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L Introduction

I—The small quantum cohomology ring

Grp,ntk Grassmannian of n-planes in Cntk
@ small quantum cohomology ring [Siebert-Tian 1997]
qH*(Grnnik) = Z[ql[er, - -, enl /(Pit1s -+ Pns k-1, hngta(=1)")

where h, = det(e1—jj)1<ij<r and a vector space basis is
given by {s) := det(e)\g_,-ﬂ)lg,-’jgk} with

A € {partitions with Young diagram in n x k box }

@ Fusion ring of {i(n)x Wess-Zumino-Novikov-Witten model
[Gepner, Intriligator, Vafa, Witten] and [Agnihotri]:

]:r%k = qH*(Grn,n+k)/<q -1)

Fok = ]-",%k ®z C is called Verlinde algebra.
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L Introduction

I—Remincler

Schubert varieties and rational maps

Givenaflag i CF C--- C Fpox = C"tk the Schubert variety
Q) (F) is defined as

QA(F) = {V € Grn,n—|—k | dim(Vﬂ Fk+i—)\,-) >0, i=1,... n}.

Definition of 3-point Gromov-Witten invariants

C)’\”d = # of rational f : P! — Gr, n of degree d which meet
QA(F), Qu(F"), Quv(F") for general flags F, F’, F” modulo
automorphisms in P1. If there is an co number of such maps, set

vd
crd=o.
Poincaré duality: v = (k —vp,..., k —v1)

Schubert class: [Q2,] — sy



Quantum Cohomology as Integrable System

L Introduction

I—Quantum Kostka numbers and Gromov-Witten invariants

Quantum Kostka numbers and Gromov-Witten invariants

[Bertram, Ciocan-Fontanine, Fulton]:

d
Suk Sy Kcoksy, = > a5 K aun
d>0,v€(n,k)
_ d
Suk Sy * K Sy = E q su Ko rdyu
d>0,v€(n,k)

Quantum Giambelli formula [Bertram|: sy = det(sy,—i;)

Ml 1)

sen= S g g P

d>0,v€(n,k)

3-point, genus 0 Gromov-Witten invariants
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L Introduction

I—Quantum Kostka numbers and Gromov-Witten invariants

Proposition (intersection pairing)
Fnk is a commutative Frobenius algebra with n(sx,s.) = 6,v,,.

A Frobenius algebra A is a finite-dimn’l, unital, assoc algebra with
non-degenerate bilinear form n(a* b,c) =n(a,b*c), a, b,c € A.

0
a ) o
o
Id: A—A I: k—»A m:A®A >A A:A—A®RA M ARA—k

Topological quantum field theories [Witten, Segal, Atiyah]

Commutative Frobenius algebras are categorically equivalent to 2D
topological quantum field theories. [Dijkgraaf]
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L Introduction

I—Frobenius structures and toric Schur functions

Computation of the coproduct

Frobenius isomorphism ® : sy — 7)(sy, 0)

A
fn,k —_— Fn,k®Fn,k

E | oo

m*
mk — Tk @ Fo
Proposition (generalised skew Schur function)

d
As, = § :SV/d/u Q Sps Su/d/p = § :C/I\ju S -
d,u A
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L Introduction

I—Frobenius structures and toric Schur functions

Toric Schur function [Postnikov]:
Suyd/u(Xt, - Xn) = Z C)Z\';Lds)\(xl, ey Xn)
A

= ZKy/d/p‘,)\mX(Xlw"aXn)y
A

oo-many variables: cylindric Schur functions
[Gessel-Krattenthaler] [McNamara] [Lapointe-Morse] [Lam]

Fusion ring as quantum integrable model (Korff-Stroppel 2010)

Identify the toric Schur functions as partition functions and the
fusion ring as the quantum integrals of motion.

Other example: XXX Bethe algebra [Varchenko et al]
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I—Vicious and osculating walkers

I—Ol—words and partitions

Reminder: correspondence between 01-words and partitions

T 70 0
<
; ] 10 7
= 1 71 [6] 7
K 1fooo0 [g 100
0
w=01001110  wV=01110010 w'=10001101 Rot(w)= 10011100

The following bijections induce symmetries of GW invariants:

w  — Wv:WN...W2W1

w o= w=(1—wy) - (1—w)(l—w)
w +— Rot(w) = wows...wywy

Position of 1-letters: £;(A\) = App1—i + 1/
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I—Vicious and osculating walkers

I—Non-intersecting lattice paths

Vicious and osculating walkers on the cylinder

Statistical models on n x N and k x N square lattice with periodic
boundary conditions in the horizontal direction (N = n + k).

1 2 3 N 1 2 3 N
4w () A1) L 5w &)
1
1
2
2
n
k
6H(v) 6(v) 6,) 6v) 6(v) L)

vicious walkers osculating walkers
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I—Vicious and osculating walkers

I—Nun-intersecting lattice paths

Allowed vertex configurations and their weights

x; indeterminate assigned to the i/ lattice row.

1 0 0
0 0+1 1+0 1—'—1
0 1 0

0
|
|
0
weight: 1 1 1 X; X;
0 1 0 1
| time
| 0 0+1 1+ 0 1 + 1
0 0 1 1

(percolation c.f. [Brak][Fisher][Forrester]|[Guttmann et al][Wu])

(=]
(=]
— —— —

(=)
(=)
— e——
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I—Vicious and osculating walkers

I—transfer matrices

Row partition functions

Fix start/end positions via 01-words w(u), w(v) of length N.

Definition (transfer matrices)

Weighted sums over row configurations:

3 of outer edges 4 of horizontal edges
E(xi)up = E q 2 X]
osc row config
# of outer edges 4 of horizontal edges
H v = E : g > X

vicious row config

Proposition (integrability = commuting transfer matrices)

E(x)E(y) = E(y)E(x), H(x)H(y) = H(y)H(x), E(x)H(y) = H(y)E(x)
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I—Vicious and osculating walkers

I—Weighted path counting

Theorem (Generating function for Gromov-Witten invariants)

The partition functions have the following expansions,

(H(xn) - H(x2) - H(x1)),, = qus,,/d/u(xl,...,x,,)
d>0

(ECa)-E() - ECa)),,, = D a%sujapw(xa, - )
d>0
Let h(s), c(s) be hook length and content of s € A.
Corollary (Sum rule for Gromov-Witten invariants)
Set xi=q=1forall1<i<n. Then

n _ v,d n+ C(S) _rn
Heu=2 il Il 5 o = Ew
d,\ SEX
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I—Vicious and osculating walkers

L Proof

Cylindric loops

Ml =(..; \+r+k +r.. A+ +r—k,...)
r r+1 r+n r+n+1

--2-1 0 1 2 3 4 5---

p——
]
]
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I—Vicious and osculating walkers

L Proof

Cylindric skew tableaux
Adp={{ij) € ZxZ[/(n,—k)Z | A[d]; = j > p[0];} -

2 -1 01 2 3 4 5---

S R U S S U\
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I—Vicious and osculating walkers
L Proof

Proposition

Vicious/osculating paths are in bijection with cylindric tableaux.

—
—
Ao —
W

=
‘&wm»:«
(9%

Level-rank duality: 7o H = E o7 with 7: A )\

Ky /d/ux = # of cylindric tableaux of weight A [BCF][Postnikov]
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I—Vicious and osculating walkers

I—Quantum integrals of motion: XX spin-chain

Quantum integrals of motion

Define matrices 5(,p) via the expansion

HX)E(y) =1+ (x+y) Y x°y°Seap)
a,b>0

Definition (Fusion matrices)

Let A = (ay,...,a/|Bq,...,3,) with Ay, X} < N.

S\ = det(S(ai\gj))lgi,jﬁr

Proposition (Functional relation)

H(x)E(—x) = 1+ (—1)"gx"*k
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I—Vicious and osculating walkers

I—The algebraic Bethe ansatz

Theorem (Korff-Stroppel 2010)
There exists an orthogonal basis {ex}xe(n k) Such that

@ the matrices H, E and the S)’s are diagonal.

@ mapping the ¢)'s onto the idempotents of F,  yields an
algebra isomorphism, in particular

S\Su= Y. qicks,.
d>0,v€(n,d)

XX-Heisenberg spin chain

The transfer matrices H, E commute with the Hamiltonian of the
so-called quantum XX-Heisenberg spin chain.
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I—Free fermion description

I—Cliﬂ'ord algebra

Fermion creation and annihilation
Fix N = n+ k and consider the vector space (Fock space)
N
F= @ -Fn,ka fn,k = (CWn,Io
n=0
where oy =C{0---0} =C and w =0---0 is the vacuum @.
Let nj(w) = wy + - - + w; be the number of 1-letters in [1,1].
For 1 < i < N define the (linear) maps ©7,1; : Fpx — Fnti ksl
—1)ni-1(w) |,/ —Qand W = w: +6:;
vy = JEDTOIW = 0and ) = w4y
0, wi=1

. (—1)"’—1(W) W/, w; =1 and WJ/ =wj — 5,'7_,'
%(W) T {0’ w; = 0.
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I—Free fermion description

I—Cliﬂ'ord algebra

Example

Take n=k =4 and = (4,3,3,1).

k=n=4 k=5n=3
« 10 | 0
W -1{0 = = [-1]0
3 [ ]1]o -1f0
w=01001101 w'=01101101

The boundary ribbon (shaded boxes) starts in the (3 —n) = —1
diagonal. Below the diagram the respective 01-words w(y) and

w(t3p) are displayed.
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I—Free fermion description
L Clifford algebra

Proposition (Clifford algebra)

The maps 1,7 : Fn — Fnx1,k+1 yield an irred rep of the Clifford
algebra, i.e. one has the relations (i,j =1,...,N)

Vi +abpb; = YiY; + i =0, V)i + i =65

Introducing (w, w') =T]; 8, one has (7w, w') = (w,y;w') for
any w,w’' € F.

Bijections: partitions — 01-words — words in the Clifford algebra

The Clifford algebra is the fundamental object in the description of
quantum cohomology.
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I—Free fermion description

I—Return of the vicious walkers

Connection with vicious walkers

Expansion of the transfer matrix H(x) : Fp x = Fp,
Hx) = Y X Hye He= 0 ofrupyt o uf (<) qui)
r=0 lal=r
where u; = 1}, 19; shifts one particle from site /i to site i + 1.

Proposition (commutation relation with fusion matrices)

S)\(q)wl w/ S)\ q) + Z wl-l—f Z S
A p=(r)

where Y7,y = (—1)n+1quj and n = particle number operator.
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I—Free fermion description

I—Fermiun creation of quantum cohomology rings

Fermion creation of quantum cohomology rings
Corollary (Korff-Stroppel 2010)

The last commutation relation implies the product formula

Ax i (p) = Sx(@)i (1) = Z 2 ¢I+r(l/*u)

r=0\/v=(
where * denotes the product with q replaced by —q.

Inductive algorithm

One can successively generate the entire ring hierarchy
{qH*(Grp psk)}1LE starting from n = 0.
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I—Free fermion description

I—Fermiun creation of quantum cohomology rings

Example

Consider the ring gH*(Grz5). Via ¢} : gH*(Gr15) — gH*(Gr25)
one can compute the product in gH*(Gry,5) through the product
in gH*(Gry5):

=P s (1)
00010

00101 01010 00101
=3 (LTI T ) +vss(CL x0T T1])

— vz ([ 1) - avses (0,
g a1 1]
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I—Free fermion description

I—Fermiun creation of quantum cohomology rings

Fermionic product formula

Let A\, € (n, k). Then

W()\)*W('u) = Z wzl(N’)‘l‘tn&ZZ(N)+tn71wz3(u)+tn72¢z4(u)+tn73 g,
T

where

@ /;(u) positions of 1-letters in w(pu)

@ T = (semistandard) tableau of shape A
@ t; = number of entries 1 </ <nin T
° z}}k:w? fori=1,...,N and

i 3 = % N
Yioy = (1" qyr, iy = (-1)"qY;, n:= ;w:fw,-.
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I—Free fermion description

I—Fermiun creation of quantum cohomology rings

Example
Set N=7,n=N—k=4and A =(2,2,1,0), u=(3,3,2,1).

Step 1. Positions of 1-letters: () = (¢1,...,44) = (2,4,6,7).
Step 2. Write down all tableaux of shape A such that
0= (l1+ tn,...,ln+ t1) mod N with £ # £} for i # j .

1 2
; ) ) ) , 134

) )
(3757779) (3757779) (3747879) (4757679) (3767778) (37

3 1

ENE
[=]eo]
[2]ee] ]
[ ][]

) )
,7,8) (3,6,8,7) (4,5,7,8) (4,5,7,8) (4,5,8,7)

[=)]

Step 3. For each ¢; > N make the replacement
¢Z R sz;@ — (_]_)n—i-lqwzi ... ¢Z_N - ¢z;®

Step 4. Let ¢” be the reduced positions in [1, N]. Choose permutation
7€ Spst. £ <o < £ and multiply with (—1)%).
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I—Free fermion description

I—Fermiun creation of quantum cohomology rings

The three tableaux

yield the same 01-word w = 1001101, A(w) = (3,2,2,0) but with
changing sign,

— % - % - % - %
Vi, 12V 0,4100 4100419 = Vo412V 04100511V 0,419 =
=k = %
- wzl+2w@2+1wz3+2wf4g =q WWWW?@ .

We obtain the product expansion

* =q +2q +q +q +q%0 .
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I—Free fermion description

I—Fermiun creation of quantum cohomology rings

Corollary (Quantum Racah-Speiser Algorithm, C.K. 2009)

Let A\, u,v €*Bp k. Given a permutation ™ € S, set

aj(m) = (i(v) — €r(y(n)) mod N > 0
d(m) = #{i | ti(v) — lr(iy(n) < O} .

Then one has the following identity for Gromov-Witten invariants,

C)Z\/;Ld = Z (_I)E(W)+(n_1)dK)\,a(7r) )
wESy, d(7)=d

where K, are the Kostka numbers.

Setting g = 0 the formula specializes to the known Racah-Speiser
algorithm for Littlewood-Richardson coefficients.
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I—Free fermion description

L The End

Thank you for your attention!
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L Kirillov-Reshetikhin crystals

I—Basic notions of crystal theory

Example

KR crystal: g = sly, B, = { 01-words with r 1-letters}

{ (Wl,...,W,'_l:1,W,':0,...,WN), W,'_1:0, wi =1

ew =
' 0, else
fw — {(Wl,...,W,':O,W,'_H:1,...,WN), W,'_|_1:O, wi =1
! 0, else
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L Kirillov-Reshetikhin crystals

I—Basic notions of crystal theory
Example (cont'd)

Affine nil Temperley-Lieb algebra

012345672891011

ﬁz = fz‘]zpﬂﬁ = ﬁﬂﬁﬁﬂ =0

RE
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L Kirillov-Reshetikhin crystals

I—Basic notions of crystal theory

Tensor products of crystals

B ® B’ is the set B x B’ together with the maps,

p ei(b) @ b, ei(b) > ¢;(b')
ei(beb) = { b® e(b), else ’

L {08 )z )
b® fi(b'), else

where one sets b® () = () and ) @ b’ = 0.

°
T o ,/,0
s >/

fi(b® b')

o=

®

o=
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L Kirillov-Reshetikhin crystals

I—Basic notions of crystal theory

Things can get more complicated . ..

Set N =5 and consider the KR crystal B = B, ® By ® By:

KR crystals are perfect crystals: they and their tensor products are
always connected.
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L Kirillov-Reshetikhin crystals

I—Basic notions of crystal theory

The combinatorial R-matrix
Theorem (Kashiwara et al)

There exists a unique graph isomorphism R, s : B, ® Bs — Bs ® B,
which preserves the crystal structure.

Example (c.f. Nakayashiki-Yamada)
Let N=06 and r =3,s = 2. Then we find

5|
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L Kirillov-Reshetikhin crystals

I—Lattice paths as crystal vertices

Lattice paths as crystal vertices
Tor w(X') cylindric tableaux of shape v//d/p/ and weight X'.
Define ¢ : 7, ,v(X') = By, ® By, -+~ ® By, as follows:

1 2 3 N

3]s
5] 4 7

2
8| 6] 5
9|9

A=5,532
k
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L Kirillov-Reshetikhin crystals

LMain theorem
For simplicity assume d > dpmjn := man{Zle(W;(u) —wi(p))}-
Theorem (Osculating walkers as crystal vertices)
Let be By := By, ®---® By, . The following are equivalent.
(i) b€ T w(X))
(i) o(b) = > i) (L = wira(p))wi, e(b) = 3 ig)(1 — wita(v))wi.
(iii) Ry(b, ® Rot~'b) = b® by, where Rot is the sly Dynkin

diagram automorphism.

Here Ry := R, -+ Ry \,Rn x; is the unique crystal graph

isomorphism Ry : B, ® By — B\ ® B,.
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I—K|r|IIov~Reshe hin crystals

1 0
i i+1 i i+1
e b, 0——0 b 1 0
b, 0—t—0 0 0
b2 0 —fm | 0 1
| =—t—0
0—F—0 b, 1on b, 0——0
ljhl b2 0 1 b2 0 — o |
b, 0 L1 | =—t—0 . 1=—0
0—4—0 To—t—o
0 | m—— ] ] m—— ]
b 0—F+—0 b 0—F+—0
b., 1 0 , ,
1 1 1
o] o]
l l l®® ®[%0
+ + -
@@@@--. ® h®b,.,
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&(b) \ \l//n W1 (»=0
[
(p(b)}jl/z l \J;, W+l W) =0

L Kirillov-Reshetikhin crystals

LProof: (ii) = (iii)

Claim

It follows from (ii) that

(b, @ Rot ' b) = e(b® b,) and ¢(b, @ Rot > b) = p(b® b,) .

Claim + uniqueness of combinatorial R = (jii)



Osculating walks via the combinatorial R-matrix

(A) (B)
1 2 N
b Lolifofijo]r] boloftjofifo]r]
®
Rot‘l(b)T;|0T1|5|0|0| Rot (») 1]o|1]ofo]o]1
RT
b [o]1]ofofolr] b,
®
b [Tol1]1]o]0]

tloft]ifo]o]
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L Kirillov-Reshetikhin crystals

L Littlewood-Richardson coefficients

The case of minimal degree
d = dmin 1= max{ [y (wi(v) — wi(1))}.
Proposition (Fulton-Woodward, Yong, Postnikov)

There exists 1 < a < N such that

— v, d Rot?(v),0
Kujd/un = Krot?(v)/Rot?(u),n - and - C\7 = Cigoa)

Robinson-Schensted-Knuth correspondence:

By = € B(a) x SST(/, X)

a<

where B(a) is the irred sly-crystal of highest weight a.
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L Kirillov-Reshetikhin crystals

L Littlewood-Richardson coefficients

Previous example with N =5 and By 11 = By ® B1 ® Bs:

o—o—0—9—0

http://demonstrations.wolfram.com/KirillovReshetikhinCrystals/
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L Kirillov-Reshetikhin crystals

I—Vicious walks and the combinatorial R-matrix

Vicious walks

T :Bp = Bn_p, by — by swaps zero and one-letters in 01-word b
and then reverses its order.

Define R s :== (1@ 7)Rn—rs(T®1) and Ry := Ry - Ry .
Corollary

Let b € By/. The following statements are equivalent.

() b€ uTou(N))
(i) w(b) = Zie/ wip1(p" )wi, e(b) = Zie/ wip1 (v )wi
(i) Ri(b,v ® Rot™*b) = b® b,v



Quantum Cohomology as Integrable System
L Kirillov-Reshetikhin crystals

I—Vicious walks and the combinatorial R-matrix

Constructing vicious from osculating walks

(A) (B)

belofofifoli]of1] beloftfoft]o]i]r]

, W

Rot'®) 1 [1]ol1]ololo[ T Rot'®) 1lofolo|1]olT) !

by

ol1fof[1]1]0]0] bel1]1]olo]1]o]1]
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L Kirillov-Reshetikhin crystals

I—Symmetries of quantum Kostka numbers

Corollary

We have the following symmetries of quantum Kostka numbers,

Kojdjuxr = Kujd/usin = KRrot(v)/dR ) Rot(u),x = Kuv sdjwv as
where s\ = (..., A\ix1, \i,...) and dX = d + wi () — wa(v).
Proof

@ Yang-Baxter equation: Rz 0 Rip 0 Ry3 = Ry 0 Roz 0 Ry
@ Rotation (Dynkin diagram automorphism)

Rot(b1 ® b) := Rot(b1) ® Rot(b2), RotoR = Ro Rot .
@ reversing 01-words (Lusztig involution)

VB, ® Bs — Bs ® B, with by @ by — by @ by,

Vofi=ey_joV, Voe = fy_joV, VoR,s = Rs,oV.
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L Conclusions

Conclusions
Additional results

@ Eigenvectors of the transfer matrices = idempotents.

@ Yang-Baxter algebras, affine nil Temperley-Lieb algebra and
Schur polynomials.

@ Algorithms to generate vicious/osculating walks.

@ The 5A[N—Ver|inde algebra and cylindric Macdonald functions.
Outlook

@ Combinatorial definition of GW invariants and positivity.
@ Other Lie algebras.
@ Quantum Horn conjecture.

@ Categorification of integrable systems.
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