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In the first talk we saw the combinatorial construction of the
(small) quantum cohomology ring. In this talk we see that
analogous structures appear in the ;[(n)k WZNW fusion ring,
albeit with some important differences.

reminder: Sugawara construction of WZNW CFT

oo-friendly walkers on the cylinder

affine plactic algebra and crystals

affine plactic Schur polynomials and combinatorial fusion ring

recursion identities for the fusion ring
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Reminder: Sugawara construction of WZNW CFT

Zz—n 2Lm [LmaLn] ( ) m+n+12 (m2*1)5m+n,0

nez
Sugawara construction for (quantum) WZNW models:
T a a . —n—1 ja
(z) = 2(h+kZJ 2)J%(2) => z "1

nez

G [J2, 8] = ,Z fabe S m + knSapdnimo, level k € Zso

Primary fields = highest weight vectors (A € P;)
ngﬁ;\:—ts(ﬁj\, Jﬁ(ﬁj\zo, n>0 = L,,ng:O, n>0

k)y

OPE and fusion rules: G5 * op = ZAEW b

Combinatorial and recursive computation of ./\/'5(\;)9 for § = sl(n).
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Alternative interpretations of fusion coefficients

Representation theory and algebraic geometry:

o fusion coefficient of tilting modules of quantum groups at
roots of 1

@ dimensions of moduli spaces for generalized #-functions
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Weights and partitions

sl(n) = sl(n) ® C[t,t~ ] & CC

Define integral dominant weights of level k,

P;:{S\:Zm,w,- Zm;:k},
i i=1

i=1

where A = \ + k.
The n-tuple m = (my, ..., m,) are called Dynkin labels.
Given \ € P;r we identify weights with partitions:

A= @m® a3y miR) = # of i-columns

Note that 3\1 — k and A has at most n nonzero parts.

Set n =3, k =4 and m(}) = (1,2,1). Then A =
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oo-friendly walkers on the cylinder: the defector model

Consider an (n — 1) x n square lattice (n > 3) with quasi-periodic
boundary conditions (twist parameter z) in the horizontal direction.

Allowed vertex configurations and their weights (R-matrix)

¢ :aﬁ _ @

d=a+b-c d=a+b-c

time

Here a, b, c,d € Z>¢ and x; is the spectral parameter in the ith
lattice row. (oco-friendly walkers — [Guttmann et al].)
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Given i, 7 € P, let m(fi), m(?) be the Dynkin labels.

m, (1)

[\

\
|
|

N //\/\/\/\
i
I
AR

\

3
~
=

m, (V) myv)

Boundary conditions: fix the values of the outer edges on the top
and bottom to be m(ji) and m(?), respectively.
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oo-friendly walkers on the cylinder: transfer matrix

Example of an i lattice row configuration (n =5, k = 7):

0

2 2 1 2
2 1|2 0 0||L
TIV Il I“ S
3 1 3 0

0

The variable x; counts the number of horizontal edges, while the
variable z counts the outer horizontal edges divided by 2.

Definition of the transfer matrix

Given m = (my,...,mp),m" = (my,...,m;,) € ZZ,, the transfer
matrix Q(x;) is defined as

# of outer edges i of horizontal edges
2 = 2 5
Q@) mp - E z e .

allowed row configuration
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oo-friendly walkers on the cylinder: partition function

The partition function is the weighted sum over all allowed lattice
configurations and is given by

Zy(xa, - xn-1:2) = (Q(xn-1) - Qxn—2) *+* Q(X1)) (5, m(n) -

Theorem (Generating function for fusion coefficients)

The partition function has the following expansion in terms of
Schur functions sy,

. 5
7 (T S e = Z zd,/\/j(\ﬂ)’ys)\(xl, ey Xn—1),
Xep/f

where ./\/1(:)’9 are the Fusion coefficients and d n = |A| + |ii| — |P].

Here A is the partition obtained from deleting all n-columns in by
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The phase algebra

[o.¢]
Consider the quantum space H := CP+ = @Hk, Hy = CP}.

k=0
Define Nj, ¢7, ¢; € End’H as Njm = m;jm and

. ' _ (...,mjfl,...), mj>0

Phase algebra relations, compare with [Bogoliubov et al]:

Piv; =P, Pre; =wipr,  NiNj = NiN; (

Nip; —@iNi = =i, Nip; — @ Nj = d;7, (
vivi =1, @] =i, 3

Ni(1 — ¢jp;) = 0= (1 —¢jp;)N; (

(il ) = Ao, (A p) =05, (
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Dynkin labels and particle configurations on a circle

Set n = k = 3 then
T ] ]
Y1 = and  ; =]
5)
05) (5)
3 2 3 2
m=(2,1,1) m = (1,0,1)
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Local affine plactic algebra

We define the local affine plactic algebra as the free algebra
generated by {aj,...,a,} modulo the relations

2 _
{ djy1d; = ajadj4+14;

5 B ajaj = ajaj, |i —jlmodn>1
aj 1ai = aj+13;aj41 A ’

where all indices are understood to be in Z,. [CK, Stroppel]
Restricting to {ai, ..., a,—1} one obtains the relations of the local
(finite) plactic algebra [Lascoux, Schiitzenberger|[Fomin, Greene].

Proposition (CK, Stroppel)

A faithful representation is given by the maps H, — Hy,

. * . *
ai = PiPiy and an = ZPpPq -

Physical interpretation: hopping of particles in clockwise direction
on the sl(n) Dynkin diagram.
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Crystal structure: Kirillov-Reshetikhin modules

Let Aﬂ:(%l,k) = {Zp & (ITI:[7 . m,,) Z m; =k, p€ Z}
i=1

be the set of all k-particle configurations. This set gives rise to a
directed, coloured graph by connecting two elements

b-Lb, b6 €Af(By,) if b =ab.

Proposition

Aff(B1 k) is the affinization of the Kashiwara crystal graph of the
k-fold q-symmetric tensor product in the Uqf:[(n)—module

V(zg ¥ ™M) @ V(zg ¥ ) @ - @ V(zg* 1),

where V/(a) is the n-dimn’l vector evaluation module of Ugs(n).

-
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Example: n=4 and k =2

4 _|4/,|:|:|
= !
A0

\4 |
13 .4 O |4_1
A -
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Example: n=3

k=0




Noncommutative symmetric polynomials

Define generating functions of elementary and complete symmetric

polynomials in the noncommutative alphabet {ai,...,a,},
O n
T(x) = I (T+xa):= 3 e(a)x,
1<i<n r=0
o -1
Q) = I (1—xa)t = X h(a)x,
1<i<n r>0

where eg(a) = ho(a) =1, ey(a) = apap—1---a1 = z and
O O
e(a)= > T[la, h(a= > Ila
1={i,....i,} i€l J={j1,...Jr}j€J
The elements in /| are mutually distinct, while those in J are not.

Proposition (Integrability)

The elements in the sets {e,(a)} and {h,(a)} commute pairwise.
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Cyclic Ordering

Set n = 4 then

e(a) = aza1 + aza1 + a1as + azax + asay + azas

4
3., .2 2, 2 2, .2 2
hs(a) = E a; + ajap + a1a5 + ajas + a1a3 + aza; + asag
i=1
2 2, 2 2 2 2
+ a5az + apa3 + asa4 + azas + azas + azay

+ aiapas + azaiar + arazas -

For r > n we define

he(a) = (zg1)af" - b ol
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R-matrix and transfer matrix revisited

Set My = @, C(x)va and R(x/y) : My @ M, — M, @ M,

R(x)=P| > (¢) @ (x"®1),

OCEZZO

where P(vn @ V) = vy @ Vi, Nviy = M Vi, ©* Vi = Vi1,
PVm = Vm—1 and vy = 0.

Proposition (CK)

Define S(x) = (1 — x)R(x) + P(xN*1 @ 1) then

S12(x)R13(xy)R23(y) = Ra3(y)R13(xy)S12(x) -

Moreover, S is invertible, S~1(x) = PS(x~1)P.

Transfer matrix Q of the oco-friendly walker model

Q(x) = Tro [zN®'Ron(x) - Ro1(x)] € EndH, H = M®".
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Baxter's TQ equation in the crystal limit

What about the T-operator? T coincides with the transfer matrix
of the phase model of Bogoliubov, Izergin, Kitanine; see Prop 5.13
in [CK, Stroppel, AIM 2010].

Proposition ( TQ-equation at g = 0)

Let 7y be the (orthogonal) projector onto H) C H.

T(-u)Q(u) = 1+4(-1)"z) u"*h(a)m,

k>0
= e/(a) =det[h—ij(a)l<ij<r,

Both models are obtained as a special crystal limit (¢ — 0) of the
XXZ model with oo spin, H = M®" [CK, to appear in JPA].
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Noncommutative Schur polynomials

Proposition (Noncommutative Cauchy identities)

T(a) - T(w) = D sie(x1, . xi)50(a)
A

QM) Qlxn—1) = D sa(x1,-Xn-1)5x(a) -
A

Here the noncommutative Schur polynomials
sx(a) = det(ey:_j;j(a))1<ij<n = det(hx,—itj(a))1<ij<n
form a commutative subalgebra of the affine plactic algebra,

sx(a)su(a) = su(a)sa(a) -

C Korff Combinatorial construction of fusion rings



Combinatorial construction of the Verlinde algebra

Theorem (CK, Stroppel)

Introduce on the set of basis elements in Hy the following product,
X x = s\(a)fi, Nie Pt

This defines a unital, commutative, associative algebra V) whose
structure constants are given by the Verlinde formula (z =1),

; ; 8- S15856
~ ~ k)D k) 5CLGCv6
B nom =N, = 3 e g

loa

Here Sy, is the modular S-matrix (Kac-Peterson formula).

Partition function of co-friendly walker model

The proof of the initial theorem now follows from the 2" nc
Cauchy identity involving the @-matrix (and not T).
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Recursion identities for fusion coefficients

Recursion relation for complete symmetric functions:
he(a1,...,an) = he(a1,...,an-1) + zp1hr—1(a1,...,a3n)¢,
Taking scalar products 1, € P, on both sides yields

Ko (k—1)p, P
N « +N(r)e0nﬂ o

General fusion coefficients are obtained as follows:

Q(x1) - Q(xp—1) = Z)\:S,\(Xl7 s Xn—1)S7(a)

ha(a)k = hal(a)k ha,(a)k = Z K)\as)\(a)k
AeP
(k)7 (kR () _ (k)
- %j\/’(al)ﬁ(l)./\/’(aﬂﬁ(z) '/\/’(a,);} - . K)\ozN)\A
AeP

where K, are the (classical) Kostka numbers.
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Quantum cohomology

| Verlinde algebra

Clifford algebra {1;, ¢} ,'-2_1k:N

Phase algebra {¢;, o1},

affine nil-Temperley-Lieb algebra
Ui = i, un = (=D gy

local affine plactic algebra
ai = PiPi  an = 2919,

k-particle space =
s[(N) evaluation module

k-particle space =
affine U,sl(n) crystal

transfer matrices =
nc polynomials in u;'s

transfer matrix, Baxter's Q =
nc polynomials in a;'s

combinatorial product:
Axp = sx(u)p

combinatorial product:
Ax i = sx(a)ft

Bethe ansatz =
Bertram-Vafa-Intrilligator formula

Bethe ansatz =
Verlinde formula

Ak quotient w.r.t.

hpy1 == hppe—1 =0,
hnik = (_1)k_1q

Ak quotient w.r.t.

hpy1 ="+ = hpy—1 =0,
hy =1, hprx = (=1)F ey

nc Schur polynomial expansion:

sa(u)su(u) = ; C/'\’,’Zsl,(u)

$1(a)si () = 2 N 5.(2)

nc Schur polynomial expansion:

C Korff
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Novel description in terms of integrable systems

Simplified, combinatorial approach using the physical picture of
quantum particles hopping on Dynkin diagrams:

@ integrability = simple proof of associativity
@ Bethe ansatz = ring isomorphism, Verlinde formulae
@ particle creation/annihilation operators = new identities

@ Connection with small quantum ‘cohomology and
Gromov-Witten invariants: g = gl(n) (TFT)

@ generalizations to other algebras + deformations
(in preparation)

Thank you for your attention!
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