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Abstract. These notes are based on a mini-course given at CIRM in
February 2018 as part of the workshop Winter Braids VIII.

1. Introduction

Congruence subgroups of matrix groups are usually defined as the kernel
of the mod m reduction of a linear group. More precisely, starting with
a subgroup G < GL(n,Z), we define the level-m subgroup G[m] as the
kernel of the composition map G ↪→ GL(n,Z) → GL(n,Z/m). Congruence
subgroups play an important role in the theory of arithmetic groups and
hence in any closely related groups; as a starting point, see Raghunathan’s
survey of results on the congruence problem for algebraic groups [49] which
includes an overview of contributions from Bass, Margulis, Prasad, Serre,
and many others, or see Farb-Margalit [18, Section 6.4] for an introduction
specific to the context of mapping class groups.

Similarly, we can define congruence subgroups of any group via a choice of
representation into GL(n,Z). In the case of the braid group, and mapping
class groups more generally, we will define a symplectic representation of Bn

and use it to define braid congruence groups Bn[m].
Our viewpoint throughout will be heavily influenced by that of mapping

class groups, and indeed, we will define the braid group Bn as the mapping
class group of a disk with n marked points. As such, we will use simple
closed curves in surfaces as a key mechanism for studying braid groups.

There are many excellent references on braid groups and mapping class
groups. These lecture notes will largely follow the notation and terminology
of Farb-Margalit’s “Primer” [18]. Other references that will be particularly
useful as supplements to these lecture notes include Birman’s classic text [9]
and the recent survey on Birman-Hilden theory by Margalit-Winarski [37].

Overview. In Section 2 below, we cover some basic material on mapping
class groups of surfaces, before using these as a vehicle for defining symplectic
representations of braid groups, and of mapping class groups more generally,
in Section 3, where we also introduce the kernels of these maps, including
congruence subgroups. These lecture notes will largely focus on three par-
ticular braid congruence groups, corresponding to the choices m = 0, 2, and
4; these will be covered in Sections 5, 4, and 6, respectively; the order here
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reflects the fact that it turns out the level-2 braid congruence group plays
a key role in all three cases and hence we treat it first. In Section 7 we
give sample applications of our characterizations of these groups, and we
also describe connections between the various congruence groups that make
an appearance, of the symplectic group as well as the braid group. Finally
in Section 8 we discuss some related work and further directions for future
exploration.
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2. Mapping class groups

Let Srg denote a compact orientable surface of genus g with r boundary
components. If r = 0, we will simply write Sg. Let Dn denote a disk with
n points removed. Since our surfaces are orientable, we will always consider
them as coming equipped with a particular orientation. For S = Srg or
S = Dn, we define the mapping class group of S, denoted Mod(S), as follows.

Mod(S) := Homeo+(S, ∂S)/isotopy rel ∂S.

In other words, a homeomorphism representing an element of Mod(S) must
be orientation-preserving and must fix the boundary pointwise, as must all
isotopies. If the surface has n points removed, these n punctures may be
permuted by a mapping class, though the punctures cannot move during
isotopies. For our purposes, such as in the case S = Dn, it is often useful to
think of the n removed points as a collection of n marked points in the disk.
The mapping class group is also known as the Teichmüller modular group,
hence the notation Mod(S).

The extended mapping class group Mod±(S) is defined similarly to Mod(S),
except that we allow orientation-reversing maps; in other words we take the
quotient of the group Homeo±(S, ∂S) under isotopy rel ∂S. When ∂S = 0,
the group Mod(S) is a subgroup of Mod±(S), and when ∂S 6= 0, we have
Mod(S) = Mod±(S).
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Basic cases: sphere and torus. The mapping class group of a sphere
Mod(S0) is trivial; this follows from the Jordan Curve Theorem. The case
of the torus is more interesting: Mod(S1) ∼= SL(2,Z). To see this, consider
the torus as the unit square with sides identified in the usual way. Note that
a map of the plane that preserves the integer lattice is determined by where
it sends the basis vectors (1, 0) and (0, 1). In the torus we can picture these
vectors as corresponding to standard meridian and longitude curves.

Any simple closed curve on a torus can be uniquely described up to isotopy
by a pair of relatively prime integers r and s; we can think of the curve (in
homology, say) as r copies of the meridian plus s copies of the longitude.
The fact that the meridian and longitude intersect exactly once means that
once we know that the image of the meridian, say, is given by relatively
prime integers r, s, then the corresponding pair r′, s′ for the longitude is
uniquely determined by the equation rs′− sr′ = 1. This enables us to write

down a matrix in SL(2,Z) of the form

(
r s
r′ s′

)
recording the action of the

mapping class on our chosen meridian and longitude. In fact, any map of
the torus can be understood in this way; for details see [18, Chapter 2].

In general, however, mapping class groups are not isomorphic to familiar
groups. And although the example of the torus correctly suggests that we
stand to gain a great deal of insight by comparing mapping class groups to
linear groups, it is a long-standing open question as to whether mapping
class groups are themselves linear in general. (Bigelow-Budney have shown
that Mod(S2) embeds as a subgroup of GL(64,C) [7], but for g ≥ 3 the
question remains open.)

Other viewpoints. Before continuing, we note here some useful further
viewpoints on Mod(S) and/or Mod±(S).

• Group theoretic. The Dehn-Nielsen-Baer Theorem gives us a
purely (combinatorial) group theoretic description of Mod±(S). It
states that the action of the extended mapping class group Mod±(Sg)
on the surface group π1(Sg, ?) with respect to a basepoint ? induces
the following isomorphism:

Mod±(Sg) ∼= Out(π1(Sg, ?))

See, for example, [18, Section 8.1] for a proof and discussion of the
contributions of the theorem’s three namesakes.
• Riemann surfaces. For g ≥ 2, the mapping class group Mod(Sg)

arises as the orbifold fundamental group of the moduli space of Rie-
mann surfacesM(Sg), the parameter space of hyperbolic metrics on
Sg; see, for example, [18, Chapter 12]. Moreover Mod±(Sg) is iso-
morphic to the group of isometries of the Teichmüller space Teich(Sg)
when g ≥ 3, the universal cover of M(Sg), which is the space of
marked surfaces of genus g. A description of this isomorphism and
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Figure 2.1. Two embeddings of a surface of genus four.
Left: The hyperelliptic involution ι; any surface admits such
an involution. Right: A “one-click” counter-clockwise rota-
tion by π

2 with respect to an axis normal to the plane of the

page; a genus g surface admits an analogous rotation by 2π
g .

its injectivity is given in [18, Section 12.1], and its surjectivity is a
theorem of Royden [51].
• Classifying spaces. When g ≥ 2, the space BHomeo+(Sg) is a
K(Mod(Sg), 1)-space [18, Proposition 5.12]. See also further discus-
sion relating this viewpoint and the previous in [18, Section 12.6].
• Combinatorial models. There are many abstract simplicial com-

plexes associated to surfaces that serve as combinatorial models for
mapping class groups. The most famous example is the so-called
complex of curves C(S), and it is a theorem of Ivanov ([28]; see also
[34] and [36]) that the simplicial automorphism group of C(Sg) is
isomorphic to the extended mapping class group Mod±(Sg).

Basic examples. Many examples of mapping classes arise from “nice” em-
beddings of the surface in 3-space. For example, Figure 2.1 shows two
rotations of a surface of genus g arising from two different embeddings of
the surface.

Dehn twists. We next define an important type of element in Mod(S)
that is more local in nature and intrinsic to the surface rather than any
ambient space. Let c denote a simple closed curve in the surface S. Choose
a regular (annular) neighborhood of c, and parametrize this annulus A as
follows: A := {reiθ | 1 ≤ r ≤ 2}, where c corresponds to the subset of A

where r = 3
2 . We define a homeomorphism of A by reiθ 7→ rei(θ+2πr); see

Figure 2.2. This map has the following nice properties.

(1) Each component of ∂A is fixed pointwise.
(2) The core c is fixed setwise.
(3) The two points on c corresponding to θ = 0 and θ = π are inter-

changed by this map.

Using Property (1) above, we can define a homeomorphism on all of S, sim-
ply by extending by the identity. The corresponding mapping class is called
the (left) Dehn twist about c and is denoted Tc. The mapping class Tc is
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Figure 2.2. The Dehn twist Tc on an annulus with core curve c.

Figure 2.3. The Humphries generating set for Mod(Sg)
consists of 2g+ 1 Dehn twists about the simple closed curves
pictured above.

independent of the choice of annular neighborhood A and the parametriza-
tion of A. Moreover Tc is well defined on the isotopy class of the curve c; for
this reason we will often not distinguish between a simple closed curve and
its isotopy class. (We leave it to the reader as a somewhat tedious exercise
to prove well-definedness carefully.) See Farb-Margalit [18, Chapter 3] or
Rolfsen[50, Chapter 2(C)] for further details. It is also important to note
that the definition of a Dehn twist does not rely on any orientation of c; our
notations of a ‘left’ twist versus a ‘right’ twist arise from an orientation of
the surface instead.

Dehn first proved that finitely many Dehn twists generate Mod(Srg) [16].
Humphries later showed that the twists about the 2g+1 simple closed curves
shown in Figure 2.3 generate Mod(Sg) when g ≥ 2 (when g = 1, two of the
three indicated curves are isotopic and hence only two twists are required
to generate the mapping class group of a torus) and moreover that Mod(Sg)
cannot be generated with fewer Dehn twists [25]. Indeed, the Humphries
generators also generate Mod(S1

g ) if we view S1
g has being obtained from

Sg as follows: the complement of the curves shown in Figure 2.3 has two
components, and we remove the interior of a disk from the component on
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the right. In general, a total of 2g + r Dehn twists are required n order to
generate Mod(Srg) when r ≥ 1 [35, Theorem 3.1].

Half-twists. In the case where we have marked points on the surface S we
also define a half-twist. In this case, it is easiest to view the punctures of
S as marked points. To begin, consider the disk D = {reiθ | r ≤ 2} in C,
with two marked points p = 3

2 and q = −3
2 on the real axis. We define the

half-twist map exchanging p and q as follows.

reiθ 7→

{
reiθ if 0 ≤ r ≤ 1

rei(θ+2πr) if 1 ≤ r ≤ 2.

In other words, we extend the Dehn twist about the curve c = {3
2e
iθ} (de-

fined on our standard annulus A := {reiθ | 1 ≤ r ≤ 2}) by the identity
across the unit disk. If we did not have the two marked points, this map
would be isotopic to the identity. The map itself exchanges the two marked
points p and q, with p moving ‘in front of’ q. The key point is that isotopies
are not allowed to move marked points, and so this map is nontrivial in the
mapping class group of the disk with two marked points (or punctures). The
net effect is to interchange the points p and q, while fixing the boundary
of D pointwise. One can imagine putting two fingers on the points p and
q and then interchanging the two points by rotating one’s hand clockwise
while holding the boundary of D2 fixed. See Figure 2.4.

More generally, we can choose any properly embedded arc α joining two
marked points in Dn, and define the half-twist hα as an element of Mod(Dn)
by mapping a regular neighborhood of α to our disk D, taking the pair
of marked points to p and q and taking α to the segment of the real axis
joining p and q, performing the half-twist map exchanging p and q, and
then mapping back to Dn (and extending by the identity outside the chosen
disk).

Braid groups as mapping class groups. We define the n-strand braid
group, denoted Bn, as the mapping class group of the n-punctured disk Dn.
We can recover the traditional viewpoint of the braid group Bn in terms
of geometric braids by keeping track of the marked points “during” a half-
twist; see Figure 2.5. If we perform the half-twist shown in Figure 2.5 in
a disk containing the ith and (i + 1)st marked points, and extend by the
identity to the rest of the disk Dn, then we will denote this map by σi.

The following well-known presentation for Bn first appeared in an early
paper of Artin [5] :

〈σ1, . . . , σn−1 | σiσj = σjσi if |i− j| ≥ 2;

σiσjσi = σjσiσj if |i− j| = 1〉

3. Symplectic representations and their kernels

The mapping class group of any surface S = Srg acts naturally on the first
homology group H1(S;Z), preserving the algebraic (i.e. signed) intersection
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Figure 2.4. A half-twist exchanging two marked points:
the intermediate step shows the effect of the map as defined
by the formula above, while the final step shows the result
after isotopy in which only the boundary and the two points
marked by stars must remain fixed.

Figure 2.5. A half-twist exchanging two marked points: on
the disk Dn (here n = 2), and in the cylinder Dn × [0, 1].
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pairing î(·, ·) on oriented simple closed curves on S. It is easy to check that
this intersection pairing gives rise to an alternating bilinear form 〈·, ·〉 on
H1(S,R). When r ∈ {0, 1}, the form 〈·, ·〉 is also nondegenerate and hence
symplectic. This in turn gives rise to a symplectic representation:

ρ : Mod(S)→ Sp(2g,Z).

Exercise 1. Explain why the intersection pairing fails to give rise to a
symplectic form when r ≥ 2.

Sample calculations. In the cases r ∈ {0, 1}, the surface S also admits
a symplectic basis for H1(S;Z), that is, a free basis {a1, b1, . . . , ag, bg} for
H1(S;Z) (viewed as a Z-module) with the property that 〈ai, bi〉 = 1 and
〈ai, aj〉 = 〈ai, bj〉 = 0 whenever i 6= j. Figure 3.1 shows simple closed curves
representing a standard symplectic basis in the case S = S1

g ; we can also
think of the “same” curves as representing a symplectic basis in the case
S = Sg by capping off the boundary component with a disk to obtain a
closed surface.

Figure 3.1. A standard symplectic basis for H1(S1
g ;Z).

As a first example, consider the torus T = S1, with the simple closed
curves a and b as shown in Figure 3.2. Then taking the curves a and b as

Figure 3.2. A torus with two simple closed curves.

representatives of a symplectic basis for H1(S;Z), with appropriately chosen
orientations, we have the following

ρ(Tα) =

(
1 1
0 1

)
; ρ(Tβ) =

(
1 0
−1 1

)
.

For a second example, recall that ι ∈ Mod(Sg) denotes the order-two
rotation depicted in Figure 2.1 above. In this case we have that ρ(ι) =
− Id2g, where Id2g denotes the 2g × 2g identity matrix. In other words, ι is
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a hyperelliptic involution, by which we mean an involution that acts by − Id
on H1(Sg;Z). This example will play a crucial role in what follows.

Torelli groups. Given any symplectic basis for H1(S;Z), one can find a
representative set of simple closed curves realizing this basis; we will call
this “homology realization”, and refer the reader to Farb-Margalit’s de-
velopment of the Meeks-Petrusky realization method as one example [18,
Chapter 6.2]. Using this fact, one can show that the symplectic representa-
tion ρ : Mod(S) → Sp(2g,Z) defined above is surjective in the case where
S = Srg and r ∈ {0, 1}; see, for example, [44, Chapter 2]. In these cases,
we define the Torelli group I(S) of the surface S to be the kernel of the
symplectic representation ρ; in general ρ is not faithful. The notation I
stands for “Identity” and is commonly used for the Torelli group.

Putting this all together, we have the following short exact sequence:

1 I(S) Mod(S) Sp(2g,Z) 1.
ρ

(1)

It is important to emphasize that the above definition of the Torelli group
is only valid in the cases r ∈ {0, 1}. When r ≥ 2, the “right” definition
of the Torelli group is less clear, due to the degeneracy of the intersection
form; again see [44] or [46]. Having said that, we note for the sake of
completeness that the process of capping off boundary components gives
rise to a surjection from Mod(Srg) onto Mod(Sg), and hence there is always
a surjection from Mod(Srg) onto Sp(2g,Z) for all r ≥ 0.

We note that when g = 1, the Torelli group is trivial. Considering the
short exact sequence (1) above, this is just saying that the mapping class
group of a torus is just Sp(2,Z) ∼= SL(2,Z), as described in the previous
section.

Basic elements in Torelli groups. In the remainder of this section we
will continue to assume that r ∈ {0, 1}, and we will also continue to use the
same notation for a curve and its isotopy class in the surface S.

We noted above that Mod(Srg) is generated by Dehn twists. Let a and b be
oriented simple closed curves in Srg . The following formula [18, Proposition
6.3] tells us the effect of any power k of the Dehn twist Ta on the homology
class [b].

ρ(T ka )([b]) = [b] + k · î(a, b)[a](2)

The formula makes precise our intuition that, when performing a Dehn
twist about a simple closed curve a, the effect on another simple closed curve
b is that b “picks up a copy of a” each time b intersects a. Using this formula,
we can immediately find some families of elements in I(S).

Separating twists. It is clear from Formula 2 above that if a is a null-
homologous curve, then Ta ∈ I(S). Some examples of separating curves
appear in Figure 3.3.
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Figure 3.3. Left: Three examples of separating curves;
Right: Two examples of bounding pairs: a ∪ b and a′ ∪ b′.

Bounding pairs (BPs). If we perform a Dehn twist about a nonseparating
simple closed curve a, then we can see that Ta is not in the Torelli group
by applying Formula 2 to any curve c with î(a, c) = 1. (Exercise: why does
such a curve c always exist?) However, we can cancel out the action of Ta
by finding a simple closed curve b that is disjoint from a and such that the
union a ∪ b separates the surface, and then composing the first twist with
the inverse of the second. In other words, TaT

−1
b ∈ I(S).

To see this, first note that since a and b cobound a subsurface R of Srg , we
have (with appropriately chosen orientations) [a] = [b] in H1(S;Z). Further,
for every time a curve c crosses a “from the right”, say, then c must also
either cross a a second time from the left, or else crosses b from the left, so
that the net effect on homology is trivial. (Exercise: check this carefully.)
We call the curves a, b a bounding pair and the composition TaT

−1
b a bounding

pair map, or BP-map for short. See Figure 3.3.

Fake BPs. In the previous example, we gave a topological explanation for
the fact that BPs are elements of I(S), which used the fact that the two
curves involved in the BP-map TaT

−1
b were disjoint. However, we do not

need this assumption to prove the same result. We only need the assumption
that [a] = [b], again, with appropriate choice of orientations for the curves
a and b. In this case, Formula 2 tells us immediately that ρ(Ta) = ρ(Tb),
and hence ρ(TaT

−1
b ) = Id2g; it is important to recall here that the algebraic

intersection number î is well defined on homology classes, not just on isotopy
classes of curves, as we noted at the start of Section 3.

Therefore, in order to generalise the notion of a BP map, we can simply
choose any two simple closed curves a and b such that [a] = [b] and with

î(a, b) = 0, and Formula 2 again shows immediately that TaT
−1
b ∈ I(S). If

in addition the geometric intersection i(a, b) is nonzero, we say that TaT
−1
b

is a fake BP map. We will next describe a particularly important type of
fake BP maps.

Simply intersecting pairs (SIPs). Consider two curves a, c where î(a, c) =
0 and i(a, c) = 2; in this case we say that a and c form a simply intersect-
ing pair; see Figure 3.4. Using Formula 2 again, we see that the condition
that î(a, c) = 0 implies that Tc(a) is homologous to a. Thus TaT

−1
Tc(a) is
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a fake BP map. Now, one can check easily that for any mapping class
f ∈ Mod(S) and any Dehn twist Tc, we have that fTaf

−1 = Tf(a). Hence

TaT
−1
Tc(a) = TaTcT

−1
a T−1

c . In other words, the commutator [Ta, Tc] of the

twists corresponding to a simply intersecting pair lies in the Torelli group.
We refer to such an element as an SIP map.

Figure 3.4. The two curves shown here form a simply in-
tersecting pair (SIP), from which we can derive a special case
of a fake BP.

In much of the early literature on mapping class groups, separating twists
and BP maps played a leading role. For example, combined work of Birman
[8] and her student Powell [43] first showed that I(S) was generated by
separating twists and BP maps. A few years later, Johnson showed that
finitely many BP maps suffice to generate I(S) [30] when g ≥ 3. Mess
then showed that I(S2) is a free group on an infinite collection of separating
twists [40].

As far as we are aware, the type of example now known as a fake BP first
appeared in Turaev’s Bourbaki survey on linear representations of braid
groups as a tool for exploring faithfulness [56]; this serves as our first clue
that Torelli groups are a useful tool to inform our study of braid groups.
Fake BPs finally gained a more prominent role in the study of Torelli groups
through work of Putman [47], who used them to give an infinite presentation
of I(S).

Generalizations: congruence groups. Using the symplectic representa-
tion, there is an easy way to find finite index subgroups of Mod(S), simply
by passing from Z to Z/m for some integer m. We define a map ρm to be the
composition of the symplectic representation with the map on correspond-
ing symplectic groups induced by mod m reduction. See Newman’s book
“Integral Matrices” for a good general discussion of symplectic groups over
the ring Z/m [42, Chapter VII, Section 33].

Mod(S) Sp(2g,Z) Sp(2g,Z/m).
ρ

ρm

mod
m(3)

The kernel of the map Sp(2g,Z) → Sp(2g,Z/m) is known as the level
m principal congruence subgroup of Sp(2g,Z) and is denoted Sp(2g,Z)[m]
or sometimes just Sp[m]. The kernel of the map ρm is known as the level
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m congruence subgroup of Mod(S) and is denoted Mod(S)[m] or simply
Mod[m]. We can view congruence subgroups of mapping class groups as
generalizations of the Torelli group; indeed, we can consider the Torelli group
itself as the level 0 congruence subgroup Mod(Sg)[0].

Congruence subgroups play an important role in the theory of mapping
class groups in a variety of settings. For example, when m ≥ 3, the congru-
ence subgroup Mod(Sg)[m] is torsion-free and (by definition) finite-index,
which enables us to come to grips with geometric group theory invariants
such as virtual cohomological dimension and duality [24]. As another exam-
ple, in the algebro-geometric setting, the regular cover ofM(Sg) correspond-
ing to Mod(Sg)[m] is the moduli space of surfaces of genus g equipped with
a full level m structure, that is, a basis for the m-torsion in their Jacobian;
see Fullarton-Putman for an overview of this viewpoint [19]. See Putman’s
lecture notes [45] for further exposition of this topic.

We record some further notes here about congruence subgroups. For
further information, Raghunathan’s survey includes a comprehensive list of
various further references [49].

• The symplectic group has the congruence property.
• For m ≥ 3, the congruence group Mod(Sg)[m] is pure in the sense

of Ivanov [27]. Roughly speaking, this means that all elements have
a (nearly) canonical factorisation.
• The existence of congruence subgroups is closely related to the prop-

erty of residual finiteness. For example, see Ivanov’s proof [26, Sec-
tion 11.1] of Grossman’s theorem [22] that mapping class groups are
residually finite
• There is a more general notion of congruence subgroups of braid

groups. Let H be a characteristic, finite index subgroup of the fun-
damental group π1(S); in our case we consider S = Dn. We then
get a map from Mod(S) to Out(π1(S)/H) (recall the Dehn-Nielsen-
Baer Theorem from Section 2 above). The kernel of this map is
called a principal congruence subgroup in this setting. For all n, the
pure braid group of the sphere with n marked points is congruence,
that is, every finite index subgroup contains a principal congruence
subgroup, a fact first proven by Diaz-Donagi-Harbeter in 1989 [17].
More recently McReynolds recorded an elementary proof of this fact
due to Thurston; the introduction of McReynolds’ paper also con-
tains many further references to related work and different proofs
[38]. In fact, this is essentially the same framework used by Ivanov to
establish residual finiteness, and in addition to Ivanov’s paper cited
above we refer the reader to Farb-Margalit’s treatment of Ivanov’s
approach for more details [18, Section 6.4.3].

Hyperelliptic mapping class groups. Recall the involution ι of Sg given
by rotation by π indicated in Figure 2.1 above; this is a hyperelliptic invo-
lution since it acts as − Id on H1(Sg,Z). We can consider the surface S1

g
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as a subsurface of Sg ( we can “cap off” the boundary component of S1
g to

recover Sg), and consider the restriction of ι to S1
g . In both cases, we define

the hyperelliptic mapping class group, denoted SMod(S), as follows:

SMod(S) := {f ∈ Mod(S) | fι = ιf}
We are somewhat abusing notation in the above definition in the case where
S = S1

g . This is because ι does not induce a mapping class in Mod(S1
g )

since it does not fix ∂S1
g pointwise. The notation SMod(S) comes from

Birman-Hilden [10], who used the term symmetric mapping class group for
this subgroup of Mod(S). Indeed, we say that a simple closed curve is
symmetric if it is preserved setwise by ι, and we say that an isotopy class a
of simple closed curves is symmetric if it has a symmetric representative.

For the moment, we will focus on the case of the surface S1
g . The hyperel-

liptic involution ι induces a branched double cover of the disk Dn, with the
n marked points of Dn corresponding to the n = 2g+1 branch points. Con-
sider Figure 3.5, which shows a collection of curves and a properly embedded

Figure 3.5. The Birman-Hilden dictionary: a collection of
simple closed curves and an arc in the disk D7 together with
their pre-images under the hyperelliptic involution.

arc in Dn, along with their pre-images in the cover S1
g .

Birman-Hilden proved that this branched double cover induces an isomor-
phism between Mod(Dn) and SMod(S1

g ), giving us a new characterization
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of the braid group [10, Theorem 1]. If one wants to work with braid groups
from this viewpoint, it is worthwhile to work out the details of the “dictio-
nary” between the two groups given in Exercise 2. To that end, it is helpful
to distinguish between topological types of simple closed curves in Dn. We
say a curve is even if it bounds a disk containing an even number of marked
points; we similarly say it is odd if it bounds a disk containing an odd num-
ber of marked points. When we need to be more specific, we will refer to a
k-curve, meaning a curve that bounds a disk in Dn containing precisely k
marked points.

Exercise 2. Work out the dictionary between the groups Mod(Dn) and
SMod(S1

g ) by demonstrating the following correspondences induced by the
hyperelliptic involution indicated in Figure 3.5. The notation here follows
the same figure.

(1) A half-twist in Dn corresponds to a Dehn twist about a nonseparat-
ing symmetric curve in S1

g :

hā ↔ Ta

(2) A Dehn twist about an even curve b̄ in Dn corresponds to a product
of the Dehn twists about the two curves b, b′ in its pre-image upstairs
in S1

g :

Tb̄ ↔ TbTb′ .

It is worth distinguishing a special case here: if c̄ is a 2-curve in
Dn, then the two components in its pre-image will be isotopic to a
symmetric curve c in S1

g , and we have:

Tc̄ ↔ T 2
c .

(3) The square of a Dehn twist about a 2k+1-curve d̄ in Dn corresponds
to a Dehn twist about its pre-image d, where d is a separating curve
that bounds a genus k subsurface of S1

g :

T 2
d̄ ↔ Td

Symplectic representations of braid groups. Again, we focus primarily
on the case where n = 2g + 1. The Birman-Hilden isomorphism enables us
to define symplectic representations of the braid group as follows. In the
case n = 2g + 1, we can define a map β : Bn → Sp(2g,Z) by composing
the Birman-Hilden isomorphism with inclusion of the hyperelliptic mapping
class group into the full mapping class group, and then finally applying the
classical symplectic representation ρ as defined above. For any integer m,
we can then pass to Sp(2g,Z/m) to obtain a family of representations of
the braid group that we will denote βm, by analogy with the representa-
tions ρm defined above. The following commutative diagram summarizes
the preceding discussion in the case where n = 2g + 1.
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Bn = Mod(Dn) Sp(2g,Z) Sp(2g,Z/m)

SMod(S1
g ) Mod(S1

g )

β

Birman-Hilden ∼=

βm

mod
m

ρ

The case where n is even. If we wish to work with the braid group Bn

for n = 2g+2, we will need to modify the Birman-Hilden construction given
above. In this case, we consider the restriction of the hyperelliptic involution
ι to a surface S2

g as shown in Figure 3.6. This gives rise to a branched double

cover of the disk Dn for n = 2g+2. We can then define SMod(S2
g ) using this

involution, and the Birman-Hilden isomorphism and dictionary go through
similarly in this case.

Figure 3.6. The quotient of a surface of genus g with
two boundary components under the hyperelliptic involution
(given by rotation about the indicated axis) is a disk with
n = 2g + 2 marked points corresponding to the n branch
points.

Defining the symplectic representation of Bn is only slightly more com-
plicated when n = 2g + 2. We give a brief summary here and refer the
reader to [14] for details. As explained above, the Birman-Hilden corre-
spondence again allows us to consider Bn as the subgroup SMod(S2

g ) of

Mod(S2
g ). Now, let p̃ = {p1, p2} in ∂S2

g be the pre-image of a basepoint

p ∈ ∂Dn. There is a map Mod(S2
g ) → Aut(H1(S2

g , p̃;Z)). The relative

homology group H1(S2
g , p̃;Z) admits a symplectic intersection form, with

symplectic basis given by 2g “standard” basis elements analogous to the
basis for H1(S1

g ,Z) shown in Figure 3.1, together with two further basis
elements, one represented by an arc joining p1 to p2 and one by a single
component of the boundary, with suitable orientations.

In other words, the map Mod(S2
g ) → Aut(H1(S2

g , p̃;Z)) is in fact a map

Mod(S2
g )→ Sp(2g+ 2,Z). Moreover, all our maps fix boundaries pointwise,
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so in fact the image of our map lies in the subgroup Sp(2g + 2,Z)∂ consist-
ing of those elements of Sp(2g + 2,Z) that fix the element of H1(S2

g , p̃;Z)

corresponding to a component of ∂S2
g .

We summarize the preceding discussion in the following commutative di-
agram in the case where n = 2g + 2:

Bn = Mod(Dn) Sp(2g + 2,Z)∂ Sp(2g + 2,Z) Sp(2g + 2,Z/m)

SMod(S2
g ) Mod(S2

g )

β

∼=

βm

mod
m

ρ

Although it is useful to know that the constructions described in these notes
go through for all Bn, regardless of parity, the reader may find it useful to
focus initially on the case where n = 2g + 1 in what follows.

Burau representation. We just defined a symplectic representation of the
braid group via a branched double cover of the disk Dn. For those familiar
with the Burau representation, this should sound familiar. We will describe
a different way to obtain the same representation (up to conjugacy) in this
context, largely inspired by Turaev’s excellent survey article [56].

Consider D0
n, the n-punctured disk, with a basepoint p on ∂Dn. The

exponent sum map π1(Dn, p) → Z corresponds to a regular cover D̃0
n with

infinite cyclic deck group; we fix a generating deck transformation t. (Note
that this map can also be viewed recording the total winding number of loops

around the marked points of Dn.) We can picture D̃0
n by taking copies of

D0
n indexed by powers of the generator t as shown in Figure 3.7 for the

case n = 3. We construct D̃0
n, the universal cyclic cover of D0

n by cutting

Figure 3.7. The zeroth, first, and second “decks” in the
universal cyclic cover of D0

3.
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Figure 3.8. Left: The loop xi forms part of a standard
generating set for π1(D0

n, p); Right: the result of applying
the half-twist σi to xi.

along an arc from each puncture to ∂Dn. We then assign each side of the
arc a “+” or “-”, and glue the + side of a cut-arc in copy tk to the − side
of the corresponding arc in copy tk+1. Thus, whenever a path crosses one
of these arcs “downstairs”, in the universal cyclic cover the lifted path will
move from deck tk “up” a level to deck tk+1 or “down” a level to deck tk−1,
depending on the direction of travel.

The first homology group H1(D̃0
n;Z) is a Z[t±1]-module.

Exercise 3. Show that H1(D̃0
n;Z) is free of rank n− 1 as a Z[t±1]-module,

and find generators.

We define the reduced Burau representation as follows:

Bn → Aut(H1(D̃0
n;Z))

f 7→ f̃∗

where f̃∗ denotes the unique lift of f ∈ Bn = Mod(D0
n) to D̃0

n fixing the
fiber over the basepoint p ∈ ∂Dn.

Similarly, we define the unreduced Burau representation as

Bn → Aut(H1(D̃0
n, p̃;Z))

f 7→ f̃∗

where p̃ denotes the pre-image of the basepoint p in D̃0
n.

Figure 3.8 shows a disk with two punctures which we think of as the ith

and (i + 1)st punctures for the general. The left-hand side of the figure
indicates a standard generating set for π1(D0

n, p) consisting of loops xi, for
i ∈ {1, . . . , n}, where each loop travels clockwise around the ith puncture.
The right-hand side of Figure 3.8 shows the effect of the half-twist σi on the
loops xi and xi+1:

xi 7→ xixi+1x
−1
i

xi+1 7→ xi
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Figure 3.9. Left: Two copies of D0
3, where dots correspond

to branch points and ∗ is the basepoint; Right: The two
copies are now glued together to form a torus.

Considering our “sliced disk model” for the infinite cyclic cover, we see that

lifting the loop xixi+1x
−1
i to D̃0

n corresponds to the following element:

(t0 · xi) + (t1 · xi+1)− (t1 · xi) = (1− t)xi + txi+1

On the left-hand side of the equation above, we are emphasizing the fact
that the coefficient of the form tk records the fact that a lift of a given loop
xj is occuring in “level k” of the infinite cyclic cover. If we consider σi as

acting on the right, this calculation gives us the ith row of the unreduced
Burau representation written as an n× n matrix over Z[t±1]. The (i+ 1)th

row is even simpler to work out, and we obtain:

σi 7→ Idi−1⊕
[
1− t t

1 0

]
⊕ Idn−i−1 .

The notation here indicates that the 2 × 2 block occurs along the diagonal
in the i, i + 1 position, and the rest of the matrix is the identity. This is
perhaps a more familiar definition of the unreduced Burau representation of
the braid group Bn.

To recover the double cover viewpoint we had previously utilized, one
can simply take two copies of the “sliced disk”, corresponding to t0 and t1.
We begin by glueing the t0-level to the t1-level as before. Then, instead of
glueing the t1-level to the t2-level as in the construction of the infinite cyclic
cover, we replace t2 with t0. In other words, set t2 = 1. Doing so results in
a torus with one boundary component, as shown below in Figure 3.9.

Exercise 4. Perform this glueing construction carefully. As indicated in
Figure 3.9, one needs to “pinch” the endpoints of the slices in each copy of
the disk to a single point, so that each arc that we are cutting along in each
copy of the disk has a copy of a branch point on one end, and the basepoint
∗ ∈ Dn at the other.

It turns out that our symplectic representation of Bn is (up to conjugacy)
nothing other than the Burau representation with t = −1. It is a theorem
due to Squier that if we consider t as a complex parameter with |t| = 1, then
the Burau representation is unitary [53].
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Exercise 5. Prove the following result from linear algebra: if a matrix
is unitary with respect to a non-degenerate hermitian form h, then the
imaginary part of h is a symplectic form.

Gambaudo-Ghys work out carefully how to recover the topological version
of the Burau representation at t = −1, that is, the symplectic representation
β defined above, from the algebraic description arising from Squier’s work
[21]. We note that they refer to this representation of Bn as the Burau-Squier
representation.

Braid congruence groups. Our goal in what follows is to study the kernels
of these symplectic representations. To that end, we introduce the following
notation:

BI := kerβ

Bn[m] := kerβm

The notation BI indicates “braid Torelli”. By analogy with congruence
subgroups of mapping class groups, we will refer to the group Bn[m] as the
level-m braid congruence group. We will also understand the “level zero”
braid congruence group Bn[0] to be just the braid Torelli group BI.

Problem 3.1. Characterize the level-m braid congruence group Bn[m].

Of course, this problem is somewhat vague as stated. Given that our
viewpoint is based on mapping class groups of surfaces, our specific goal will
be to find topological characterizations of Bn[m] that are somehow intrinsic
to the disk Dn.

4. Level 2: Pure Braids and Dehn Twists

The case m = 2 turns out to be the key to understanding all three level-m
braid congruence groups that are the focus of these lecture notes. Indeed,
it turns out that Bn[2] is a familiar and well-studied group.

Recall that the pure braid group PBn is just the kernel of the map from
the braid group Bn to the symmetric group on n objects that records the
permutation of marked points induced by a braid. It is a well-known result
of Artin [4] that PBn is generated by Dehn twists in Dn. Indeed, he proved
much more, including the fact that PBn is finitely generated by such ele-
ments. These elements are commonly denoted Aij , for 1 ≤ i < j ≤ n. As a

geometric braid this is usually depicted as the jth strand of a braid crossing
in front of the other strands and “hooking around” the ith strand before
returning to its original position, as shown in Figure 4.1.

In the disk model, as an element of Mod(Dn), this is nothing other than a
Dehn twist about the 2-curve cij as shown. Note that Tcij is just the square
of the half-twist corresponding to the arc αij contained in the interior of the

disk bounded by cij , joining the ith marked point to the jth marked point
as shown in Figure 4.1.
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Figure 4.1. Left: The pure braid generator Aij as a geo-
metric braid; Right: The Dehn twist Tcij and the square of
the half-twist hαij both correspond to the braid Aij .

Approximately two decades after Artin’s description of the pure braid
group PBn appeared, Arnol’d gave a different characterization of PBn as
the level-2 braid congruence group. We briefly sketch his argument here; for
full details see his original paper [3], particularly Lemma 1 and subsequent
discussion, or see Brendle-Margalit [14, Section 2].

Let Xn denote the surface S1
g if n = 2g + 1, or the surface S2

g if n =
2g + 2. In either case, as described in our discussion of the Birman-Hilden
correspondence in Section 3, we consider the hyperelliptic involution ι as a
branched double cover of Xn over the disk Dn. For our current purposes it
will be useful to consider the punctured disk D0

n obtained from the marked
disk Dn by removing the n marked points.

We define a map H1(Xn;Z/2) → H1(D0
n;Z/2) as follows. Suppose γ

is a simple closed curve in Xn that represents a cycle H1(Xn;Z/2). We
can modify γ by a homotopy to ensure that it avoids branch points, and
then project to D0

n in order to obtain a representative of an element of
H1(D0

n;Z/2). In our Birman-Hilden dictionary (Figure 3.5), γ might be a
symmetric representative of the isotopy class of c, so we could replace γ by
the curve labeled c (or we could choose instead the curve labeled c′, or many
other possibilities!), which in turn projects to the 2-curve c̄ in D0

n. Arnol’d
proved that this process is independent of the choices involved.

Arnol’d further proved that the image of this map is the subspace of
H1(D0

n;Z/2) consisting of those elements that have an even number of
nonzero coordinates in a standard homology basis; we denote this subspace
by H1(D0

n;Z/2)even. Keeping in mind the Birman-Hilden dictionary of Fig-
ure 3.5, the key observation here is that the boundary of a disk containing
a branch point in Xn maps to an odd curve, specifically a 1-curve in D0

n;
such a curve is nullhomologous working over Z/2.

Now, the isomorphismH1(Xn;Z/2)→ H1(D0
n;Z/2)even is Bn-equivariant.

The braid group Bn acts in the obvious way on H1(D0
n;Z/2)even via Dn, and
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Figure 5.1. Two symmetric separating curves.

the elements of Bn that act trivially on H1(D0
n;Z/2)even are precisely those

that fixed each of the n marked points of Dn, i.e., the pure braid group
PBn. The braid group Bn also acts on H1(Xn;Z/2) via the Birman-Hilden
correspondence, and by definition the elements of Bn acting trivially are
precisely those in the level 2 congruence group Bn[2]. Hence Bn[2] is nothing
other than the pure braid group PBn.

Putting Arnold’s result together with that of Artin, we have the following
characterization of the level 2 braid congruence group.

Theorem 4.1 (Artin, Arnol’d). The braid congruence group Bn[2] is nor-
mally generated by Dehn twists. In fact, Bn[2] is normally generated by
Dehn twists about 2-curves.

For a subset R of a group G, we let NG〈R〉 denote the normal closure of
the set R in G, that is, the smallest normal subgroup of G containing R;
we will drop the subscript G when this is clear from context. Using this
notation, we can rewrite the statement of Theorem 4.1 as follows:

Bn[2] = PBn = NBn〈Tc | c is a simple closed curve in Dn〉.
The results we have gathered in the case of the level-2 braid congruence
group turn out to be important in understanding levels 0 and 4, as we shall
see.

5. Level 0: Braid Torelli

We will next apply the Arnol’d-Artin characterization of the level-2 braid
congruence group Bn[2] to the level-0 braid congruence group, that is, to
the braid Torelli group BI. We will exploit the Birman-Hilden viewpoint in
order to draw on our knowledge of the Torelli group I(S). In other words,
our starting point will be the hyperelliptic Torelli group SI(S), that is, the
intersection of the Torelli group I(S) and the hyperelliptic mapping class
group SMod(S).

We first consider how basic elements of the Torelli group can be realized
symmetrically with respect to our hyperelliptic involution ι.

Symmetric separating twists. If c is a separating curve in the surface S
that is also symmetric with respect to ι, then Tc ∈ SI(S). We refer to such
an element as a symmetric separating twist. Examples of such curves are
shown in Figure 5.1.
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Figure 5.2. Left: a symmetric SIP; Right: a symmetrized SIP

Symmetric SIP. If a and b are two symmetric curves in S that together
form a simply intersecting pair, then the commutator [Ta, Tb] ∈ SI(S). We
refer to such an element as a symmetric SIP map. An example of the curves
involved in a symmetric SIP are shown in Figure 5.2.

Symmetrized SIP. Suppose that a and b form a simply intersecting pair,
and let a′ denote ι(a) and similarly let b′ denote ι(b). If a′ ∪ b′ is disjoint
from a ∪ b, then the product of the two SIP-maps [Ta, Tb][Ta′ , Tb′ ] lies in
SI(S). We call this element a symmetrized SIP map; see Figure 5.2.

Non-example: BP maps. Consider the BP map TaT
−1
a′ indicated in Fig-

ure 3.3. Despite the symmetric nature of the two curves, this map is not an
element of SI(S), since the hyperelliptic involution ι conjugates TaT

−1
a′ to

its inverse.

Hain-Morifuji Conjecture. It was a conjecture of Hain [23, Conjecture
1], also implicit in work of Morifuji [41, Section 4], that the group SI(S)
is generated by symmetric separating twists for all g ≥ 0. This conjecture
was proven by Brendle-Margalit-Putman, and we state here a formulation
of this result in terms of braid groups.

Theorem 5.1. [11, Theorem C ] For n ≥ 1, the group BIn is normally
generated by squares of Dehn twists about odd curves in Dn.

Using the notation introduced in the previous section, we can reformulate
this as follows:

Bn[0] = BIn = NBn〈T 2
c | c is an odd simple closed curve in Dn〉.

In fact, it turns out that for any n, it suffices to include only 3-curves and 5-
curves in the normal generating set for BIn. However, as observed by Fullar-
ton, one cannot pare the list down further due to constraints imposed by
abelianization; see the discussion following Theorem C in Brendle-Margalit-
Putman [11].

Johnson kernel. The symplectic representation ρ of the mapping class
group Mod(Sg) records the action of a mapping class group on homology
H1(Sg,Z), which is just π1(S) modulo its commutator subgroup. The John-
son homomorphism extends this idea, recording the action on π1(Sg) modulo
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the second term in its lower central series (up to conjugation). More pre-
cisely, Johnson homomorphism is a map from the Torelli group I(Sg) onto
(a quotient of) the triple wedge product of H1(Sg,Z); for details two good
references are Johnson’s first paper on this topic [29] or Farb-Margalit’s
overview of Johnson’s work [18, Section 6.6].

Exercise 6. Show that any element of SI(S) must lie in the kernel of the
Johnson homomorphism. HINT: One can establish this without knowing
much about the Johnson homomorphism. The key points are:

(1) the fact that our hyperelliptic involution, by definition, acts by − Id
on homology; and

(2) the parity of the number of factors in our wedge product target.

Johnson proved the deep theorem that the kernel of the Johnson homo-
morphism is precisely the normal subgroup of Mod(Sg) generated by Dehn
twists about separating simple closed curves [31]. Hence we conclude from
Exercise 6 above that any element of SI(S) can be expressed as a product
of separating twists. The Hain-Morifuji conjecture further asserts that this
can be done symmetrically.

From a purely group theoretic perspective, the conjecture may seem
highly implausible: if one knows set of generators R for a group G, one
doesn’t normally find a generating set for a subgroup H of G simply by
selecting those generators from the set R that happen to lie in the subgroup
H. For example, Mod(Sg) is generated by the set of all Dehn twists. But
the set of all Dehn twists that happen to lie in the Torelli group is just the
set of Dehn twists about all separating curves. This subset generates the
Johnson kernel, an infinite index subgroup of the Torelli group.

The starting point for understanding BIn (and hence SI(S)) is Arnol’d’s
result, stated as part of Theorem 4.1 above, that Bn[2] = PBn, together
with a result due to A’Campo [1, Théorème 1] stating that the image of
PBn under the symplectic representation β : Bn → Sp(2g,Z) is precisely
the principal congruence group Sp[2]. (Arnold’s result tells us only that
β(PBn) is contained in Sp[2].) Piecing together these results, we obtain the
following commutative diagram.

BI

PBn Bn Σn

Sp[2] Sp(2g,Z) Sp(2g,Z/2)

β
(4)

From this commutative diagram, we have that PBn /BI ∼= Sp[2].
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Let θ denote the subgroup of the pure braid group PBn normally gener-
ated by squares of Dehn twists about odd curves. Since θ < BI, we obtain
a quotient map π:

PBn /θ PBn /BI Sp[2].π ∼=(5)

If we had a sufficiently nice presentation of Sp[2], that is, a presentation that
was obviously the right kind of quotient of PBn, then we’d be done.

However, we don’t have this a priori, and so instead we use the action of
Sp[2] on the complex of lax isotropic bases, an abstract simplicial complex
where vertices correspond (roughly) to certain partial symplectic basis for
H1(Sg;Z/2). We give a brief sketch here; see [11, Section 3] for details.
First, we invoke a theorem of Putman [48] that enables us to write Sp[2] as
a quotient of free products of vertex stabilizer subgroups in Sp[2]. We can
then restrict the quotient map π defined above to a corresponding subgroups
of PBn modulo θ that stabilize a curve in the disk Dn. Cutting along this
curve allows us to reduce to disks with fewer marked points. The proof
then proceeds by induction and requires a Birman Exact Sequence for the
hyperelliptic Torelli group [13, Theorem 4.2].

6. Level 4

Before we begin our discussion of the level-4 braid congruence groupBn[4],
we briefly recap our key results on braid congruence groups so far. Our first
result on level-2 is due to Arnol’d and Artin:

Bn[2] = PBn = NBn〈Tc | c is any simple closed curve in Dn 〉
where N〈−〉 denotes the normal closure of the group generated by the types
of elements indicated. (Equivalently, we could take c to be any 2-curve in
the above.) The result above was then used by Brendle-Margalit-Putman
to characterize the level-0 / braid Torelli case:

Bn[0] = BIn = NBn〈T 2
c | c is an odd curve in Dn 〉

As noted in Section 5, one does not in fact need all odd-curves; one can
normally generate BIn using just 3-curves and 5-curves.

Exercise 7. Recall the following elementary exercise from group theory:
any group in which every nontrivial element has order 2 is necessarily abelian.

Now, if G is a group, we denote by G2 the subgroup of G generated by the
squares of all the elements. It follows from Exercise 7 that G/G2 is universal
among ‘mod two abelian quotients’ of G, that is, abelian quotients of G in
which every nontrivial element has order two. With this notation in hand,
we can state the following characterization of the level-4 braid congruence
group.

Theorem 6.1 (Brendle-Margalit [14]).

Bn[4] = PB2 = NBn〈T 2
c | c is any simple closed curve in Dn〉
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In other words, the level-4 braid congruence group arises both as the ker-
nel of the universal mod two abelianization of the pure braid group, and as
the subgroup generated by squares of Dehn twists. Note the latter equiva-
lence in the statement is not immediate; a priori the subgroup generated by
squares of Dehn twists could be a proper subgroup of the subgroup of the
pure braid group generated by all squares.

Abelianization of PBn. We begin our sketch of the proof of Theorem 6.1
with a description of the abelianization of the pure braid group PBn.

Recall from Section 4 that Artin gave a finite generating set {Aij | 1 ≤ i <
j ≤ n} for PBn consisting of

(
n
2

)
elements. One can then use, say, the pre-

sentation given by Birman [9, Lemma 1.8.2] or Artin’s original presentation
[4] to deduce the abelianization of PBn. The result is just

(
n
2

)
copies of Z,

with each pure braid generator Aij generating one of the
(
n
2

)
summands in

the abelianization. We can further reduce modulo any integer ` in order to
obtain a family of finite quotients of PBn. We will denote the abelianization
map by α, and its further mod ` reduction by α`. We will be particularly
concerned with the case ` = 2, as summarized in the following diagram.

PBn Z(n2) (Z/2)(
n
2).α

α2

mod

2
(6)

We will prove both of the equalities in the statement of Theorem 6.1 using
the characterization of PB2

n as the kernel of α2; see Exercise 7 above. For
brevity, in what follows we will use the following simplified notation:

N〈T 2
c 〉 := NBn〈T 2

c | c is any simple closed curve in Dn〉.

We prove the second equality first. Note that the image of N〈T 2
c 〉 under

α is 2Z(n2). Further, the full pre-image of 2Z(n2) under α is PB2
n. We already

know that N〈T 2
c 〉 < PB2

n. In order to obtain the reverse inclusion, it suf-
fices to show that N〈T 2

c 〉 contains the kernel of α, that is, the commutator
subgroup of the pure braid group PBn. We can prove this via a case-by-case
examination of the different commutators of Artin’s generators, according
to the respective topological types of the curves involved in the Dehn twists
Aij . There is only one case that is not straightforward to check, namely
[A12, A23]. Note that any commutator [a, b] can be realized as a product of
squares, for example as follows:

[a, b] = aba−1b−1 = (a2)(a−1b)2b−2.

In this case, however, we are able to use the Squared Lantern Relation given
in Figure 6.1 to write the commutator [A12, A23] explicitly as the product
of squares of Dehn twists rather than squares of products of twists.
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Figure 6.1. The squared lantern relation: [Tc, Td] = T 2
c T

2
b T

2
e T

2
a .

We now establish the first equality by showing that Bn[4] is in fact equal
to PB2

n, the kernel of α2. Consider the following sequence of maps.

PBn Sp(2g,Z)[2] sp2g(Z/2)

Id +2A A

β

(7)

The group sp2g(Z/2) is the additive group of persymmetric matrices, that is,
matrices that are symmetric along the anti-diagonal. The first map is just
the restriction of the symplectic representation β to PBn; recall from Sec-
tion 5 that A’Campo has shown that the map shown here is surjective. The
second map is defined as in the diagram and is well known to be surjective;
see for example [42, Chapter VII, 33-34].

Consider the kernel of the composition of these two maps. On the one
hand, this kernel is clearly the level-4 braid congruence group Bn[4], since
the kernel of the second map is just Sp(2g,Z)[4]. On the other hand, it is
easy to check that the kernel of the composition is just the kernel of the
mod two abelianization map α2, since as an abelian group we have that

sp2g(Z/2) ∼= (Z/2)(
n
2); to see this, consider the constraints on matrix entries

imposed by the persymmetric condition.

7. Connections and applications

We will end these notes by recording some relationships between various
braid congruence subgroups we have studied, as well as congruence sub-
groups of the symplectic group, and well known subgroups of braid groups
such as point pushing groups and Brunnian braid groups.
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Forgetful maps. Let p1, · · · , pn denote the n punctures in the disk Dn. If
we “fill in” one of the punctures, say, pi, we get a ‘forgetful map’ Fi between
corresponding mapping class groups, with kernel corresponding to all possi-
ble ways to “push” the point pi around the disk, that is, all possible loops
based at pi. This gives rise to a version of the Birman Exact Sequence [9,
Section 4.1] (or see discussion in Farb-Margalit [18, Section 4.2]) as follows.

1 π1(Dn, pi) PBn PBn−1 1
Fi

We can extend our notion of a forgetful map to any subset S ⊆ {1, . . . , n},
and define a map FS : PBn → PBn−|S| by filling in all punctures pi for i ∈ S.
The following proposition relates level zero braid congruence groups to level
four braid congruence groups via forgetful maps.

Proposition 7.1. For any S ⊆ {1, . . . , n}, we have FS(BIn) = Bk[4], where
k = n− |S|.

The proof is elementary now that we have our topological characteriza-
tions of BIn and Bn[4].

Proof. We have the following sequence of inclusions and equalities:

FS(BIn) ⊆ FS(Bn[4]) = FS(NBn〈T 2
c 〉) ⊆ NBk

〈T 2
c 〉 = Bk[4].

The equalities all follow from Theorem 6.1. The first inclusion follows from
the fact that BIn ⊆ Bn[m] for all integers m. The second inclusion is due
to the fact that Dehn twists always map to (possibly trivial) Dehn twists
under any forgetful map.

To see the reverse inclusion, suppose T 2
c ∈ Bk[4]. If c is an odd curve in

Dk, then under the forgetful map FS , the twist Tc is the image of the twist
about an odd curve c̃ in Dn that surrounds precisely the same “unforgotten”
punctures, and hence T 2

c = FS(T 2
c̃ ). If instead c is a (2h)-curve in Dk

for some integer h, then Tc is the image under FS of the twist about a
(2h+ 1)-curve c̃ surrounding the same 2h unforgotten punctures as well as
one additional forgotten puncture pi for i ∈ S; see Figure 7.1. Hence by
Theorems 6.1 and 5.1 we have:

Bk[4] ⊆ FS(NBn〈T 2
c | c an odd curve 〉) = FS(BIn).

�

More on point pushing subgroups. As a further application, we can
prove the somewhat curious fact that, under the symplectic representation
ρ, the image of point pushing subgroups in always contains the level four
congruence subgroup of the symplectic group. Indeed, we can say a bit
more, and give a sample result here. The first statement in this theorem is
due to Yu [58, Theorem 7.3(iii)], and the second is due to Brendle-Margalit
[12]. Recall from Section 3 that the notation (Sp(2g+2,Z)[m])∂ denotes the
subgroup stabilizing the vector corresponding to one of the two boundary
components of S2

g .
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Figure 7.1. The given (2h)-curve on the right is the image
of the odd curve on the left under the “forget pi” map.

Theorem 7.2 (Yu, Brendle-Margalit). Let g ≥ 2.

(1) If n = 2g + 1, then ρ(π1(Dn, pi)) contains Sp(2g,Z)[4] and we have

ρ(π1(Dn, pi))/ Sp(2g,Z)[4] ∼= (Z/2)2g

(2) If n = 2g + 2, then ρ(π1(Dn, pi)) contains (Sp(2g + 2,Z)[4])∂ and

ρ(π1(Dn, pi))/(Sp(2g + 2,Z)[4])∂ ∼= (Z/2)2g+1

In particular, this theorem answers a question of user “JSE” posed on
MathOverflow [32]. A more general version of Theorem 7.2 can be found in
[12], correcting a misstated version of this result given in the original pa-
per [14]. The proof uses A’Campo’s result described in Section 5 that PBn

surjects onto Sp(2g,Z)[2], a result due to Mennicke [39] that the level m
congruence subgroup Sp(2g,Z)[m] is generated by mth powers of transvec-
tions, and a symmetric version of homology realization (which was described
in Section 3 above).

One can use Theorem 7.2 to compute the indices of ρ(π1(Dn, pi)) in
Sp(2g,Z)[2] and (Sp(2g + 2,Z)[2])∂ , for the different parity cases respec-
tively, using the facts that

[Sp(2g,Z)[2] : Sp(2g,Z)[4]] = 2(2g+1
2 )

and

[(Sp(2g + 2,Z)[2])∂ : (Sp(2g + 2,Z)[4])∂ ] = 2(2g+2
2 ).

For example, when n = 2g + 1, we have:

[Sp(2g,Z)[2] : ρ(π1(Dn, pi))] = 2g(2g+1) − 22g.
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Remarks on Brunnian braids. A Brunnian braid is a (pure) braid that
becomes trivial when any one of its n strands is deleted. The set of all Brun-
nian braids forms a subgroup of PBn, denoted Brunn, and can be defined in
terms of point pushing subgroups as follows:

Brunn := π1(Dn, p1) ∩ · · · ∩ π1(Dn, pn).

Finally, it follows that ρ(Brun3) has infinite index in SL(2,Z); again, see
[12] for a correction of a misstatement in [14]. Let Z denote the center of
B3; this is an infinite cyclic group generated by a Dehn twist about the
boundary of the disk Dn. The group Z is also the kernel of the symplectic
representation ρ : B3 → SL(2,Z) (recalling that Sp(2,Z) = SL(2,Z)). Let
M = ρ(σ1). No element of the coset σk1Z is Brunnian, and hence no power
of M lies in ρ(Brun3).

We remark that Cohen-Wu [15] previously showed that, in contrast to the
previous result, the group of Brunnian 3-braids on the sphere rather than the
disk, specifically the Brunnian subgroup of Mod(S0

0,3), maps isomorphically

onto SL(2,Z)[4] under the symplectic representation.

8. Further directions

The beauty of braid groups is that they lie at the intersection of many
different fields, and as we have seen, braid congruence groups are similarly
pervasive in mathematics. In these notes we have described them from
mainly the viewpoint of geometric group theory, via mapping class groups,
but along the way we have encountered work coming from areas such as
algebra and representation theory (e.g. Squier [53], Newman [42], Cohen-Wu
[15]), 4-manifold topology (Gambaudo-Ghys [21]), algebraic geometry (Hain
[23]), and number theory (Yu [58]). Each of these viewpoints represents a
promising direction for further study of braid congruence groups; see the
introduction of [14] for additional references.

In these notes, we have focused exclusively on the braid congruence groups
Bn[m] for just three values of m: 0, 2, and 4, and we have focused on basic
questions such as generation. There is no doubt much more to say about
each of these groups. Indeed, Kordek-Margalit have already vastly expanded
our understanding of Bn[4], recently proving a number of results concerning
the cohomology of Bn[4] and its representation theory [33].

We are also starting to better understand Bn[m] for other values of m.
Stylianakis has given a topological interpretation of generators for Bn[3],
along with several other related results for Bn[p] where p is a prime number
[54]. The work of Stylianakis is largely based on Wajnryb’s presentation [57]
for Sp[Z/p] for primes p ≥ 3, given as a quotient of the pure braid group,
which in turn incorporates work of Sunday [55] and Assion [6]. Building on
work of Stylianakis, Damiani-McLeay-Stylianakis have announced some pre-
liminary results on crystallographic quotients of braid congruence groups,
while Appel-Bloomquist-Gravel-Holden [2] recently announced generalisa-
tions of some of Stylianakis’s results to Bn[m] for arbitrary m.
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In a different direction, our level zero braid congruence group BIn arose
from studying the Burau representation at the particular value t = −1.
There is a certain amount of literature relating to different choices of t; we
have already mentioned Squier’s work, for example. More recently, Scherich
has looked at other real specializations of the Burau representation of the
three-strand braid group [52]. It would be interesting to study further the
kernels arising from different various natural choices of the parameter t.

Finally, in the broader context of geometric group theory, there are nat-
ural analogies that arise between mapping class groups and automorphism
groups of free groups, providing yet another avenue of exploration. It is
well known that braid groups embed in Aut(Fn) via their action on π1(Dn),
and we have somewhat exploited this viewpoint in obtaining some of the re-
sults described herein, but no doubt additional insights remain to be gained
along these lines. As one example, Fullarton has proven an analogue of
the Hain-Morifuji conjecture in the Aut(Fn) setting [20], where palindromic
automorphisms play the role of hyperelliptic mapping classes; it would be
interesting to determine what further analogies might hold.
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[5] Emil Artin. Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg, 4(1):47–72, 1925.
[6] Joachim Assion. Einige endliche Faktorgruppen der Zopfgruppen. Math. Z.,

163(3):291–302, 1978.
[7] Stephen J. Bigelow and Ryan D. Budney. The mapping class group of a genus two

surface is linear. Algebr. Geom. Topol., 1:699–708, 2001.
[8] Joan S. Birman. On Siegel’s modular group. Math. Ann., 191:59–68, 1971.
[9] Joan S. Birman. Braids, links, and mapping class groups. Princeton University Press,

Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics
Studies, No. 82.

[10] Joan S. Birman and Hugh M. Hilden. On isotopies of homeomorphisms of Riemann
surfaces. Ann. of Math. (2), 97:424–439, 1973.

[11] Tara Brendle, Dan Margalit, and Andrew Putman. Generators for the hyperelliptic
Torelli group and the kernel of the Burau representation at t = −1. Invent. Math.,
200(1):263–310, 2015.

[12] Tara E. Brendle and Dan Margalit. Corrigendum to: The level four braid group.
Preprint in preparation.

[13] Tara E. Brendle and Dan Margalit. Point pushing, homology, and the hyperelliptic
involution. Michigan Math. J., 62(3):451–473, 2013.

[14] Tara E. Brendle and Dan Margalit. The level four braid group. J. Reine Angew.
Math., 735:249–264, 2018.



CONGRUENCE SUBGROUPS OF BRAID GROUPS 31

[15] F. R. Cohen and J. Wu. On braid groups and homotopy groups. In Groups, homotopy
and configuration spaces, volume 13 of Geom. Topol. Monogr., pages 169–193. Geom.
Topol. Publ., Coventry, 2008.

[16] Max Dehn. Papers on group theory and topology. Springer-Verlag, New York, 1987.
Translated from the German and with introductions and an appendix by John Still-
well, With an appendix by Otto Schreier.

[17] Steven Diaz, Ron Donagi, and David Harbater. Every curve is a Hurwitz space. Duke
Math. J., 59(3):737–746, 1989.

[18] Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49 of
Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2012.

[19] Neil Fullarton and Andrew Putman. The high-dimensional cohomology of the moduli
space of curves with level structures. J. Eur. Math. Soc., to appear.

[20] Neil J. Fullarton. A generating set for the palindromic Torelli group. Algebr. Geom.
Topol., 15(6):3535–3567, 2015.

[21] Jean-Marc Gambaudo and Étienne Ghys. Braids and signatures. Bull. Soc. Math.
France, 133(4):541–579, 2005.

[22] Edna K. Grossman. On the residual finiteness of certain mapping class groups. J.
London Math. Soc. (2), 9:160–164, 1974/75.

[23] Richard Hain. Finiteness and Torelli spaces. In Problems on mapping class groups and
related topics, volume 74 of Proc. Sympos. Pure Math., pages 57–70. Amer. Math.
Soc., Providence, RI, 2006.

[24] John L. Harer. The virtual cohomological dimension of the mapping class group of
an orientable surface. Invent. Math., 84(1):157–176, 1986.

[25] Stephen P. Humphries. Generators for the mapping class group. In Topology of low-
dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), volume
722 of Lecture Notes in Math., pages 44–47. Springer, Berlin, 1979.

[26] N. V. Ivanov. Residual finiteness of modular Teichmüller groups. Sibirsk. Mat. Zh.,
32(1):182–185, 222, 1991.

[27] Nikolai V. Ivanov. Subgroups of Teichmüller modular groups, volume 115 of Transla-
tions of Mathematical Monographs. American Mathematical Society, Providence, RI,
1992. Translated from the Russian by E. J. F. Primrose and revised by the author.

[28] Nikolai V. Ivanov. Automorphism of complexes of curves and of Teichmüller spaces.
Internat. Math. Res. Notices, (14):651–666, 1997.

[29] Dennis Johnson. An abelian quotient of the mapping class group Ig. Math. Ann.,
249(3):225–242, 1980.

[30] Dennis Johnson. The structure of the Torelli group. I. A finite set of generators for
I. Ann. of Math. (2), 118(3):423–442, 1983.

[31] Dennis Johnson. The structure of the Torelli group. II. A characterization of the
group generated by twists on bounding curves. Topology, 24(2):113–126, 1985.

[32] JSE. The image of the point-pushing group in the hyperelliptic representation of the
braid group. MathOverflow.

[33] Kevin Kordek and Dan Margalit. Representation stability in the level 4 braid group.
arXiv:1903.03119.

[34] Mustafa Korkmaz. Automorphisms of complexes of curves on punctured spheres and
on punctured tori. Topology Appl., 95(2):85–111, 1999.

[35] Catherine Labruère and Luis Paris. Presentations for the punctured mapping class
groups in terms of Artin groups. Algebr. Geom. Topol., 1:73–114, 2001.

[36] Feng Luo. Automorphisms of the complex of curves. Topology, 39(2):283–298, 2000.
[37] Dan Margalit and Rebecca Winarski. Birman-Hilden theory. Celebratio Mathematica,

To appear.
[38] D. B. McReynolds. The congruence subgroup problem for pure braid groups:

Thurston’s proof. New York J. Math., 18:925–942, 2012.



32 TARA E. BRENDLE

[39] J. Mennicke. Zur Theorie der Siegelschen Modulgruppe. Math. Ann., 159:115–129,
1965.

[40] Geoffrey Mess. The Torelli groups for genus 2 and 3 surfaces. Topology, 31(4):775–790,
1992.

[41] Takayuki Morifuji. On Meyer’s function of hyperelliptic mapping class groups. J.
Math. Soc. Japan, 55(1):117–129, 2003.

[42] Morris Newman. Integral matrices. Academic Press, New York-London, 1972. Pure
and Applied Mathematics, Vol. 45.

[43] Jerome Powell. Two theorems on the mapping class group of a surface. Proc. Amer.
Math. Soc., 68(3):347–350, 1978.

[44] Andrew Putman. Lectures on the Torelli group.
https://www3.nd.edu/ andyp/teaching/2014SpringMath541/.

[45] Andrew Putman. The Torelli group and congruence subgroups of the mapping class
group. https://www3.nd.edu/ andyp/notes/.

[46] Andrew Putman. Cutting and pasting in the Torelli group. Geom. Topol., 11:829–865,
2007.

[47] Andrew Putman. An infinite presentation of the Torelli group. Geom. Funct. Anal.,
19(2):591–643, 2009.

[48] Andrew Putman. Obtaining presentations from group actions without making choices.
Algebr. Geom. Topol., 11(3):1737–1766, 2011.

[49] M. S. Raghunathan. The congruence subgroup problem. Proc. Indian Acad. Sci.
Math. Sci., 114(4):299–308, 2004.

[50] Dale Rolfsen. Knots and links. Publish or Perish, Inc., Berkeley, Calif., 1976. Mathe-
matics Lecture Series, No. 7.

[51] H. L. Royden. Automorphisms and isometries of Teichmüller space. In Advances in
the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), pages 369–
383. Ann. of Math. Studies, No. 66. Princeton Univ. Press, Princeton, N.J., 1971.

[52] Nancy Scherich. Classification of the real discrete specialisations of the Burau repre-
sentation of B3. Math. Proc. Cambridge Philos. Soc., 168(2):295–304, 2020.

[53] Craig C. Squier. The Burau representation is unitary. Proc. Amer. Math. Soc.,
90(2):199–202, 1984.

[54] Charalampos Stylianakis. Congruence subgroups of braid groups. Internat. J. Algebra
Comput., 28(2):345–364, 2018.

[55] J. G. Sunday. Presentations of the groups SL(2, m) and PSL(2, m). Canadian J.
Math., 24:1129–1131, 1972.

[56] Vladimir Turaev. Faithful linear representations of the braid groups. Astérisque,
(276):389–409, 2002. Séminaire Bourbaki, Vol. 1999/2000.

[57] Bronislaw Wajnryb. A braidlike presentation of Sp(n, p). Israel J. Math., 76(3):265–
288, 1991.

[58] J.-K. Yu. Toward a proof of the Cohen-Lenstra conjecture in the function field case.
Preprint., 1996.

Tara E. Brendle, School of Mathematics & Statistics, University Place,
University of Glasgow, G12 8SQ, tara.brendle@glasgow.ac.uk


