associative algebra V_{k} whose structure constants are given by the Verlinde formula $(z=1)$,

$$
\left\langle\hat{\nu}, s_{\lambda}(a) \hat{\mu}\right\rangle=N_{\hat{\lambda} \hat{\mu}}^{(k) \hat{\nu}}, \quad N_{\hat{\lambda} \hat{\mu}}^{(k) \hat{\nu}}=\sum_{\hat{\sigma} \in P_{k}^{+}} \frac{\mathcal{S}_{\hat{\lambda} \hat{\sigma}} \mathcal{S}_{\hat{\mu} \hat{\sigma}} \overline{\mathcal{S}}_{\hat{\nu} \hat{\sigma}}}{\mathcal{S}_{0 \hat{\sigma}}} \in \mathbb{Z}_{\geq 0}
$$

Here $\mathcal{S}_{\hat{\lambda} \hat{\sigma}}$ is the modular S-matrix (Kac-Peterson formula).

Partition function of ∞-friendly walker model

The proof of the initial theorem now follows from the $2^{\text {nd }} \mathrm{nc}$ Cauchy identity involving the Q-matrix (and not T).

Recursion identities for fusion coefficients

Recursion relation for complete symmetric functions:

$$
h_{r}\left(a_{1}, \ldots, a_{n}\right)=h_{r}\left(a_{1}, \ldots, a_{n-1}\right)+z \varphi_{1}^{*} h_{r-1}\left(a_{1}, \ldots, a_{n}\right) \varphi_{n}
$$

Taking scalar products $\hat{\mu}, \hat{\nu} \in P_{k}^{+}$on both sides yields

$$
\mathcal{N}_{(r) \hat{\mu}}^{(k) \hat{\nu}}=c_{(r) \hat{\mu}}^{\hat{\nu}}+\mathcal{N}_{(r) \varphi_{n} \hat{\mu}}^{(k-1) \varphi_{1} \hat{\nu}}
$$

General fusion coefficients are obtained as follows:

$$
\begin{aligned}
& Q\left(x_{1}\right) \cdots Q\left(x_{n-1}\right)=\sum_{\lambda} s_{\lambda}\left(x_{1}, \ldots, x_{n-1}\right) s_{\lambda}(a) \\
h_{\alpha}(a)_{k}= & h_{\alpha_{1}}(a)_{k} \cdots h_{\alpha_{r}}(a)_{k}=\sum_{\hat{\lambda} \in P_{k}^{+}} K_{\lambda \alpha} s_{\lambda}(a)_{k} \\
\Rightarrow & \sum_{\hat{\rho}^{(i)}} \mathcal{N}_{\left(\alpha_{1}\right) \hat{\rho}^{(1)}}^{(k) \hat{\nu}} \mathcal{N}_{\left(\alpha_{2}\right) \hat{\rho}()^{(2)}}^{(k) \hat{\rho}^{(1)}} \cdots \mathcal{N}_{\left(\alpha_{r}\right) \hat{\mu}}^{(k) \hat{\rho}^{(r-1)}}=\sum_{\hat{\lambda} \in P_{k}^{+}} K_{\lambda \alpha} \mathcal{N}_{\hat{\lambda} \hat{\mu}}^{(k) \hat{\nu}}
\end{aligned}
$$

where $K_{\lambda \mu}$ are the (classical) Kostka numbers.

Quantum cohomology \quad Verlinde algebra

Clifford algebra $\left\{\psi_{i}, \psi_{i}^{*}\right\}_{i=1}^{n+k=N}$ affine nil-Temperley-Lieb algebra
$u_{i}=\psi_{i+1}^{*} \psi_{i}, u_{N}=(-1)^{k-1} q \psi_{1}^{*} \psi_{N}$
k-particle space $=$
$\widehat{\mathfrak{s l}}(N)$ evaluation module transfer matrices $=$ nc polynomials in u_{i} 's combinatorial product:

$$
\lambda \star \mu=s_{\lambda}(u) \mu
$$ Bethe ansatz \Rightarrow

Bertram-Vafa-Intrilligator formula Λ_{k} quotient w.r.t. $h_{n+1}=\cdots=h_{n+k-1}=0$, $h_{n+k}=(-1)^{k-1} q$
nc Schur polynomial expansion:

$$
s_{\lambda}(u) s_{\mu}(u)=\sum_{\nu} C_{\lambda, \mu}^{\nu, d} s_{\nu}(u)
$$

Phase algebra $\left\{\varphi_{i}, \varphi_{i}^{*}\right\}_{i=1}^{n}$ local affine plactic algebra $a_{i}=\varphi_{i+1}^{*} \varphi_{i}, \quad a_{n}=z \varphi_{1}^{*} \varphi_{n}$ k-particle space $=$ affine $U_{v} \widehat{\mathfrak{s l}(n)}$ crystal transfer matrix, Baxter's $\mathrm{Q}=$ nc polynomials in a_{i} 's combinatorial product:

$$
\hat{\lambda} * \hat{\mu}=s_{\lambda}(a) \hat{\mu}
$$

Bethe ansatz \Rightarrow
Verlinde formula
Λ_{k} quotient w.r.t.

$$
\begin{aligned}
& h_{n+1}=\cdots=h_{n+k-1}=0 \\
& h_{n}=1, h_{n+k}=(-1)^{k-1} e_{k}
\end{aligned}
$$

nc Schur polynomial expansion:

$$
s_{\lambda}(a) s_{\mu}(a)=\sum_{\nu} N_{\lambda, \mu}^{(k) \nu} s_{\nu}(a)
$$

Novel description in terms of integrable systems

Simplified, combinatorial approach using the physical picture of quantum particles hopping on Dynkin diagrams:

- integrability \Rightarrow simple proof of associativity
- Bethe ansatz \Rightarrow ring isomorphism, Verlinde formulae
- particle creation/annihilation operators \Rightarrow new identities
- Connection with small quantum cohomology and Gromov-Witten invariants: $\hat{\mathfrak{g}}=\widehat{\mathfrak{g l l}}(n)$ (TFT)
- generalizations to other algebras + deformations (in preparation)

Thank you for your attention!

