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Introduction

The small quantum cohomology ring

Grn,n+k Grassmannian of n-planes in C
n+k

small quantum cohomology ring [Siebert-Tian 1997]

qH∗(Grn,n+k) ∼= Z[q][e1, . . . , en]/〈hk+1, . . . , hn+k−1, hn+k+q(−1)n〉

where hr = det(e1−i+j)1≤i ,j≤r and a vector space basis is
given by {sλ := det(eλ′

i−i+j)1≤i ,j≤k} with

λ ∈ {partitions with Young diagram in n × k box }

Fusion ring of û(n)k Wess-Zumino-Novikov-Witten model
[Gepner, Intriligator, Vafa, Witten] and [Agnihotri]:

FZ
n,k
∼= qH∗(Grn,n+k)/〈q − 1〉

Fn,k := FZ
n,k ⊗Z C is called Verlinde algebra.
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Introduction

Reminder

Schubert varieties and rational maps

Given a flag F1 ⊂ F2 ⊂ · · · ⊂ Fn+k = C
n+k the Schubert variety

Ωλ(F ) is defined as

Ωλ(F ) = {V ∈ Grn,n+k | dim(V ∩ Fk+i−λi
) ≥ i , i = 1, . . . n}.

Definition of 3-point Gromov-Witten invariants

C ν,d
λ,µ = # of rational f : P1 → Grn,N of degree d which meet

Ωλ(F ), Ωµ(F
′), Ων∨(F

′′) for general flags F ,F ′,F ′′ modulo
automorphisms in P

1. If there is an ∞ number of such maps, set
C ν,d
λ,µ = 0.

Poincaré duality: ν∨ = (k − νn, . . . , k − ν1)
Schubert class: [Ωλ] 7→ sλ
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Introduction

Quantum Kostka numbers and Gromov-Witten invariants

Quantum Kostka numbers and Gromov-Witten invariants

[Bertram, Ciocan-Fontanine, Fulton]:

sµ ⋆ sλ1
⋆ · · · ⋆ sλr

=
∑

d≥0,ν∈(n,k)

qd sνKν/d/µ,λ

sµ ⋆ s(1λ1 ) ⋆ · · · ⋆ s(1λr ) =
∑

d≥0,ν∈(n,k)

qd sνKν′/d/µ′,λ

Quantum Giambelli formula [Bertram]: sλ = det(sλi−i+j)

sµ ⋆ sλ =
∑

d≥0,ν∈(n,k)

qdC ν,d
λµ sν , d =

|λ|+ |µ| − |ν|

n+ k

3-point, genus 0 Gromov-Witten invariants
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Quantum Kostka numbers and Gromov-Witten invariants

Proposition (intersection pairing)

Fn,k is a commutative Frobenius algebra with η(sλ, sµ) = δλ∨µ.

A Frobenius algebra A is a finite-dimn’l, unital, assoc algebra with
non-degenerate bilinear form η(a ⋆ b, c) = η(a, b ⋆ c), a, b, c ∈ A.

Id: A→A 1: k→A η: A   A → km: A   A →A Δ: A→A   A

Topological quantum field theories [Witten, Segal, Atiyah]

Commutative Frobenius algebras are categorically equivalent to 2D
topological quantum field theories. [Dijkgraaf]
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Frobenius structures and toric Schur functions

Computation of the coproduct

Frobenius isomorphism Φ : sλ 7→ η(sλ, ◦)

Fn,k
∆

−−−−→ Fn,k ⊗Fn,kyΦ

yΦ⊗Φ

F∗
n,k

m∗

−−−−→ F∗
n,k ⊗F

∗
n,k

Proposition (generalised skew Schur function)

∆sν =
∑

d,µ

sν/d/µ ⊗ sµ, sν/d/µ :=
∑

λ

C ν,d
λµ sλ .
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Frobenius structures and toric Schur functions

Toric Schur function [Postnikov]:

sν/d/µ(x1, . . . , xn) =
∑

λ

C ν,d
λµ sλ(x1, . . . , xn)

=
∑

λ

Kν/d/µ,λmλ(x1, . . . , xn),

∞-many variables: cylindric Schur functions
[Gessel-Krattenthaler] [McNamara] [Lapointe-Morse] [Lam]

Fusion ring as quantum integrable model (Korff-Stroppel 2010)

Identify the toric Schur functions as partition functions and the
fusion ring as the quantum integrals of motion.

Other example: XXX Bethe algebra [Varchenko et al]
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Vicious and osculating walkers

01-words and partitions

Reminder: correspondence between 01-words and partitions

0

0

01

1n
 =

 4

w = 01001110

1

0

1

7

6

5

2

k = 4 

0

0

0

1

1

1 0

1

7

4

3

2

w  = 01110010

0

0 01

1

1

0

1

8

6

5

1 0 0

01

1

1

0

1

6

5

4

1

(w) = 10011100Rot
V w' = 10001101

The following bijections induce symmetries of GW invariants:

w 7→ w∨ = wN . . .w2w1

w 7→ w ′ = (1− wN) · · · (1− w2)(1− w1)

w 7→ Rot(w) := w2w3 . . .wNw1

Position of 1-letters: ℓi (λ) = λn+1−i + i
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Vicious and osculating walkers

Non-intersecting lattice paths

Vicious and osculating walkers on the cylinder

Statistical models on n × N and k × N square lattice with periodic
boundary conditions in the horizontal direction (N = n + k).

vicious walkers osculating walkers

1 2 N

1

2

n

1

2

k

ℓ (μ)1 ℓ (μ)2 ℓ (μ)n

ℓ (ν)1 ℓ (ν)2 ℓ (ν)n

ℓ (μ)1 ℓ (μ)2 ℓ (μ)n

ℓ (ν)1 ℓ (ν)2 ℓ (ν)n

3 1 2 N3
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Vicious and osculating walkers

Non-intersecting lattice paths

Allowed vertex configurations and their weights

xi indeterminate assigned to the i th lattice row.

0

0

0

0 0 0
0

0

0

0
0

0

1 1 1

1

1

11

1

1 1 xi xiweight:

time

0

0

0

0 0 0
0

0

0

0
1

1

1 1 1

1

1

11

1

1

(percolation c.f. [Brak][Fisher][Forrester][Guttmann et al][Wu])
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Vicious and osculating walkers

transfer matrices

Row partition functions

Fix start/end positions via 01-words w(µ),w(ν) of length N.

Definition (transfer matrices)

Weighted sums over row configurations:

E (xi )ν,µ :=
∑

osc row config

q
# of outer edges

2 x# of horizontal edges
i

H(xi )ν,µ :=
∑

vicious row config

q
# of outer edges

2 x# of horizontal edges
i

Proposition (integrability ≡ commuting transfer matrices)

E (x)E (y) = E (y)E (x), H(x)H(y) = H(y)H(x), E (x)H(y) = H(y)E (x)
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Vicious and osculating walkers

Weighted path counting

Theorem (Generating function for Gromov-Witten invariants)

The partition functions have the following expansions,

(H(xn) · · ·H(x2) · H(x1))ν,µ =
∑

d≥0

qd sν/d/µ(x1, . . . , xn)

(E (xk) · · ·E (x2) · E (x1))ν,µ =
∑

d≥0

qd sν′/d/µ′(x1, . . . , xk)

Let h(s), c(s) be hook length and content of s ∈ λ.

Corollary (Sum rule for Gromov-Witten invariants)

Set xi = q = 1 for all 1 ≤ i ≤ n. Then

Hn
ν,µ =

∑

d,λ

C ν,d
λµ

∏

s∈λ

n + c(s)

h(s)
= En

ν′,µ′
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Vicious and osculating walkers

Proof

Cylindric loops

λ[r ] := (. . . , λn + r + k
r

, λ1 + r
r+1

, . . . , λn + r
r+n

, λ1 + r − k
r+n+1

, . . .)

0

1 2

k

. . .543-1. . .

-1

n

1

2

5

4

3

-2

-2. . .
. . .

0

λ[2]

λ[0]
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Vicious and osculating walkers

Proof

Cylindric skew tableaux

λ/d/µ := {〈i , j〉 ∈ Z× Z/(n,−k)Z | λ[d ]i ≥ j > µ[0]i} .

0

1 2

k

. . .543-1. . .

-1

n

1

2

5

4

3

-2

-2. . .
. . .

0

μ[0]

λ[2]

1

1 1

1

1

1 1

1

1 1

1 2

2

2

2

2

3

3

4

4

1

2

3

4
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Vicious and osculating walkers

Proof

Proposition

Vicious/osculating paths are in bijection with cylindric tableaux.

1 2 N

1

2

n

3

1

1 2 2 4

1 1

1 2

2 2 3

3 3

4

Level-rank duality: τ ◦ H = E ◦ τ with τ : λ 7→ λ′

Kν/d/µ,λ = # of cylindric tableaux of weight λ [BCF][Postnikov]



Quantum Cohomology as Integrable System

Vicious and osculating walkers

Quantum integrals of motion: XX spin-chain

Quantum integrals of motion

Define matrices S(a|b) via the expansion

H(x)E (y) = 1 + (x + y)
∑

a,b≥0

xaybS(a|b)

Definition (Fusion matrices)

Let λ = (α1, . . . , αr |β1, . . . , βr ) with λ1, λ
′
1 < N.

Sλ := det(S(αi |βj )
)1≤i ,j≤r

Proposition (Functional relation)

H(x)E (−x) = 1 + (−1)nqxn+k
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Vicious and osculating walkers

The algebraic Bethe ansatz

Theorem (Korff-Stroppel 2010)

There exists an orthogonal basis {eλ}λ∈(n,k) such that

1 the matrices H,E and the Sλ’s are diagonal.

2 mapping the eλ’s onto the idempotents of Fn,k yields an
algebra isomorphism, in particular

SλSµ =
∑

d≥0,ν∈(n,d)

qdC ν,k
λµ Sν .

XX-Heisenberg spin chain

The transfer matrices H,E commute with the Hamiltonian of the
so-called quantum XX-Heisenberg spin chain.
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Free fermion description

Clifford algebra

Fermion creation and annihilation

Fix N = n + k and consider the vector space (Fock space)

F =
N⊕

n=0
Fn,k , Fn,k = CWn,k ,

where F0,N = C{0 · · · 0} = C and w = 0 · · · 0 is the vacuum ∅.

Let ni (w) = w1 + · · ·+ wi be the number of 1-letters in [1, i ].

For 1 ≤ i ≤ N define the (linear) maps ψ∗
i , ψi : Fn,k → Fn±1,k∓1,

ψ∗
i (w) :=

{
(−1)ni−1(w)w ′, wi = 0 and w ′

j = wj + δi ,j

0, wi = 1

ψi (w) :=

{
(−1)ni−1(w)w ′, wi = 1 and w ′

j = wj − δi ,j

0, wi = 0.
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Free fermion description

Clifford algebra

Example

Take n = k = 4 and µ = (4, 3, 3, 1).

The boundary ribbon (shaded boxes) starts in the (3− n) = −1
diagonal. Below the diagram the respective 01-words w(µ) and
w(ψ∗

3µ) are displayed.
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Free fermion description

Clifford algebra

Proposition (Clifford algebra)

The maps ψi , ψ
∗
i : Fn → Fn∓1,k±1 yield an irred rep of the Clifford

algebra, i.e. one has the relations (i , j = 1, . . . ,N)

ψiψj + ψjψi = ψ∗
i ψ

∗
j + ψ∗

j ψ
∗
i = 0, ψiψ

∗
j + ψ∗

j ψi = δij .

Introducing 〈w ,w ′〉 =
∏

i δwi ,w
′

i
one has 〈ψ∗

i w ,w
′〉 = 〈w , ψiw

′〉 for
any w ,w ′ ∈ F .

Bijections: partitions – 01-words – words in the Clifford algebra

λ ←→ w(λ) ←→ ψ∗
ℓ1(λ)
· · ·ψ∗

ℓn(λ)
∅

The Clifford algebra is the fundamental object in the description of
quantum cohomology.
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Free fermion description

Return of the vicious walkers

Connection with vicious walkers

Expansion of the transfer matrix H(x) : Fn,k → Fn,k ,

H(x) =

N∑

r=0

x rHr , Hr =
∑

|α|=r

ψαN

N uαN−1
N−1 · · · u

α1
1 ((−1)r−1qψ∗

1)
αN

where ui = ψ∗
i+1ψi shifts one particle from site i to site i + 1.

Proposition (commutation relation with fusion matrices)

Sλ(q)ψ
∗
i = ψ∗

i Sλ(−q) +

ℓ(λ)∑

r=1

ψ∗
i+r

∑

λ/µ=(r)

Sµ(−q)

where ψ∗
j+N = (−1)n+1qψ∗

j and n = particle number operator.
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Free fermion description

Fermion creation of quantum cohomology rings

Fermion creation of quantum cohomology rings

Corollary (Korff-Stroppel 2010)

The last commutation relation implies the product formula

λ ⋆ ψ∗
i (µ) = Sλ(q)ψ

∗
i (µ) =

λ1∑
r=0

∑
λ/ν=(r)

ψ∗
i+r (ν ⋆̄ µ)

where ⋆̄ denotes the product with q replaced by −q.

Inductive algorithm

One can successively generate the entire ring hierarchy
{qH∗(Grn,n+k)}

n+k
n=0 starting from n = 0.
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Free fermion description

Fermion creation of quantum cohomology rings

Example

Consider the ring qH∗(Gr2,5). Via ψ
∗
i : qH

∗(Gr1,5)→ qH∗(Gr2,5)
one can compute the product in qH∗(Gr2,5) through the product
in qH∗(Gr1,5):

00101

⋆

01010

=

00101

⋆ ψ∗
2

(

00010

)

= ψ∗
2+2

(
⋆̄

)
+ ψ∗

2+3

(
⋆̄

)

= −qψ∗
2+2

(

01000

)
− qψ∗

2+3

(
∅

10000

)

= q + q .
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Free fermion description

Fermion creation of quantum cohomology rings

Fermionic product formula

Let λ, µ ∈ (n, k). Then

w(λ)⋆w(µ) :=
∑

T

ψ∗
ℓ1(µ)+tn

ψ̄
∗
ℓ2(µ)+tn−1

ψ∗
ℓ3(µ)+tn−2

ψ̄
∗
ℓ4(µ)+tn−3

· · · ∅,

where

ℓi(µ) positions of 1-letters in w(µ)

T = (semistandard) tableau of shape λ

ti = number of entries 1 ≤ i ≤ n in T

ψ̄
∗
i = ψ∗

i for i = 1, . . . ,N and

ψ∗
i+N := (−1)n+1qψ∗

i , ψ̄
∗
i+N := (−1)nqψ̄

∗
i , n :=

N∑
i=1

ψ∗
i ψi .
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Free fermion description

Fermion creation of quantum cohomology rings

Example

Set N = 7, n = N − k = 4 and λ = (2, 2, 1, 0), µ = (3, 3, 2, 1).

Step 1. Positions of 1-letters: ℓ(µ) = (ℓ1, . . . , ℓ4) = (2, 4, 6, 7).

Step 2. Write down all tableaux of shape λ such that
ℓ′ = (ℓ1 + tn, . . . , ℓn + t1) modN with ℓ′i 6= ℓ′j for i 6= j .

1 1
2 4
3

(3,5,7,9)

,
1 1
2 3
4

(3,5,7,9)

,
1 1
2 2
4

(3,4,8,9)

,
1 1
3 4
4

(4,5,6,9)

,
1 3
2 4
3

(3,6,7,8)

,
1 2
3 3
4

(3,6,7,8)

,
2 2
3 3
4

(3,6,8,7)

,
1 3
2 4
4

(4,5,7,8)

,
1 2
3 4
4

(4,5,7,8)

,
2 2
3 4
4

(4,5,8,7)

.

Step 3. For each ℓ′i > N make the replacement

ψ∗
ℓ′1
· · ·ψ∗

ℓ′n
∅→ (−1)n+1qψ∗

ℓ′1
· · ·ψ∗

ℓ′
i
−N · · ·ψ

∗
ℓ′n
∅

Step 4. Let ℓ′′ be the reduced positions in [1,N]. Choose permutation
π ∈ Sn s.t. ℓ′′1 < · · · < ℓ′′n and multiply with (−1)ℓ(π).
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Free fermion description

Fermion creation of quantum cohomology rings

The three tableaux

1 3
2 4
4

(4,5,7,8)

,
1 2
3 4
4

(4,5,7,8)

,
2 2
3 4
4

(4,5,8,7)

yield the same 01-word w = 1001101, λ(w) = (3, 2, 2, 0) but with
changing sign,

ψ∗
ℓ1+2ψ̄

∗
ℓ2+1ψ

∗
ℓ3+1ψ̄

∗
ℓ4+1∅ = ψ∗

ℓ1+2ψ̄
∗
ℓ2+1ψ

∗
ℓ3+1ψ̄

∗
ℓ4+1∅ =

− ψ∗
ℓ1+2ψ̄

∗
ℓ2+1ψ

∗
ℓ3+2ψ̄

∗
ℓ4∅ = q ψ∗

1ψ
∗
4ψ

∗
5ψ

∗
7∅ .

We obtain the product expansion

⋆ = q +2q +q +q +q2 ∅ .
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Free fermion description

Fermion creation of quantum cohomology rings

Corollary (Quantum Racah-Speiser Algorithm, C.K. 2009)

Let λ, µ, ν ∈ Pn,k . Given a permutation π ∈ Sn set

αi(π) = (ℓi (ν)− ℓπ(i)(µ))modN ≥ 0

d(π) = #{i | ℓi (ν)− ℓπ(i)(µ) < 0} .

Then one has the following identity for Gromov-Witten invariants,

C ν,d
λµ =

∑

π∈Sn, d(π)=d

(−1)ℓ(π)+(n−1)dKλ,α(π) ,

where Kλµ are the Kostka numbers.

Setting q = 0 the formula specializes to the known Racah-Speiser
algorithm for Littlewood-Richardson coefficients.
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Free fermion description

The End

Thank you for your attention!
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Kirillov-Reshetikhin crystals

Basic notions of crystal theory

Example

KR crystal: g = ŝlN , Br = { 01-words with r 1-letters}

eiw =
{ (w1, . . . ,wi−1 = 1,wi = 0, . . . ,wN), wi−1 = 0, wi = 1
∅, else

fiw =
{ (w1, . . . ,wi = 0,wi+1 = 1, . . . ,wN), wi+1 = 0, wi = 1
∅, else

1

3

3

1

4

2

4

1

5

2

5

1

6

2

6

1

2

7

2

4

3

5

3

6

3

7

5

4

6

4

7

6 5

7

7



Quantum Cohomology as Integrable System

Kirillov-Reshetikhin crystals

Basic notions of crystal theory

Example (cont’d)

Affine nil Temperley-Lieb algebra

0
-1 1

2-2

4
3

-4
-3

-5

0 1 2 3 4 5 6 7 8 9 10 11

f
11

f
5

fi
2

fi fi+1 fi fi+1 fi fi+1= = = 0
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Kirillov-Reshetikhin crystals

Basic notions of crystal theory

Tensor products of crystals

B ⊗ B ′ is the set B × B ′ together with the maps,

ei (b ⊗ b′) =
{ ei (b)⊗ b′, εi (b) > ϕi (b

′)
b ⊗ ei (b

′), else

fi (b ⊗ b′) =
{ fi(b)⊗ b′, εi(b) ≥ ϕi (b

′)
b ⊗ fi(b

′), else

where one sets b ⊗ ∅ = ∅ and ∅ ⊗ b′ = ∅.

1

2

3

4

1

3

3

1 2

4

2

4

14
2
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Kirillov-Reshetikhin crystals

Basic notions of crystal theory

Things can get more complicated . . .

Set N = 5 and consider the KR crystal B = B2 ⊗ B1 ⊗ B1:

KR crystals are perfect crystals: they and their tensor products are
always connected.
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Kirillov-Reshetikhin crystals

Basic notions of crystal theory

The combinatorial R-matrix

Theorem (Kashiwara et al)

There exists a unique graph isomorphism Rr ,s : Br ⊗ Bs → Bs ⊗ Br

which preserves the crystal structure.

Example (c.f. Nakayashiki-Yamada)

Let N = 6 and r = 3, s = 2. Then we find

R3,2




2
4
6
⊗ 1

3


 = 2

6
⊗

1
3
4
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Kirillov-Reshetikhin crystals

Lattice paths as crystal vertices

Lattice paths as crystal vertices

Tν′,µ′(λ′) cylindric tableaux of shape ν ′/d/µ′ and weight λ′.

Define ι : Tν′,µ′(λ′)→ Bλ′

1
⊗ Bλ′

2
· · · ⊗ Bλ′

k
as follows:

1

2

k

1 2 N3

3

5

8

9

1

4

6

9

1

2

5

6

7 8

3

λ = 5,5,3,2
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Kirillov-Reshetikhin crystals

Main theorem

For simplicity assume d > dmin := maxℓ{
∑ℓ

i=1(wi (ν)− wi (µ))}.

Theorem (Osculating walkers as crystal vertices)

Let b ∈ Bλ := Bλ′

1
⊗ · · · ⊗ Bλ′

k
. The following are equivalent.

(i) b ∈ ι(Tν′,µ′(λ′))

(ii) ϕ(b) =
∑

i∈I (1−wi+1(µ))ωi , ε(b) =
∑

i∈I (1−wi+1(ν))ωi .

(iii) Rλ(bµ ⊗ Rot
−1b) = b ⊗ bν , where Rot is the ŝlN Dynkin

diagram automorphism.

Here Rλ := Rn,λ′

r
· · ·Rn,λ′

2
Rn,λ′

1
is the unique crystal graph

isomorphism Rλ : Bn ⊗ Bλ → Bλ ⊗ Bn.
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Proof: (i) ⇒ (ii)
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Proof: (ii) ⇒ (iii)

b

j
1 j

2
j
n

i1
i2

in
ε(b)

φ(b)

w     (ν) = 0 
i +1r

w     (μ) = 0 
j +1r

Claim

It follows from (ii) that

ε(bµ ⊗ Rot
−1 b) = ε(b ⊗ bν) and ϕ(bµ ⊗ Rot

−1 b) = ϕ(b ⊗ bν) .

Claim + uniqueness of combinatorial R ⇒ (iii)
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Proof: (iii) ⇒ (i)

Osculating walks via the combinatorial R-matrix

bμ

Rot  (b)

bν

1

1 1 1

1

1 1 1

0

0000

00

000

b 1 0 10 00

bμ

Rot  (b) 1

1 1 1

1

0

0000

00

bν 1 1 1 000

1

(A) (B)

�

⊗

⊗

1    2                      N

R

-1 -1
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Littlewood-Richardson coefficients

The case of minimal degree

d = dmin := maxℓ{
∑ℓ

i=1(wi (ν)− wi(µ))}.

Proposition (Fulton-Woodward, Yong, Postnikov)

There exists 1 ≤ a ≤ N such that

Kν/d/µ,λ = KRot
a(ν)/Rot

a(µ),λ and C ν,d
λ,µ = C

Rot
a(ν),0

λRot
a(µ)

Robinson-Schensted-Knuth correspondence:

Bλ
∼=

⊕

α≤λ

B(α)× SST(α′, λ′) ,

where B(α) is the irred slN -crystal of highest weight α.
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Littlewood-Richardson coefficients

Previous example with N = 5 and B2,1,1 = B2 ⊗ B1 ⊗ B1:

http://demonstrations.wolfram.com/KirillovReshetikhinCrystals/
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Vicious walks and the combinatorial R-matrix

Vicious walks

τ : Bn → BN−n, bλ 7→ bλ′ swaps zero and one-letters in 01-word b
and then reverses its order.

Define R ′
r ,s := (1⊗ τ)RN−r ,s(τ ⊗ 1) and R ′

λ := R ′
n,λr
· · ·R ′

n,λ1
.

Corollary

Let b ∈ Bλ′ . The following statements are equivalent.

(i) b ∈ ι(Tν,µ(λ))

(ii) ϕ(b) =
∑

i∈I wi+1(µ
∨)ωi , ε(b) =

∑
i∈I wi+1(ν

∨)ωi

(iii) R ′
λ(bµ∨ ⊗ Rot

−1b) = b ⊗ bν∨
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Vicious walks and the combinatorial R-matrix

Constructing vicious from osculating walks

(A) (B)

bμ'

Rot  (b ) 1

1 1 1

1

0

0100

00

bν' 1 0 0 011

1

1

1

0

bμ

Rot  (b) 1

0 0 0

0

0

0011

11

bν 0 0 1 011

1

0

1

0 V
-1 -1
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Symmetries of quantum Kostka numbers

Corollary

We have the following symmetries of quantum Kostka numbers,

Kν/d/µ,λ = Kν/d/µ,siλ = KRot(ν)/dR/Rot(µ),λ = Kµ∨/d/ν∨,λ,

where siλ = (. . . , λi+1, λi , . . .) and dR = d + w1(µ)− w1(ν).

Proof

Yang-Baxter equation: R23 ◦ R12 ◦ R23 = R12 ◦ R23 ◦ R12

Rotation (Dynkin diagram automorphism)
Rot(b1 ⊗ b2) := Rot(b1)⊗ Rot(b2), Rot ◦R = R ◦ Rot .

reversing 01-words (Lusztig involution)
∨ : Br ⊗ Bs → Bs ⊗ Br with b1 ⊗ b2 7→ b∨2 ⊗ b∨1 ,

∨◦ fi = eN−i ◦∨, ∨◦ei = fN−i ◦∨, ∨◦Rr ,s = Rs,r ◦∨ .
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Conclusions

Additional results

Eigenvectors of the transfer matrices = idempotents.

Yang-Baxter algebras, affine nil Temperley-Lieb algebra and
Schur polynomials.

Algorithms to generate vicious/osculating walks.

The ŝlN -Verlinde algebra and cylindric Macdonald functions.

Outlook

Combinatorial definition of GW invariants and positivity.

Other Lie algebras.

Quantum Horn conjecture.

Categorification of integrable systems.
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