Small Quantum Cohomology as Quantum Integrable System

Christian Korff (christian.korff@glasgow.ac.uk)
Reader and University Research Fellow of the Royal Society School of Mathematics \& Statistics, University of Glasgow

http://www.maths.gla.ac.uk/~ ${ }^{\text {ck/ }}$

Integrability in Topological Field Theory, 16-20 April 2012

Outline

- Reminder: (small) quantum cohomology
- Quantum Kostka numbers and toric Schur functions
- Vicious and osculating walkers on the cylinder
- Free fermion description

Related literature (http://www.maths.gla.ac.uk/~ck/publications.html)

quantum cohomology/WZNW fusion rings as integrable models:

- C. K. and C. Stroppel, Adv Math 225 (2010) 200-68; arXiv:0909.2347 (type A: $\mathfrak{g}=\hat{\mathfrak{u}}(n)_{k}$ and $\left.\widehat{\mathfrak{s u}}(n)_{k}\right)$
- C. K. A combinatorial derivation of the Racah-Speiser algorithm for Gromov-Witten invariants; arXiv:0910.3395
- C. K. J Phys A 43 (2010) 434021; arxiv:1006.4710
- C. K. QC via vicious and osculating walkers; arxiv:1204.4109

Bethe vectors as idempotents: discrete quantum NLS model

- C. K. RIMS Kokyuroku Bessatsu B28 (2011) pp. 121-53; arxiv:1106.5342 (Section 5, Cor 5.3 and Section 7)
- C. K. Cylindric Macdonald functions and a deformation of the Verlinde algebra. preprint; arxiv:1110.6356 (Section 7, Prop 7.15)
$\mathrm{Gr}_{n, n+k}$ Grassmannian of n-planes in \mathbb{C}^{n+k}
- small quantum cohomology ring [Siebert-Tian 1997]
$q H^{*}\left(\mathrm{Gr}_{n, n+k}\right) \cong \mathbb{Z}[q]\left[e_{1}, \ldots, e_{n}\right] /\left\langle h_{k+1}, \ldots, h_{n+k-1}, h_{n+k}+q(-1)^{n}\right\rangle$
where $h_{r}=\operatorname{det}\left(e_{1-i+j}\right)_{1 \leq i, j \leq r}$ and a vector space basis is given by $\left\{s_{\lambda}:=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-i+j}\right)_{1 \leq i, j \leq k}\right\}$ with

$$
\lambda \in\{\text { partitions with Young diagram in } n \times k \text { box }\}
$$

- Fusion ring of $\hat{\mathfrak{u}}(n)_{k}$ Wess-Zumino-Novikov-Witten model [Gepner, Intriligator, Vafa, Witten] and [Agnihotri]:

$$
\mathcal{F}_{n, k}^{\mathbb{Z}} \cong q H^{*}\left(\mathrm{Gr}_{n, n+k}\right) /\langle q-1\rangle
$$

$\mathcal{F}_{n, k}:=\mathcal{F}_{n, k}^{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C}$ is called Verlinde algebra.

Schubert varieties and rational maps

Given a flag $F_{1} \subset F_{2} \subset \cdots \subset F_{n+k}=\mathbb{C}^{n+k}$ the Schubert variety $\Omega_{\lambda}(F)$ is defined as

$$
\Omega_{\lambda}(F)=\left\{V \in \operatorname{Gr}_{n, n+k} \mid \operatorname{dim}\left(V \cap F_{k+i-\lambda_{i}}\right) \geq i, i=1, \ldots n\right\} .
$$

Definition of 3-point Gromov-Witten invariants

$C_{\lambda, \mu}^{\nu, d}=\#$ of rational $f: \mathbb{P}^{1} \rightarrow \mathrm{Gr}_{n, N}$ of degree d which meet $\Omega_{\lambda}(F), \Omega_{\mu}\left(F^{\prime}\right), \Omega_{\nu} \vee\left(F^{\prime \prime}\right)$ for general flags $F, F^{\prime}, F^{\prime \prime}$ modulo automorphisms in \mathbb{P}^{1}. If there is an ∞ number of such maps, set $C_{\lambda, \mu}^{\nu, d}=0$.

Poincaré duality: $\nu^{\vee}=\left(k-\nu_{n}, \ldots, k-\nu_{1}\right)$
Schubert class: $\left[\Omega_{\lambda}\right] \mapsto s_{\lambda}$

LIntroduction

Quantum Kostka numbers and Gromov-Witten invariants

$$
\begin{aligned}
s_{\mu} \star s_{\lambda_{1}} \star \cdots \star s_{\lambda_{r}} & =\sum_{d \geq 0, \nu \in(n, k)} q^{d} s_{\nu} K_{\nu / d / \mu, \lambda} \\
s_{\mu} \star s_{\left(1^{\lambda_{1}}\right)} \star \cdots \star s_{\left(1^{\lambda_{r}}\right)} & =\sum_{d \geq 0, \nu \in(n, k)} q^{d} s_{\nu} K_{\nu^{\prime} / d / \mu^{\prime}, \lambda}
\end{aligned}
$$
\]

Quantum Giambelli formula [Bertram]: $s_{\lambda}=\operatorname{det}\left(s_{\lambda_{i}-i+j}\right)$

$$
s_{\mu} \star s_{\lambda}=\sum_{d \geq 0, \nu \in(n, k)} q^{d} C_{\lambda \mu}^{\nu, d} s_{\nu}, \quad d=\frac{|\lambda|+|\mu|-|\nu|}{n+k}
$$

3-point, genus 0 Gromov-Witten invariants

Proposition (intersection pairing)

$\mathcal{F}_{n, k}$ is a commutative Frobenius algebra with $\eta\left(s_{\lambda}, s_{\mu}\right)=\delta_{\lambda^{\vee}{ }_{\mu}}$.
A Frobenius algebra A is a finite-dimn'l, unital, assoc algebra with non-degenerate bilinear form $\eta(a \star b, c)=\eta(a, b \star c), a, b, c \in A$.

Id: $\mathrm{A} \rightarrow \mathrm{A} \quad 1: \mathrm{k} \rightarrow \mathrm{A} \quad \mathrm{m}: \mathrm{A} \otimes \mathrm{A} \rightarrow \mathrm{A} \quad \Delta: \mathrm{A} \rightarrow \mathrm{A} \otimes \mathrm{A} \quad \eta: \mathrm{A} \otimes \mathrm{A} \rightarrow \mathrm{k}$

Topological quantum field theories [Witten, Segal, Atiyah]
Commutative Frobenius algebras are categorically equivalent to 2D topological quantum field theories. [Dijkgraaf]

Computation of the coproduct

Frobenius isomorphism $\Phi: s_{\lambda} \mapsto \eta\left(s_{\lambda}, \circ\right)$

$$
\begin{aligned}
\mathcal{F}_{n, k} & \xrightarrow{\Delta} \mathcal{F}_{n, k} \otimes \mathcal{F}_{n, k} \\
& \\
& \\
& \\
\mathcal{F}_{n, k}^{*} \xrightarrow{\mathfrak{m}^{*}} & \\
& \mathcal{F}_{n, k}^{*} \otimes \Phi
\end{aligned}
$$

Proposition (generalised skew Schur function)

$$
\Delta s_{\nu}=\sum_{d, \mu} s_{\nu / d / \mu} \otimes s_{\mu}, \quad s_{\nu / d / \mu}:=\sum_{\lambda} C_{\lambda \mu}^{\nu, d} s_{\lambda} .
$$

Toric Schur function [Postnikov]:

$$
\begin{aligned}
s_{\nu / d / \mu}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{\lambda} C_{\lambda \mu}^{\nu, d} s_{\lambda}\left(x_{1}, \ldots, x_{n}\right) \\
& =\sum_{\lambda} K_{\nu / d / \mu, \lambda} m_{\lambda}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

∞-many variables: cylindric Schur functions [Gessel-Krattenthaler] [McNamara] [Lapointe-Morse] [Lam]

Fusion ring as quantum integrable model (Korff-Stroppel 2010)
Identify the toric Schur functions as partition functions and the fusion ring as the quantum integrals of motion.

Other example: XXX Bethe algebra [Varchenko et al]

Reminder: correspondence between 01-words and partitions

$$
w=01001110 \quad w^{\mathrm{V}}=01110010 \quad w^{\prime}=10001101 \quad \operatorname{Rot}(w)=10011100
$$

The following bijections induce symmetries of GW invariants:

$$
\begin{aligned}
w & \mapsto w^{\vee}=w_{N} \ldots w_{2} w_{1} \\
w & \mapsto w^{\prime}=\left(1-w_{N}\right) \cdots\left(1-w_{2}\right)\left(1-w_{1}\right) \\
w & \mapsto \operatorname{Rot}(w):=w_{2} w_{3} \ldots w_{N} w_{1}
\end{aligned}
$$

Position of 1-letters: $\ell_{i}(\lambda)=\lambda_{n+1-i}+i$

- Vicious and osculating walkers

-Non-intersecting lattice paths

Vicious and osculating walkers on the cylinder

Statistical models on $n \times N$ and $k \times N$ square lattice with periodic boundary conditions in the horizontal direction $(N=n+k)$.

- Vicious and osculating walkers
-Non-intersecting lattice paths
Allowed vertex configurations and their weights
x_{i} indeterminate assigned to the $i^{\text {th }}$ lattice row.

(percolation c.f. [Brak][Fisher][Forrester][Guttmann et al][Wu])

Row partition functions

Fix start/end positions via 01-words $w(\mu), w(\nu)$ of length N.

Definition (transfer matrices)

Weighted sums over row configurations:

$$
\begin{aligned}
& E\left(x_{i}\right)_{\nu, \mu}:=\sum_{\text {osc row config }} q^{\frac{\# \text { of outer edges }}{2}} x_{i}^{\# \text { of horizontal edges }} \\
& H\left(x_{i}\right)_{\nu, \mu}:=\sum_{\text {vicious row config }} q^{\frac{\# \text { of outer edges }}{2}} x_{i}^{\# \text { of horizontal edges }}
\end{aligned}
$$

Proposition (integrability \equiv commuting transfer matrices)

$$
E(x) E(y)=E(y) E(x), H(x) H(y)=H(y) H(x), E(x) H(y)=H(y) E(x)
$$

Theorem (Generating function for Gromov-Witten invariants)
The partition functions have the following expansions,

$$
\begin{aligned}
\left(H\left(x_{n}\right) \cdots H\left(x_{2}\right) \cdot H\left(x_{1}\right)\right)_{\nu, \mu} & =\sum_{d \geq 0} q^{d} s_{\nu / d / \mu}\left(x_{1}, \ldots, x_{n}\right) \\
\left(E\left(x_{k}\right) \cdots E\left(x_{2}\right) \cdot E\left(x_{1}\right)\right)_{\nu, \mu} & =\sum_{d \geq 0} q^{d} s_{\nu^{\prime} / d / \mu^{\prime}}\left(x_{1}, \ldots, x_{k}\right)
\end{aligned}
$$

Let $h(s), c(s)$ be hook length and content of $s \in \lambda$.
Corollary (Sum rule for Gromov-Witten invariants)
Set $x_{i}=q=1$ for all $1 \leq i \leq n$. Then

$$
H_{\nu, \mu}^{n}=\sum_{d, \lambda} C_{\lambda \mu}^{\nu, d} \prod_{s \in \lambda} \frac{n+c(s)}{h(s)}=E_{\nu^{\prime}, \mu^{\prime}}^{n}
$$

Quantum Cohomology as Integrable System

- Vicious and osculating walkers
—Proof

Cylindric loops

$$
\begin{gathered}
\lambda[r]:=\left(\ldots, \lambda_{n}+\underset{r}{r}+\underset{r+1}{k} \lambda_{1}+r, \ldots,{\underset{r}{n+n}}_{\lambda_{n}}+r, \lambda_{r+n+1}+r-\ldots\right) \\
\cdots-2-1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \cdots
\end{gathered}
$$

- Vicious and osculating walkers
-Proof

Cylindric skew tableaux

$$
\lambda / d / \mu:=\left\{\langle i, j\rangle \in \mathbb{Z} \times \mathbb{Z} /(n,-k) \mathbb{Z} \mid \lambda[d]_{i} \geq j>\mu[0]_{i}\right\}
$$

Proposition

Vicious/osculating paths are in bijection with cylindric tableaux.

Level-rank duality: $\tau \circ H=E \circ \tau$ with $\tau: \lambda \mapsto \lambda^{\prime}$
$K_{\nu / d / \mu, \lambda}=\#$ of cylindric tableaux of weight λ [BCF][Postnikov]

- Vicious and osculating walkers

-Quantum integrals of motion: XX spin-chain

Quantum integrals of motion

Define matrices $S_{(a \mid b)}$ via the expansion

$$
H(x) E(y)=1+(x+y) \sum_{a, b \geq 0} x^{a} y^{b} S_{(a \mid b)}
$$

Definition (Fusion matrices)
Let $\lambda=\left(\alpha_{1}, \ldots, \alpha_{r} \mid \beta_{1}, \ldots, \beta_{r}\right)$ with $\lambda_{1}, \lambda_{1}^{\prime}<N$.

$$
S_{\lambda}:=\operatorname{det}\left(S_{\left(\alpha_{i} \mid \beta_{j}\right)}\right)_{1 \leq i, j \leq r}
$$

Proposition (Functional relation)

$$
H(x) E(-x)=1+(-1)^{n} q x^{n+k}
$$

Theorem (Korff-Stroppel 2010)

There exists an orthogonal basis $\left\{\mathfrak{e}_{\lambda}\right\}_{\lambda \in(n, k)}$ such that
(1) the matrices H, E and the S_{λ} 's are diagonal.
(2) mapping the \mathfrak{e}_{λ} 's onto the idempotents of $\mathcal{F}_{n, k}$ yields an algebra isomorphism, in particular

$$
S_{\lambda} S_{\mu}=\sum_{d \geq 0, \nu \in(n, d)} q^{d} C_{\lambda \mu}^{\nu, k} S_{\nu}
$$

XX-Heisenberg spin chain

The transfer matrices H, E commute with the Hamiltonian of the so-called quantum XX -Heisenberg spin chain.

Fermion creation and annihilation

Fix $N=n+k$ and consider the vector space (Fock space)

$$
\mathcal{F}=\bigoplus_{n=0}^{N} \mathcal{F}_{n, k}, \quad \mathcal{F}_{n, k}=\mathbb{C} W_{n, k},
$$

where $\mathcal{F}_{0, N}=\mathbb{C}\{0 \cdots 0\}=\mathbb{C}$ and $w=0 \cdots 0$ is the vacuum \varnothing.
Let $n_{i}(w)=w_{1}+\cdots+w_{i}$ be the number of 1 -letters in $[1, i]$.
For $1 \leq i \leq N$ define the (linear) maps $\psi_{i}^{*}, \psi_{i}: \mathcal{F}_{n, k} \rightarrow \mathcal{F}_{n \pm 1, k \neq 1}$,

$$
\begin{aligned}
& \psi_{i}^{*}(w):= \begin{cases}(-1)^{n_{i-1}(w)} w^{\prime}, & w_{i}=0 \text { and } w_{j}^{\prime}=w_{j}+\delta_{i, j} \\
0, & w_{i}=1\end{cases} \\
& \psi_{i}(w):= \begin{cases}(-1)^{n_{i-1}(w)} w^{\prime}, & w_{i}=1 \text { and } w_{j}^{\prime}=w_{j}-\delta_{i, j} \\
0, & w_{i}=0\end{cases}
\end{aligned}
$$

Example

Take $n=k=4$ and $\mu=(4,3,3,1)$.

$$
k=n=4
$$

$$
k=5, n=3
$$

$$
w=01001101
$$

$$
w^{\prime}=01101101
$$

The boundary ribbon (shaded boxes) starts in the $(3-n)=-1$ diagonal. Below the diagram the respective 01-words $w(\mu)$ and $w\left(\psi_{3}^{*} \mu\right)$ are displayed.

Proposition (Clifford algebra)

The maps $\psi_{i}, \psi_{i}^{*}: \mathcal{F}_{n} \rightarrow \mathcal{F}_{n \mp 1, k \pm 1}$ yield an irred rep of the Clifford algebra, i.e. one has the relations $(i, j=1, \ldots, N)$

$$
\psi_{i} \psi_{j}+\psi_{j} \psi_{i}=\psi_{i}^{*} \psi_{j}^{*}+\psi_{j}^{*} \psi_{i}^{*}=0, \quad \psi_{i} \psi_{j}^{*}+\psi_{j}^{*} \psi_{i}=\delta_{i j}
$$

Introducing $\left\langle w, w^{\prime}\right\rangle=\prod_{i} \delta_{w_{i}, w_{i}^{\prime}}$ one has $\left\langle\psi_{i}^{*} w, w^{\prime}\right\rangle=\left\langle w, \psi_{i} w^{\prime}\right\rangle$ for any $w, w^{\prime} \in \mathcal{F}$.

Bijections: partitions - 01-words - words in the Clifford algebra

$$
\lambda \longleftrightarrow w(\lambda) \longleftrightarrow \psi_{\ell_{1}(\lambda)}^{*} \cdots \psi_{\ell_{n}(\lambda)}^{*} \varnothing
$$

The Clifford algebra is the fundamental object in the description of quantum cohomology.

Connection with vicious walkers

Expansion of the transfer matrix $H(x): \mathcal{F}_{n, k} \rightarrow \mathcal{F}_{n, k}$,

$$
H(x)=\sum_{r=0}^{N} x^{r} H_{r}, \quad H_{r}=\sum_{|\alpha|=r} \psi_{N}^{\alpha_{N}} u_{N-1}^{\alpha_{N}-1} \cdots u_{1}^{\alpha_{1}}\left((-1)^{r-1} q \psi_{1}^{*}\right)^{\alpha_{N}}
$$

where $u_{i}=\psi_{i+1}^{*} \psi_{i}$ shifts one particle from site i to site $i+1$.
Proposition (commutation relation with fusion matrices)

$$
S_{\lambda}(q) \psi_{i}^{*}=\psi_{i}^{*} S_{\lambda}(-q)+\sum_{r=1}^{\ell(\lambda)} \psi_{i+r}^{*} \sum_{\lambda / \mu=(r)} S_{\mu}(-q)
$$

where $\psi_{j+N}^{*}=(-1)^{\mathrm{n}+1} q \psi_{j}^{*}$ and $\mathrm{n}=$ particle number operator.

Fermion creation of quantum cohomology rings

Corollary (Korff-Stroppel 2010)
The last commutation relation implies the product formula

$$
\lambda \star \psi_{i}^{*}(\mu)=S_{\lambda}(q) \psi_{i}^{*}(\mu)=\sum_{r=0}^{\lambda_{1}} \sum_{\lambda / \nu=(r)} \psi_{i+r}^{*}(\nu \bar{\star} \mu)
$$

where $\overline{\text { d }}$ denotes the product with q replaced by $-q$.
Inductive algorithm
One can successively generate the entire ring hierarchy $\left\{q H^{*}\left(\mathrm{Gr}_{n, n+k}\right)\right\}_{n=0}^{n+k}$ starting from $n=0$.

Example

Consider the ring $q H^{*}\left(\operatorname{Gr}_{2,5}\right)$. Via $\psi_{i}^{*}: q H^{*}\left(\operatorname{Gr}_{1,5}\right) \rightarrow q H^{*}\left(\operatorname{Gr}_{2,5}\right)$ one can compute the product in $q H^{*}\left(\mathrm{Gr}_{2,5}\right)$ through the product in $q H^{*}\left(\operatorname{Gr}_{1,5}\right)$:

Fermionic product formula

Let $\lambda, \mu \in(n, k)$. Then
$w(\lambda) \star w(\mu):=\sum_{T} \psi_{\ell_{1}(\mu)+t_{n}}^{*} \bar{\psi}_{\ell_{2}(\mu)+t_{n-1}}^{*} \psi_{\ell_{3}(\mu)+t_{n-2}}^{*} \bar{\psi}_{\ell_{4}(\mu)+t_{n-3}}^{*} \cdots \varnothing$,
where

- $\ell_{i}(\mu)$ positions of 1-letters in $w(\mu)$
- $T=$ (semistandard) tableau of shape λ
- $t_{i}=$ number of entries $1 \leq i \leq n$ in T
- $\bar{\psi}_{i}^{*}=\psi_{i}^{*}$ for $i=1, \ldots, N$ and

$$
\psi_{i+N}^{*}:=(-1)^{\mathrm{n}+1} q \psi_{i}^{*}, \quad \bar{\psi}_{i+N}^{*}:=(-1)^{\mathrm{n}} q \bar{\psi}_{i}^{*}, \quad \mathrm{n}:=\sum_{i=1}^{N} \psi_{i}^{*} \psi_{i} .
$$

Example

$$
\text { Set } N=7, n=N-k=4 \text { and } \lambda=(2,2,1,0), \mu=(3,3,2,1) .
$$

Step 1. Positions of 1-letters: $\ell(\mu)=\left(\ell_{1}, \ldots, \ell_{4}\right)=(2,4,6,7)$.
Step 2. Write down all tableaux of shape λ such that

$$
\ell^{\prime}=\left(\ell_{1}+t_{n}, \ldots, \ell_{n}+t_{1}\right) \bmod N \text { with } \ell_{i}^{\prime} \neq \ell_{j}^{\prime} \text { for } i \neq j
$$

Step 3. For each $\ell_{i}^{\prime}>N$ make the replacement

$$
\psi_{\ell_{1}^{\prime}}^{*} \cdots \psi_{\ell_{n}^{\prime}}^{*} \varnothing \rightarrow(-1)^{n+1} q \psi_{\ell_{1}^{\prime}}^{*} \cdots \psi_{\ell_{-}^{\prime}-N}^{*} \cdots \psi_{\ell_{n}^{\prime}}^{*} \varnothing
$$

Step 4. Let $\ell^{\prime \prime}$ be the reduced positions in $[1, N]$. Choose permutation $\pi \in S_{n}$ s.t. $\ell_{1}^{\prime \prime}<\cdots<\ell_{n}^{\prime \prime}$ and multiply with $(-1)^{\ell(\pi)}$.

The three tableaux

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & 4 \\
\hline 4 & \\
(4,5,7,8)
\end{array}, \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline 4 & \\
(4,5,7,8)
\end{array}, \begin{array}{|l|l|}
\hline 2 & 2 \\
\hline 3 & 4 \\
\hline 4 & \\
(4,5,8,7) \\
\hline
\end{array} \\
& \begin{array}{|l}
\mid(4,5
\end{array} \\
& \hline
\end{aligned}
$$

yield the same 01-word $w=1001101, \lambda(w)=(3,2,2,0)$ but with changing sign,

$$
\begin{aligned}
& \psi_{\ell_{1}+2}^{*} \bar{\psi}_{\ell_{2}+1}^{*} \psi_{\ell_{3}+1}^{*} \bar{\psi}_{\ell_{4}+1}^{*} \varnothing=\psi_{\ell_{1}+2}^{*} \bar{\psi}_{\ell_{2}+1}^{*} \psi_{\ell_{3}+1}^{*} \bar{\psi}_{\ell_{4}+1}^{*} \varnothing= \\
& \quad-\psi_{\ell_{1}+2}^{*} \bar{\psi}_{\ell_{2}+1}^{*} \psi_{\ell_{3}+2}^{*} \bar{\psi}_{\ell_{4}}^{*} \varnothing=q \psi_{1}^{*} \psi_{4}^{*} \psi_{5}^{*} \psi_{7}^{*} \varnothing .
\end{aligned}
$$

We obtain the product expansion

Corollary (Quantum Racah-Speiser Algorithm, C.K. 2009)

Let $\lambda, \mu, \nu \in \mathfrak{P}_{n, k}$. Given a permutation $\pi \in S_{n}$ set

$$
\begin{aligned}
\alpha_{i}(\pi) & =\left(\ell_{i}(\nu)-\ell_{\pi(i)}(\mu)\right) \bmod N \geq 0 \\
d(\pi) & =\#\left\{i \mid \ell_{i}(\nu)-\ell_{\pi(i)}(\mu)<0\right\} .
\end{aligned}
$$

Then one has the following identity for Gromov-Witten invariants,

$$
C_{\lambda \mu}^{\nu, d}=\sum_{\pi \in S_{n}, d(\pi)=d}(-1)^{\ell(\pi)+(n-1) d} K_{\lambda, \alpha(\pi)},
$$

where $K_{\lambda \mu}$ are the Kostka numbers.
Setting $q=0$ the formula specializes to the known Racah-Speiser algorithm for Littlewood-Richardson coefficients.

Thank you for your attention!

Quantum Cohomology as Integrable System

-Kirillov-Reshetikhin crystals

-Basic notions of crystal theory

Example

KR crystal: $\mathfrak{g}=\widehat{\mathfrak{s l}}_{N}, B_{r}=\{01$-words with r 1-letters $\}$
$e_{i} w= \begin{cases}\left(w_{1}, \ldots, w_{i-1}=1, w_{i}=0, \ldots, w_{N}\right), & w_{i-1}=0, w_{i}=1 \\ \emptyset, & \text { else }\end{cases}$
$f_{i} w= \begin{cases}\left(w_{1}, \ldots, w_{i}=0, w_{i+1}=1, \ldots, w_{N}\right), & w_{i+1}=0, w_{i}=1 \\ \emptyset, & \text { else }\end{cases}$

-Kirillov-Reshetikhin crystals
-Basic notions of crystal theory

Example (cont'd)

Affine nil Temperley-Lieb algebra

Tensor products of crystals

$B \otimes B^{\prime}$ is the set $B \times B^{\prime}$ together with the maps,

$$
\begin{aligned}
e_{i}\left(b \otimes b^{\prime}\right) & = \begin{cases}e_{i}(b) \otimes b^{\prime}, & \varepsilon_{i}(b)>\varphi_{i}\left(b^{\prime}\right) \\
b \otimes e_{i}\left(b^{\prime}\right), & \text { else }\end{cases} \\
f_{i}\left(b \otimes b^{\prime}\right) & = \begin{cases}f_{i}(b) \otimes b^{\prime}, & \varepsilon_{i}(b) \geq \varphi_{i}\left(b^{\prime}\right) \\
b \otimes f_{i}\left(b^{\prime}\right), & \text { else }\end{cases}
\end{aligned}
$$

where one sets $b \otimes \emptyset=\emptyset$ and $\emptyset \otimes b^{\prime}=\emptyset$.

-Kirillov-Reshetikhin crystals
-Basic notions of crystal theory

Things can get more complicated ...

Set $N=5$ and consider the KR crystal $B=B_{2} \otimes B_{1} \otimes B_{1}$:

KR crystals are perfect crystals: they and their tensor products are always connected.

The combinatorial R-matrix

Theorem (Kashiwara et al)
There exists a unique graph isomorphism $R_{r, s}: B_{r} \otimes B_{s} \rightarrow B_{s} \otimes B_{r}$ which preserves the crystal structure.

Example (c.f. Nakayashiki-Yamada)
Let $N=6$ and $r=3, s=2$. Then we find
\(R_{3,2}\left($$
\begin{array}{|}\hline \frac{2}{4} \\
\hline 6 \\
\hline\end{array}
$$ \otimes \begin{array}{|c}\frac{1}{3}

\hline\end{array}\right)=\)| $\frac{2}{6}$ |
| :--- |
| $\frac{3}{4}$ |

$\square_{\text {Lattice paths as crystal vertices }}$

Lattice paths as crystal vertices

$\mathcal{T}_{\nu^{\prime}, \mu^{\prime}}\left(\lambda^{\prime}\right)$ cylindric tableaux of shape $\nu^{\prime} / d / \mu^{\prime}$ and weight λ^{\prime}.
Define $\iota: \mathcal{T}_{\nu^{\prime}, \mu^{\prime}}\left(\lambda^{\prime}\right) \rightarrow B_{\lambda_{1}^{\prime}} \otimes B_{\lambda_{2}^{\prime}} \cdots \otimes B_{\lambda_{k}^{\prime}}$ as follows:

3	1	1	6	3
5	4	2	7	8
8	6	5		
9	9			

$\lambda=5,5,3,2$
-Main theorem
For simplicity assume $d>d_{\text {min }}:=\max _{\ell}\left\{\sum_{i=1}^{\ell}\left(w_{i}(\nu)-w_{i}(\mu)\right)\right\}$.

Theorem (Osculating walkers as crystal vertices)

Let $b \in B_{\lambda}:=B_{\lambda_{1}^{\prime}} \otimes \cdots \otimes B_{\lambda_{k}^{\prime}}$. The following are equivalent.
(i) $b \in \iota\left(\mathcal{T}_{\nu^{\prime}, \mu^{\prime}}\left(\lambda^{\prime}\right)\right)$
(ii) $\varphi(b)=\sum_{i \in I}\left(1-w_{i+1}(\mu)\right) \omega_{i}, \quad \varepsilon(b)=\sum_{i \in I}\left(1-w_{i+1}(\nu)\right) \omega_{i}$.
(iii) $R_{\lambda}\left(b_{\mu} \otimes \operatorname{Rot}^{-1} b\right)=b \otimes b_{\nu}$, where Rot is the $\widehat{\mathfrak{s l}}_{N}$ Dynkin diagram automorphism.

Here $R_{\lambda}:=R_{n, \lambda_{r}^{\prime}} \cdots R_{n, \lambda_{2}^{\prime}} R_{n, \lambda_{1}^{\prime}}$ is the unique crystal graph isomorphism $R_{\lambda}: B_{n} \otimes B_{\lambda} \rightarrow B_{\lambda} \otimes B_{n}$.
-Kirillov-Reshetikhin crystals
-Proof: (i) \Rightarrow (ii)

$$
\begin{aligned}
& b_{1} \otimes b_{2} \otimes \cdots \quad \otimes b_{r} \otimes b_{r+1}
\end{aligned}
$$

Claim

It follows from (ii) that
$\varepsilon\left(b_{\mu} \otimes \operatorname{Rot}^{-1} b\right)=\varepsilon\left(b \otimes b_{\nu}\right)$ and $\varphi\left(b_{\mu} \otimes \operatorname{Rot}^{-1} b\right)=\varphi\left(b \otimes b_{\nu}\right)$.

Claim + uniqueness of combinatorial $\mathrm{R} \Rightarrow$ (iii)

KKirillov-Reshetikhin crystals
-Proof: (iii) \Rightarrow (i)
Osculating walks via the combinatorial R-matrix

The case of minimal degree

$d=d_{\text {min }}:=\max _{\ell}\left\{\sum_{i=1}^{\ell}\left(w_{i}(\nu)-w_{i}(\mu)\right)\right\}$.
Proposition (Fulton-Woodward, Yong, Postnikov)
There exists $1 \leq a \leq N$ such that

$$
K_{\nu / d / \mu, \lambda}=K_{\operatorname{Rot}^{a}(\nu) / \operatorname{Rot}^{a}(\mu), \lambda} \quad \text { and } \quad C_{\lambda, \mu}^{\nu, d}=C_{\lambda \operatorname{Rot}^{a}(\mu), 0}^{\operatorname{Rot}^{a}(\nu)}
$$

Robinson-Schensted-Knuth correspondence:

$$
B_{\lambda} \cong \bigoplus_{\alpha \leq \lambda} B(\alpha) \times \operatorname{SST}\left(\alpha^{\prime}, \lambda^{\prime}\right),
$$

where $B(\alpha)$ is the irred $\mathfrak{s l}_{N}$-crystal of highest weight α.

Previous example with $N=5$ and $B_{2,1,1}=B_{2} \otimes B_{1} \otimes B_{1}$:

$0-0-0-0-0$
http://demonstrations.wolfram.com/KirillovReshetikhinCrystals/

Vicious walks

$\tau: B_{n} \rightarrow B_{N-n}, b_{\lambda} \mapsto b_{\lambda^{\prime}}$ swaps zero and one-letters in 01-word b and then reverses its order.

Define $R_{r, s}^{\prime}:=(1 \otimes \tau) R_{N-r, s}(\tau \otimes 1)$ and $R_{\lambda}^{\prime}:=R_{n, \lambda_{r}}^{\prime} \cdots R_{n, \lambda_{1}}^{\prime}$.
Corollary
Let $b \in B_{\lambda^{\prime}}$. The following statements are equivalent.
(i) $b \in \iota\left(\mathcal{T}_{\nu, \mu}(\lambda)\right)$
(ii) $\varphi(b)=\sum_{i \in I} w_{i+1}\left(\mu^{\vee}\right) \omega_{i}, \varepsilon(b)=\sum_{i \in I} w_{i+1}\left(\nu^{\vee}\right) \omega_{i}$
(iii) $R_{\lambda}^{\prime}\left(b_{\mu^{\vee}} \otimes \operatorname{Rot}^{-1} b\right)=b \otimes b_{\nu^{\vee}}$
-Kirillov-Reshetikhin crystals

- Vicious walks and the combinatorial R-matrix

Constructing vicious from osculating walks

(B)

-Kirillov-Reshetikhin crystals

-Symmetries of quantum Kostka numbers

Corollary

We have the following symmetries of quantum Kostka numbers,

$$
K_{\nu / d / \mu, \lambda}=K_{\nu / d / \mu, s_{i} \lambda}=K_{\operatorname{Rot}(\nu) / d^{R} / \operatorname{Rot}(\mu), \lambda}=K_{\mu^{\vee} / d / \nu^{\vee}, \lambda},
$$

where $s_{i} \lambda=\left(\ldots, \lambda_{i+1}, \lambda_{i}, \ldots\right)$ and $d^{R}=d+w_{1}(\mu)-w_{1}(\nu)$.

Proof

- Yang-Baxter equation: $R_{23} \circ R_{12} \circ R_{23}=R_{12} \circ R_{23} \circ R_{12}$
- Rotation (Dynkin diagram automorphism) $\operatorname{Rot}\left(b_{1} \otimes b_{2}\right):=\operatorname{Rot}\left(b_{1}\right) \otimes \operatorname{Rot}\left(b_{2}\right), \operatorname{Rot} \circ R=R \circ \operatorname{Rot}$.
- reversing 01-words (Lusztig involution) $\vee: B_{r} \otimes B_{s} \rightarrow B_{s} \otimes B_{r}$ with $b_{1} \otimes b_{2} \mapsto b_{2}^{\vee} \otimes b_{1}^{\vee}$, $\vee \circ f_{i}=e_{N-i} \circ \vee, \quad \vee \circ e_{i}=f_{N-i} \circ \vee, \quad \vee \circ R_{r, s}=R_{s, r} \circ \vee$.

Conclusions

Additional results

- Eigenvectors of the transfer matrices $=$ idempotents.
- Yang-Baxter algebras, affine nil Temperley-Lieb algebra and Schur polynomials.
- Algorithms to generate vicious/osculating walks.
- The $\widehat{\mathfrak{s l}}_{N}$-Verlinde algebra and cylindric Macdonald functions.

Outlook

- Combinatorial definition of GW invariants and positivity.
- Other Lie algebras.
- Quantum Horn conjecture.
- Categorification of integrable systems.

