
THE LEVEL FOUR BRAID GROUP

TARA E. BRENDLE AND DAN MARGALIT

Abstract. By evaluating the Burau representation at t = −1, we ob-
tain a symplectic representation of the braid group. We study the re-
sulting congruence subgroups of the braid group, namely, the preimages
of the principal congruence subgroups of the symplectic group. Our
main result is that the level four congruence subgroup is equal to the
group generated by squares of Dehn twists. We also show that the im-
age of the Brunnian subgroup of the braid group under the symplectic
representation is the level four congruence subgroup.

1. Introduction

The integral Burau representation of the braid group is the representation
ρ : Bn → GLn(Z) obtained by evaluating the (unreduced) Burau represen-
tation Bn → GLn(Z[t, t−1]) at t = −1. The level m congruence subgroup
Bn[m] of Bn is the kernel of the mod m reduction

Bn
ρ→ GLn(Z)→ GLn(Z/m).

As we explain in Section 2.1, ρ can be regarded as a symplectic representa-
tion. Hence ρ plays the same role for the braid group as the classical sym-
plectic representation does for mapping class groups of closed surfaces. The
representation ρ has connections to many areas of mathematics, such as alge-
braic geometry, number theory, dynamics, and topology; see, e.g., the work
A’Campo [1], Arnol’d [2], Smythe [29], Band–Boyland [5], Cohen–Wu [9],
Funar–Kohno [14], Gambaudo–Ghys [15], Hain [16], Khovanov–Seidel [19],
Magnus–Peluso [20], McMullen [21], Morifuji [24], Mumford [26], Venkatara-
mana [31], Wajnryb [32], and Yu [34].

The mapping class group Mod(S) of a surface S with marked points is the
group of homotopy classes of homeomorphisms of S fixing the set of marked
points and fixing ∂S pointwise. Let Dn denote a closed disk with n marked
points in the interior. We have the following classical fact:

Bn
∼= Mod(Dn).

As such, it is natural to ask for descriptions of the Bn[m] that are intrinsic
to either braid groups or mapping class groups. The first result in this
direction is due to Arnol’d [2] who proved that Bn[2] is equal to the pure
braid group PBn. Artin had previously proved that the latter is identified
with the subgroup of Mod(Dn) generated by Dehn twists. Denote by T n[m]
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the subgroup of Mod(Dn) generated by the mth powers of all Dehn twists.
Identifying Bn with Mod(Dn), we can summarize the theorems of Arnol’d
and Artin as:

Bn[2] = PBn = T n[1].

Our main theorem gives an analogue for Bn[4]. Let PB2
n be the subgroup

of PBn generated by the squares of all elements; note that for any group G,
the group G2 equals the kernel of G→ H1(G; Z/2).

Main Theorem. For n ≥ 1, we have Bn[4] = PB2
n = T n[2].

The first equality of our Main Theorem, which is proven in Section 3, is
well known in the case n is odd; see, e.g., the unpublished paper of Yu [34].
This equality has a natural interpretation in terms of moduli spaces; see
Section 2.

The second equality of our Main Theorem, proven in Section 4, has a
precursor in the case of the mapping class group of a closed, orientable
surface of genus g: Humphries [17] proved that the level two mapping class
group, that is, the kernel of the map Mod(Sg) → Sp2g(Z/2) given by the
action of Mod(Sg) on H1(Sg; Z/2), is equal to the subgroup of Mod(Sg)
generated by all squares of Dehn twists about nonseparating curves.

In Section 5 we determine the image under ρ of the subgroup of Bn con-
sisting of those braids that become trivial when any of the first k strands
are deleted; see Theorem 5.1 below. In the special case k = n this is the
Brunnian subgroup of Bn and in this case Theorem 5.1 says that the image
under ρ is precisely the level four congruence group Sp2g(Z)[4].

Related results. Besides the result of Humphries already mentioned, there
are various other results about subgroups of Bn generated by powers of basic
elements. Coxeter [10, Section 10] showed that the normal closure in Bn of
the mth power of any standard generator for Bn has finite index in Bn if and
only if 1/n+1/m ≤ 1/2; see also [4]. Funar–Kohno [14, Theorem 1.1] proved
that the intersection over m of the groups T n[m] is trivial. Humphries [18,
Theorem 1] gave a complete description of when the group generated by
(possibly differing) powers of Artin’s (finitely many) generators for PBn

generates a subgroup of finite index; for instance, the group generated by
the squares of Artin’s generators has infinite index, in contrast to our Main
Theorem.

Next, by evaluating the Burau representation at any dth root of unity
we obtain an analogue of the integral Burau representation. Building on
work of McMullen [21], Venkataramana [31] showed that when n/2 ≥ d ≥ 3
the image of Bn is arithmetic and is (up to finite index) as large as can be
expected. Deligne–Mostow [11] previously gave analogues where the image
is not arithmetic and Thurston [30] gave an interpretation of their work in
terms of moduli spaces of convex polyhedra.

Finally, there is a more general notion of a congruence subgroup of the
braid group. There is a natural action of Bn on the free group Fn, which
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Figure 1. Left to right: the γi in D3, the lifts of the γi to
X5, and the curves in X6 whose Dehn twists lift the standard
generators for B6

can be identified with the fundamental group of the disk with n punctures.
If H is a characteristic subgroup of Fn, there is an induced homomorphism
Bn → Aut(Fn/H) and the kernel is called a congruence subgroup of Bn. It is
a theorem of Asada [3] that every finite-index subgroup of Bn contains such
a congruence subgroup; see also [12]. Thurston later gave a more elementary
proof [22].
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2. The Burau representation and a theorem of Arnol’d

In this section we give a description of the integral Burau representation
in terms of mapping class groups and also explain the classical result of
Arnol’d that Bn[2] is equal to PBn. Then we give a reinterpretation of the
first equality of our Main Theorem in terms of moduli spaces of points in C.

2.1. The Burau representation. Let σ1, . . . , σn−1 denote the standard
generators for Bn. The (unreduced) Burau representation is the representa-
tion Bn → GLn(Z[t, t−1]) defined by

σi 7→ Ii−1 ⊕
(

1−t t
1 0

)
⊕ In−i−1.

This representation obviously fixes the vector (1, 1, . . . , 1) and this gives a
1-dimensional summand. The other summand is called the reduced Burau
representation.

The Burau representation can also be described via topology. Let D◦n
denote the punctured disk obtained from Dn by removing the marked points
and let p ∈ ∂D◦n. Let Yn denote the universal abelian cover of D◦n, let
t denote a generator for the deck transformation group, and let p̃ denote
the full preimage of p. As a Z[t, t−1]-module, H1(Yn, p̃; Z) has rank n; the
generators are represented by path lifts to Yn of the loops γi in D◦n shown
in the left-hand side of Figure 1 (so the vector (1, 1, . . . , 1) corresponds to
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a peripheral loop). Since the cover Yn is characteristic, each element of Bn

induces a t-equivariant homeomorphism of Yn and the induced action on
H1(Yn, p̃; Z) is nothing other than the Burau representation.

The integral Burau representation. As mentioned, the integral Burau
representation is the representation ρ : Bn → GLn(Z) obtained by evaluating
the Burau representation Bn → GLn(Z[t, t−1]) at t = −1.

We can again describe this representation from the topological point of
view. We consider the two-fold branched cover Xn → Dn with branch locus
equal to the set of marked points. If n = 2g + 1 then Xn is a compact
orientable surface S1

g of genus g with one boundary component, and if n =
2g + 2 then Xn is a compact orientable surface S2

g of genus g with two
boundary components.

Again because the (branched) cover Xn → Dn is characteristic, each
element of Mod(Dn) ∼= Bn lifts to a (unique) element of Mod(Xn) and there
is an induced homomorphism Mod(Dn) → Mod(Xn); denote the image by
SMod(Xn). It is a special case of a theorem of Birman and Hilden [6] that
this homomorphism is injective, but we will not use this fact.

Let p̃ = {p1, p2} be the preimage in ∂Xn of p. Then H1(Xn, p̃; Z) ∼= Zn.
Indeed, a basis for H1(Xn, p̃; Z) is given by the path lifts of the γi; see the
middle of Figure 1. We claim that the composition

Bn → Mod(Xn)→ Aut(H1(Xn, p̃; Z)) ⊆ GLn(Z)

is again the integral Burau representation. This can be easily checked by
directly computing the action of each of the standard generators for Bn.
Alternatively, one can show that the kernel of the map H1(Yn, p̃; Z) →
H1(Xn, p̃; Z) induced by the natural map Yn → Xn is generated by ele-
ments of the form tx + x; this plus the fact that the lifts of an element of
Mod(Dn) to Xn and Yn are compatible gives the claim (the map Yn → Xn

is not surjective but is a covering map of Yn onto its image).
We can easily see from the latter description of the integral Burau rep-

resentation that the reduced integral Burau representation of B2g+1 is sym-
plectic. Indeed, H1(S1

g , p̃; Z) naturally splits as H1(S1
g ; Z) ⊕ Z and the first

factor carries a symplectic form—the algebraic intersection number—which
is preserved by Bn. The algebraic intersection form on H1(S2

g , p̃; Z) is al-
ready symplectic, and so the unreduced Burau representation of B2g+2 is
symplectic (and reducible).

Symplectic bases (~xi, ~yi) for both cases are shown in Figure 2. The al-
gebraic intersection number ı̂(~xk, ~yk) equals 1 for all k and all other alge-
braic intersections between basis elements are zero. Throughout, we refer
to these bases {~xi, ~yi} as the standard symplectic bases for H1(S1

g ; Z) and
H1(S2

g , p̃; Z). For the second case, notice that each boundary component
represents the basis element ~yg+1 and so the integral Burau representation
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~y1 ~y2 ~y3 ~y1 ~y2 ~y3 ~y4

~x1 ~x2 ~x3 ~x1 ~x2 ~x3 ~x4

Figure 2. The standard symplectic bases for H1(S1
g ; Z) and H1(S2

g , p̃; Z)

can be regarded as a representation

ρ : Bn →

{
Sp2g(Z) n = 2g + 1
(Sp2g+2(Z))~yg+1

n = 2g + 2

(in the case n = 2g + 1 we have dropped the trivial summand).

2.2. The pure braid group as a congruence subgroup. We now ex-
plain the theorem of Arnol’d that PBn = Bn[2]. There is a canonical basis
for H1(D◦n; Z/2) whose elements correspond to the n punctures (these are
represented by the γi above). Let H1(D◦n; Z/2)even denote the subspace
consisting of elements with an even number of nonzero coordinates in the
standard basis.

We would like to define a map H1(Xn; Z/2) → H1(D◦n; Z/2) as follows:
given a mod two cycle in Xn, we modify it by homotopy so that it avoids
the fixed points of ι and then project to D◦n. A priori this is not well defined,
because homotopies in Xn might push a cycle across a fixed point. Arnol’d
proved that the map is indeed well defined [2, Lemma 1] and injective and
that the image is H1(D◦n; Z/2)even (see also [26, Lemma 8.12 and footnote
on p. 145]). The key point is that a simple closed curve in Xn surrounding
a fixed point maps to zero in H1(D◦n; Z/2).

The isomorphism H1(D◦n; Z/2)even → H1(Xn; Z/2) is Bn-equivariant, and
so the elements of Bn that act trivially on H1(Xn; Z/2) are exactly the ones
that act trivially on H1(D◦n; Z/2)even. For n ≥ 3 these are the braids that
fix each marked point of Dn, namely, the pure braids. Thus Bn[2] = PBn.

2.3. Moduli spaces. The first equality in our Main Theorem has an inter-
pretation in terms of moduli spaces. Let Mu

n denote the moduli space of
configurations of n (unlabeled) points in C. The double branched cover over
such a configuration of points is an (open) hyperelliptic curve. Such a curve
admits a unique hyperelliptic involution, and so we can regard Mu

n as the
moduli space of hyperelliptic curves. The fundamental group of this moduli
space is Bn.

Next, let Mn denote the configuration space of n labeled points in C.
Because of the identification of H1(Xn; Z/2) with H1(D◦n; Z/2)even, the or-
dering of the points in some configuration of points gives rise to a basis
for the mod two homology of the associated hyperelliptic curve, namely,
the differences of consecutive points in the configuration. The fundamental
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group of Mn is PBn and the forgetful map Mn →Mu
n is the covering map

associated to the inclusion PBn → Bn.
Now let n ≥ 3 and let m be any positive even integer. Given a point

in Mn, we may consider the associated open hyperelliptic curve X. A
hyperelliptic level m marking of X is a basis for H1(X; Z/m) whose mod
two reduction is the canonical one given in the previous paragraph. Let
Mn[m] denote the moduli space of open hyperelliptic curves as above with
hyperelliptic level m markings (so Mn[2] = Mn). The space Mn[m] is
connected and has fundamental group Bn[m]. The forgetful mapMn[m]→
Mn is the covering map corresponding to the inclusion Bn[m]→ PBn.

Since PBn /PB2
n = PBn /Bn[4] is the universal 2-primary abelian quo-

tient of PBn we obtain the following corollary, also observed by Yu [34,
Corollary 7.4] in the case n odd.

Corollary 2.1. For n ≥ 3, the covering space Mn[4] → Mn is universal
among 2-primary covering spaces of Mn.

The space Mn[4] has an algebro-geometric description as follows:

Spec C[ti : 1 ≤ i ≤ n][(ti − tj)−1,
√
ti − tj : 1 ≤ i < j ≤ n];

this is the so-called Kümmer cover of Mn. That these two covering spaces
are isomorphic follows, for instance, from Corollary 2.1 and the fact that
the deck groups are the same.

3. Level four versus the mod two kernel

The goal of this section is to prove the following proposition, which is one
half of our Main Theorem.

Proposition 3.1. For any n, we have Bn[4] = PB2
n.

For the case of n = 2g + 1, Proposition 3.1 follows easily from the well-
known facts Theorem 3.3(1) and Lemma 3.4(1) below. As mentioned, in this
case the observation was already made by Yu [34, Proof of Corollary 7.4].
Most of the work in this section is devoted to proving the analogs of these
results for the case of n = 2g+2, namely Theorem 3.3(2) and Lemma 3.4(2).

Throughout this section, denote the symplectic form on Z2g by ı̂ and fix
a symplectic basis Bg = {~x1, ~y1, . . . , ~xg, ~yg} with ı̂(~xk, ~yk) = 1 for all k.

Symplectic transvections. The symplectic transvection associated to ~v ∈
Z2g is the linear transformation τ~v : Z2g → Z2g given by

τ~v(~w) = ~w + ı̂(~w,~v)~v.

If c is a simple closed curve in S1
g that with some choice of orientation

represents ~v ∈ H1(S1
g ; Z), then the image of the Dehn twist Tc in Sp2g(Z) is

the transvection τ~v (this makes sense because τ~v = τ−~v).
The first statement of the next proposition is a slight variation of a clas-

sical theorem found, for instance, in the book by Mumford [25, Proposition
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A3]. (The modified generating set will make our pictures simpler in the
proof of Theorem 3.3.)

Proposition 3.2. Let g ≥ 2.
(1) The group Sp2g(Z)[2] is generated by the τ2

~v with ~v in

{~xi} ∪ {~yj} ∪ {~xi + ~xj} ∪ {~yi − ~yj} ∪ {~xi − ~yj}.

(2) The group
(
Sp2g+2(Z)[2]

)
~yg+1

is generated by the τ2
~v with ~v in

{~xi | i 6= g+1}∪{~yj}∪{~xi+~xj | i, j 6= g+1}∪{~yi−~yj}∪{~xi−~yj | i 6= g+1}.

Proof. According to Mumford, Sp2g(Z)[2] is generated by the τ2
~v with ~v in

Bg ∪ {~u+ ~w | ~u, ~w ∈ Bg, ~u 6= ~w}.

For the first statement it suffices to show that we can replace the ~yi+~yj and
~xi + ~yj in this generating set with the corresponding ~yi − ~yj and ~xi − ~yj .

The first observation is that

τ2
~xi
τ2
~xi+~yi

τ−2
~xi

= τ2
~xi−~yi

and so we may replace the ~xi + ~yi with the corresponding ~xi − ~yi.
Next, we note that ωi = τ2

~xi
τ2
~yi
τ2
~xi−~yi

negates ~xi and ~yi while fixing all
other elements of Bg. It follows that for i 6= j we have

ωjτ
2
~yi+~yj

ω−1
j = τ2

~yi−~yj
and

ωjτ
2
~xi+~yj

ω−1
j = τ2

~xi−~yj
,

and so we can replace the ~yi + ~yj and ~xi + ~yj with ~yi − ~yj and ~xi − ~yj , as
desired.

We proceed to the second statement. Let M ∈
(
Sp2g+2(Z)[2]

)
~yg+1

. Since
M fixes ~yg+1, is the identity modulo two, and preserves ı̂(~xg+1, ~yg+1), we
have

M(~xg+1) = (2c1~x1 + 2d1~y1 + · · ·+ 2cg~xg + 2dg~yg) + ~xg+1 + 2dg+1~yg+1

for some c1, d1, . . . , cg, dg, dg+1 ∈ Z. If for i < g + 1 we apply the product
τ−2ci
~yg+1−~xi

τ2ci
~xi

or τ−2di
~yg+1−~yi

τ2di
~yi

, the effect is to eliminate the corresponding term
2ci~xi or 2di~yi at the expense of changing the coeffidcient dg+1. We thus
reduce to the case where M(~xg+1) lies in 〈~xg+1, ~yg+1〉 and where M fixes
~yg+1. By then applying a power of τ2

~yg+1
we reduce to the case that M fixes

both ~xg+1 and ~yg+1.
Since M preserves the symplectic form and fixes 〈~xg+1, ~yg+1〉 it follows

that M preserves 〈~x1, ~y1, . . . , ~xg, ~yg〉, that is, M decomposes as a direct
sum Mg ⊕ I2, where Mg is the action on 〈~x1, ~y1, . . . , ~xg, ~yg〉. Since the
image of the generating set from the first statement under the inclusion
Sp2g(Z) →

(
Sp2g+2(Z)[2]

)
~yg+1

is contained in the generating set from the
second statement, the proposition follows. �
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It follows from the computation of the abelianization of Sp2g(Z)[2] below
that the generating set for Sp2g(Z) in Proposition 3.2 is minimal. See the
paper of Church and Putman [8] for minimal generating sets for the other
congruence subgroups of Sp2g(Z).

The first statement of the following theorem is due to A’Campo [1, Théorème
1] (see also Mumford [26, Lemma 8.12] and Wajnryb [32, Theorem 1]).

c~y2

c~x1 c~x4−~y4

c~x2+~x4

c~y2−~y4

c~x2−~y4

Figure 3. The curves used in the proof of Theorem 3.3

Theorem 3.3. Let g ≥ 2.

(1) The restriction ρ : PB2g+1 → Sp2g(Z)[2] is surjective.
(2) The restriction ρ : PB2g+2 →

(
Sp2g+2(Z)[2]

)
~yg+1

is surjective.

Proof of Theorem 3.3. It suffices to realize each generator from parts (1)
and (2) of Proposition 3.2. For each transvection τ~v as in the proposition
we can find a simple closed curve c~v lying in S1

g or S2
g accordingly and with

the following properties:

(1) for some choice of orientation of c~v, we have [~c~v] = ~v and
(2) ι(c~v) ∩ c~v = ∅.

The required curves are shown in Figure 3 (for the second statement of
the theorem we should imagine S2

g as lying inside S1
g+1 and check that the

required curves avoid Sg+1 \ S2
g ). It follows from the second condition that

Tc~vTι(c~v) lies in SMod(S1
g ) or SMod(S2

g ), and hence corresponds an element of
the appropriate pure braid group (PB2g+1 or PB2g+2). By the first condition,
the image of this product in the appropriate symplectic group is τ2

~v , as
desired. �

The image of the full braid group. We pause to record a (well-known)
consequence of Theorem 3.3. Fix g ≥ 1 and let n = 2g + 1. Let Σn denote
the symmetric group on n letters. The action of Σn on the marked points
of Dn induces an action of Σn on H1(D◦n; Z/2) ∼= H1(Xn; Z/2) and hence an
embedding Σn → Sp2g(Z/2) with image a group of permutation matrices.
Each such matrix has a natural lift to Sp2g(Z) and this gives rise to an
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action of Σn on Sp2g(Z)[2] by conjugation. There are analogous statements
for Sp2g+2(Z) when n = 2g + 2. We thus have:

ρ(B2g+1) ∼= Sp2g(Z)[2] o Σ2g+1

ρ(B2g+2) ∼=
(
Sp2g+2(Z)[2]

)
~yg+1

o Σ2g+2.

See Wajnryb [32, page 147] for an interpretation of ρ(Bn) in terms of qua-
dratic forms on Z2g.

In particular, the group ρ(B2g+1) contains the square of each transvection
in Sp2g(Z) and so the mod p reduction contains every transvection if p
is odd. Wajnryb [33] used this plus the fact that Sp2g(Z/p) is generated
by transvections in order to give a simple presentation for the latter (and
similarly for B2g+2).

The symplectic Lie algebra. Let J denote the 2g× 2g matrix associated
to the symplectic form on Z2g and let j denote the mod 2 reduction. Just
as Sp2g(Z) is the group of integral matrices that satisfy MJ = JMT , the
group sp2g(Z/2) is the additive group of 2g × 2g matrices m with entries
in Z/2 and with mj = jmT . If we reorder the symplectic basis for Z2g

as (~x1, . . . , ~xg, ~yg, . . . , ~y1), then sp2g(Z/2) is the set of matrices over Z/2
that are persymmetric (symmetric along the anti-diagonal). To put it yet
another way, these are the matrices where, for each ~v and ~w in the standard
basis, the ~v ~w-entry is equal to the ~w?~v?-entry (really these are the entries
corresponding to the mod two reductions of those vectors).

For ~v, ~w ∈ Bg, let m~v ~w be the element of sp2g(Z/2) obtained from the zero
matrix by replacing the ~v ~w- and ~w?~v?-entries with 1 (if ~v = ~w? this matrix
has a single nonzero entry). From the definition, we see that m~v ~w = m~w?~v? .
Clearly the m~v ~w generate the abelian group sp2g(Z/2).

We remark that there is an isomorphism sp2g(Z/2)→ S2((Z/2)2g) given
by m~v ~w 7→ ~v ~w?. From this or any of the other descriptions of sp2g(Z/2), we

can easily check that sp2g(Z/2) is isomorphic to (Z/2)(
2g+1

2 ).

The abelianization of the symplectic group. There is a homomorphism

ψ : Sp2g(Z)[2]→ sp2g(Z/2)
I2g + 2A 7→ A mod 2.

Evidently, the kernel of ψ is Sp2g(Z)[4]. It is well known that ψ is surjective
and it is a theorem of Newman–Smart that ψ is in fact the abelianization
of Sp2g(Z)[2], that is, Sp2g(Z)[4] is the commutator subgroup [27, Theorem
7] (this generalizes to higher levels; see [28, Section 3.1] for a survey). In
particular, there is a short exact sequence

1→ Sp2g(Z)[4]→ Sp2g(Z)[2]
ψ→ sp2g(Z/2)→ 1.
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We will need to describe the image of
(
Sp2g+2(Z)[2]

)
~yg+1

under ψ. For any

~v ∈ (Z/2)2g, set

Ann(~v) = {m ∈ sp2g+2(Z/2) | m(~v) = 0}.

It is straightforward to check that the image of
(
Sp2g+2(Z)[2]

)
~yg+1

under ψ
lies in Ann(~yg+1) and that Ann(~yg+1) is generated by

{m~v ~w | ~v, ~w ∈ {~x1, ~y1, . . . , ~xg+1, ~yg+1}, ~v 6= ~xg+1, ~w 6= ~yg+1}.

In particular, Ann(~yg+1) is isomorphic to (Z/2)(
2g+2

2 ).

Lemma 3.4. Let g ≥ 0. We have:
(1) The map ψ : Sp2g(Z)[2]→ sp2g(Z/2) is surjective, and
(2) The map ψ :

(
Sp2g+2(Z)[2]

)
~yg+1
→ Ann(~yg+1) is surjective.

Proof. As we already said, the first statement is well known. However, we
give a proof for completeness and to establish some notation needed for the
second case. Specifically, for any choice of ~v and ~w in the standard basis
{~x1, ~y1, . . . , ~xg, ~yg}, we would like to define an element M~v ~w of Sp2g(Z)[2]
whose image is the matrix m~v ~w given above. Let N~v denote the matrix
obtained from the identity by negating the ~v~v- and ~v?~v?-entries. We set

M~v ~w =


N~v ~v = ~w

τ2
~v ~v = ~w?

τ−2
~w?+~vτ

2
~w?τ2

~v otherwise.

It is straightforward to check that the image of each N~v ~w is the desired
matrix m~v ~w. Since the m~v ~w generate sp2g(Z/2), the first statement follows.

We already said that the m~v ~w with ~v 6= ~xg+1 and ~w 6= ~yg+1 generate
Ann(~yg+1) and so for the second statement it suffices to note that the corre-
sponding matrices M~v ~w lie in (Sp2g+2(Z)[2])~yg+1

, which follows immediately
from the definitions. �

Proof of Proposition 3.1. First we treat the case of n = 2g + 1. Any map
from a group to a 2-primary abelian group factors through its universal
Z/2-vector space quotient, and so there is a commutative diagram

PB2g+1
ρ //

α
%%KKKKKKKKKKK

Sp2g(Z)[2]
ψ // sp2g(Z/2) ∼= (Z/2)(

2g+1
2 )

(Z/2)(
2g+1

2 )
β

66lllllllllllll

Since ψ ◦ ρ is surjective (Theorem 3.3(1) and Lemma 3.4(1)), it follows that
β is an isomorphism. Thus ker(ψ ◦ ρ) = kerα. We already said that kerα =
PB2

2g+1. Since kerψ = Sp2g(Z)[4] and B2g+1[4] ⊆ B2g+1[2] = PB2g+1 we
have ker(ψ ◦ ρ) = B2g+1[4]. This completes the proof in the case n odd.
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For n = 2g + 2 even the proof is the same except that we use Theo-
rem 3.3(2), Lemma 3.4(2), and the fact that Ann(~yg+1) ∼= (Z/2)(

2g+2
2 ). �

4. Squares of twists versus the mod two kernel

Combined with Proposition 3.1 the following proposition gives the Main
Theorem.

Proposition 4.1. For any n we have T n[2] = PB2
n.

In order to prove Proposition 4.1, we need a certain relation amongst
Dehn twists in D3. The configuration of curves involved in this relation
is reminiscent of the lantern relation and most of the twists involved are
squared; hence we refer to it as the squared lantern relation.

Proposition 4.2 (The squared lantern relation). Let a, b, c, d, and e be the
curves in D3 shown in Figure 4. The following relation holds in Mod(D3):

[Ta, Tb] = T 2
aT

2
dT

2
c T
−2
e .

a

b

c

d

e

γδ

Figure 4. The curves in the squared lantern relation and
the loops used in the proof

Let σ1, . . . , σn−1 denote the standard generators for the braid group Bn.
For 1 ≤ i < j ≤ n let aij = ω−1σ2

i ω, where ω = σi+1 · · ·σj−1 (elements of
Bn are composed left to right). Artin proved that the aij generate PBn.

Each aij is equal to a Dehn twist about a curve cij in Dn surrounding two
marked points. If we place the marked points of Dn in a horizontal line, and
if we choose the σi to be right-handed half-twists, then cij is the boundary
of a regular neighborhood of an arc whose interior lies below the line and
connects the ith marked point to the jth.

We can reinterpret the squared lantern relation in terms of Artin’s gen-
erators as follows:

[a12, a13] = a2
12(a−1

12 a
2
13a12)a2

23(a13a12a23)−2

(in the braid group elements are multiplied left to right).
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Push maps. While Proposition 4.2 can be verified using any of the standard
solutions to the word problem for either the mapping class group, the braid
group, or the pure braid group, we will give here a conceptual proof. The
ideas we develop here will also be used in the next section.

Choose one marked point of Dn, call it p, and delete the other n − 1
marked points from Dn. Denote the resulting disk with n−1 punctures and
one marked point by D′n. There is a push map:

Ψ : π1(D′n, p)→ PMod(Dn) ∼= PBn

defined as follows. Given γ ∈ π1(D′n, p), we choose an isotopy of p that
pushes p along γ and we extend this to an isotopy of D′n. At the end of
the isotopy there is an induced homeomorphism of D′n, hence Dn, whose
homotopy class is Ψ(γ) (see [13, Section 4.2] for details).

If γ has a simple representative w with regular neighborhood A in D′n,
then Ψ(γ) is equal to the product T`T−1

r , where ` and r denote the compo-
nents of ∂A lying to the left and right of γ, respectively (see [13, Fact 4.7]).
It is sometimes the case that one of ` or r is inessential, in which case we
can omit the corresponding trivial Dehn twist. Since products in π1(D′n, p)
are usually written left to right, the map Ψ is an antihomomorphism.

Proof of Proposition 4.2. Choose the marked point p as in the right-hand
side of Figure 4. As above there is a map Ψ : π1(D′3, p) → PMod(D3). Let
γ and δ be the two elements of π1(D′3, p) indicated in the same figure; these
generate the free group π1(D′3, p) ∼= F2. As above we have

Ψ(γ) = T−1
b , Ψ(δ) = T−1

a , and Ψ(γδ) = TcT
−1
e .

In the free group π1(D′3, p), we can write

[γ, δ] = (γδ)2(γδ)−1γ−2(γδ)δ−2.

Applying the antihomomorphism Ψ to the left-hand side, we obtain the com-
mutator [Ta, Tb]. Applying Ψ to the right-hand side and using the above
descriptions of Ψ(γ), Ψ(δ), and Ψ(γδ) in terms of Dehn twists (and remem-
bering that Ψ is an antihomomorphism), we obtain

Ψ(δ)−2Ψ(γδ)Ψ(γ)−2Ψ(γδ)−1Ψ(γδ)2 = T 2
a (TcT−1

e )T 2
b (TcT−1

e )−1(TcT−1
e )2

Using now the formula fTbf
−1 = Tf(b), the fact that TcT−1

e (b) = d, and
the fact that Tc and Te commute we see that the right-hand side is equal to
T 2
aT

2
dT

2
c T
−2
e . The lemma follows. �

Proposition 4.3. For n ≥ 3, the commutator subgroup PB′n of PBn is
normally generated in Bn by the single element [a12, a13].

Proof. First, the commutator subgroup of any group is normally generated
in that group by the commutators of the generators. Thus PB′n is normally
generated in PBn by all of the commutators [aij , ak`].

Next, Mod(Dn) acts on the set of ordered pairs of distinct curves (cij , ck`)
with three orbits, corresponding to whether the curves have geometric inter-
section number equal to 0, 2, or 4. These orbits are represented by the pairs
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(c12, c34), (c12, c13), and (c13, c24), respectively. It follows that the action of
Bn on the set of ordered pairs of Artin generators aij has three orbits, repre-
sented by (a12, a34), (a12, a13), and (a12, a34). As the commutator [a12, a34]
is trivial, it follows that PB′n is normally generated in Bn by [a12, a23] and
[a13, a24].

We have the following relation in PBn:

[a13, a24] = (a13a
−1
23 )[a23, a24](a13a

−1
23 )−1 a−1

23 [a24, a23]a23

(this relation is obtained by expanding the well-known relator [a23a13a
−1
23 , a24]

for PBn via the Witt–Hall relation [xy, z] = x[y, z]x−1[x, z]). By the previ-
ous paragraph, this relation equates [a13, a24] with a product of two conju-
gates in Bn of [a12, a13]. This completes the proof. �

Forgetful maps. For any n and any 0 ≤ k ≤ n there are
(
n
k

)
forgetful maps

PBn → PBk obtained by forgetting n−k strands. The various forgetful maps
PBn → PB2

∼= Z are the coordinates of a surjective homomorphism PBn →
Z(n

2) which is in fact the abelianization of PBn. At the other extreme, the
kernel of any forgetful map PBn → PBn−1 corresponds to the image of a
push map, so there is a short exact sequence:

1→ π1(D′n, p)→ PBn → PBn−1

(this is a special case of the so-called Birman exact sequence). This exact
sequence has an obvious splitting.

Proof of Proposition 4.1. Since PB2
n equals the kernel of the mod two abelian-

ization of PBn, it follows that PB2
n is the preimage of 2Z(n

2) under the
abelianization map

α : PBn → Z(n
2).

As above, the
(
n
2

)
coordinates of α are given by the various forgetful maps

PBn → PB2
∼= Z. The group PB2 is generated by a Dehn twist. It follows

that α(T n[2]) is precisely 2Z(n
2), and so T n[2] has the same image under α

as PB2
n. It remains to show that T n[2], like PB2

n, contains the kernel of α,
namely, the commutator subgroup PB′n of PBn.

By Proposition 4.2, T n[2] contains the commutator [a12, a13] (see the
discussion after the statement). As T n[2] is normal in Bn it then follows
from Proposition 4.3 that T n[2] contains PB′n, as desired. �

We pause to record the following corollary of the Main Theorem. In the
statement, BIn is the kernel of the integral Burau representation of Bn.

Corollary 4.4. Let BIn 6 H 6 Bn[4]. For any 1 ≤ k < n, the image of H
under any forgetful map PBn → PBk is Bk[4].

Proof. Let F : PBn → PBk be a forgetful map. Clearly F preserves squares
of Dehn twists, so we have F (T n[2]) ⊆ T k[2]. Hence by the Main Theorem
we have that F (Bn[4]) ⊆ Bk[4], and in particular F (H) ⊆ Bk[4].
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For the other containment, let T 2
c ∈ Bk. By the Main Theorem, squares

of Dehn twists generate Bk[4] and so it suffices to show that T 2
c lies in the

image of F . We can choose a curve c̃ ⊆ Dn so that c̃ contains an odd number
of marked points and so that c̃ maps to c under the forgetful map Dn → Dk

(if c does not already surround an odd number of points, we “remember”
one marked point inside c). Then F (T 2

c̃ ) = T 2
c . Moreover, T 2

c̃ lies in BIn as
its lift to SMod(S1

g ) or SMod(S2
g ) is a Dehn twist about a separating curve.

Thus, T 2
c̃ lies in H by assumption. The corollary follows. �

5. Burau images of Point pushing subgroups

Denote the n marked points of Dn by p1, . . . , pn. As in Section 4, for each
1 ≤ i ≤ n there is a point pushing subgroup π1(D′n, pi) ⊆ Mod(Dn). For
any 1 ≤ k ≤ n we define Kn,k to be the subgroup of PBn corresponding to
the intersection

π1(D′n, p1) ∩ · · · ∩ π1(D′n, pk).
The group Kn,n is the Brunnian subgroup Brunn of PBn, that is, the sub-
group consisting of the braids that become trivial when any one strand is
deleted. In this section we prove the following proposition; the k = 1 case
of the first statement appears in the paper of Yu [34, Theorem 7.3(iii)].

Theorem 5.1. Let g ≥ 2.
(1) For 1 ≤ k ≤ 2g + 1, ρ(K2g+1,k) contains Sp2g(Z)[4] and

ρ(K2g+1,k)/ Sp2g(Z)[4] ∼=


(Z/2)2g k = 1
Z/2 k = 2
1 k ≥ 3.

(2) For 1 ≤ k ≤ 2g + 2, ρ(K2g+2,k) contains (Sp2g(Z)[4])~yg+1
and

ρ(K2g+2,k)/(Sp2g(Z)[4])~yg+1
∼=


(Z/2)2g+1 k = 1
Z/2 k = 2
1 k ≥ 3.

One can use Theorem 5.1 to compute the indices of ρ(K2g+1,k) and ρ(K2g+2,k)
in Sp2g(Z)[2] and (Sp2g(Z)[2])~yg+1

, respectively, using the facts that

[Sp2g(Z)[2] : Sp2g(Z)[4]] = 2(2g+1
2 )

and
[(Sp2g(Z)[2])~yg+1

: (Sp2g(Z)[4])~yg+1
] = 2(2g+2

2 ).
For example:

[Sp2g(Z)[2] : ρ(K2g+1,1)] = 2g(2g+1) − 22g.

It also follows immediately from Theorem 5.1 that
(1) ρ(Brun2g+1) = Sp2g(Z)[4] and
(2) ρ(Brun2g+2) = (Sp2g(Z)[4])~yg+1

.
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We will require the following theorem. The first statement is due to Men-
nicke [23, Section 10] and the second statement follows easily from the first
statement and the same type of considerations as in the proof of Theo-
rem 3.3.

Theorem 5.2. Let g ≥ 2 and let m ≥ 2.
(1) Sp2g(Z)[m] is generated by {τm~v | ~v ∈ Z2g primitive}.
(2)

(
Sp2g+2(Z)[4]

)
~yg+1

is generated by {τm~v | ~v ∈ Z2g+2 primitive,
ı̂(~v, ~yg+1) = 0}.

Say that a simple closed curve c in S1
g is pre-symmetric if ι(c) ∩ c = ∅.

Proposition 5.3. If ~v ∈ H1(Xn; Z) is primitive then it is represented by a
pre-symmetric, oriented simple closed curve.

Proof. We first treat the case n = 2g + 1, in which case Xn
∼= S1

g . It
follows from the description of Arnol’d’s isomorphism between H1(S1

g ; Z/2)
and H1(D◦2g+1; Z/2)even that there is a pre-symmetric representative c′ in S1

g

of the mod two reduction of ~v. Indeed, any class in H1(D◦2g+1; Z/2)even is
represented by a simple closed curve surrounding an even number of marked
points, and the preimage of such a curve has two components, either of which
is the desired c′.

Let ~v′ denote the class of c′ in H1(S1
g ; Z). The group Sp2g(Z)[2] acts

transitively on the representatives of a given class in H1(S1
g ; Z/2) (see, e.g.

[7, Corollary 3.11]) and so there is an M ∈ Sp2g(Z)[2] with M(~v′) = ~v.
By Theorem 3.3(1), there is a b ∈ PB2g+1 with ρ(b) = M . If b̃ is the
corresponding element of SMod(S1

g ), then b̃(c′) is the desired representative.
The case of n = 2g + 2 is almost exactly the same. The main difference

is that we must choose M to lie in (Sp2g+2(Z)[2])~yg+1
(the existence of such

an M follows by applying the same statement as before [7, Corollary 3.11]
to the pair ~v, ~yg+1). We can then apply Theorem 3.3(2) to complete the
proof. �

One can prove Proposition 5.3 without Theorem 3.3 by applying a hyper-
elliptic version of the Euclidean algorithm for simple closed curves due to
Meeks and Patrusky (see [13, Proposition 6.2]).

Symmetric homology classes. We remark that the pre-symmetric rep-
resentative of ~v given by Proposition 5.3 is homotopic to a symmetric one
(that is, one fixed by the hyperelliptic involution) if and only if the corre-
sponding element of H1(D◦2g+1; Z/2)even has exactly two nonzero entries in
the standard basis, that is, if and only if the corresponding simple closed
curve in Dn surrounds exactly two marked points. In particular, the exis-
tence of a symmetric representative of ~v is completely determined by the
mod two reduction of ~v. This was observed by A’Campo [1, Théorème 3];
see also Wajnryb [32, Theorem 2 and Corollary].
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Proof of Theorem 5.1. We begin with the first statement, which concerns
the odd-stranded braid groups PB2g+1 with g ≥ 2. The first goal is to
prove that ρ(K2g+1,k) contains Sp2g(Z)[4]. To do this, it is enough to show
ρ(K2g+1,1) contains Sp2g(Z)[4], as the subgroups of PB2g+1 corresponding to
the π1(D′2g+1, pi) are conjugate in B2g+1 and Sp2g(Z)[4] is normal in Sp2g(Z).

By Theorem 5.2(1), it is enough to show that ρ(K2g+1,1) contains every
τ4
~v with ~v primitive. To this end, let ~v be a primitive element of Z2g. By

Proposition 5.3, there is a pre-symmetric representative c of ~v in S1
g .

Let c̄ denote the image of c in D2g+1; the curve c̄ is a simple closed curve
surrounding an even number of marked points. Choose a simple closed curve
d̄ in D2g+1 so that c̄ ∪ d̄ form the boundary of an annulus containing the
marked point p1 (and no other pi).

Clearly the element of PB2g+1 given by T 2
c̄ T
−2
d̄

lies in K2g+1,1. We claim
that it maps to τ4

~v under ρ. The image of T 2
c̄ in Mod(S1

g ) is T 2
c T

2
ι(c) and the

image of the latter in Sp2g(Z) is τ2
[~c]τ

2
[ι(~c)] = τ4

~v (here we choose an arbitrary
orientation on c). Next, since d̄ surrounds an odd number of marked points,
the image of T 2

d̄
in Mod(S1

g ) is a Dehn twist about a separating curve and
the image of the latter in Sp2g(Z) is trivial. This gives the claim, and hence
the statement that ρ(K2g+1,k) contains Sp2g(Z)[4].

We now proceed to compute the image of K2g+1,k in Sp2g(Z)[2]/ Sp2g(Z)[4].

Recall from Section 3 that Sp2g(Z)[2]/ Sp2g(Z)[4] is isomorphic to (Z/2)(
2g+1

2 )

and the coordinates of the resulting map PB2g+1 → (Z/2)(
2g+1

2 ) are given
by the various maps fij : PB2g+1 → PB2 /PB2

2 obtained by forgetting all
strands except the ith and jth and reducing modulo two.

We claim that fij(K2g+1,k) is nontrivial if and only if {1, . . . , k} ⊆ {i, j}.
Indeed, if {1, . . . , k} ⊆ {i, j} then the pure braid aij from Section 4 lies in
K2g+1,k and has nontrivial image under fij . On the other hand if {1, . . . , k} 6⊆
{i, j} then fij(K2g+1,k) is trivial by definition, giving the claim. The descrip-
tion of the image of K2g+1,k follows immediately.

The theorem for the even-stranded braid group is proven in the same way,
with PB2g+1, K2g+1,k, and Sp2g(Z)[2] replaced with PB2g+2, K2g+2,k, and(
Sp2g(Z)[2]

)
~yg+1

and with Theorem 5.2(1) replaced by Theorem 5.2(2). �

Theorem 5.2 also holds in the case g = 1 and m = 4. To see this, consider
the action of Sp2(Z)[4] = SL2(Z)[4] on the hyperbolic plane H2. Using the
Farey tessellation of H2, the quotient is easily seen to be a punctured sphere
(it is an octahedron minus the vertices) and so the fundamental group is
generated by loops around the punctures. Each of these corresponds to a
fourth power of a transvection.

Hence, our proof of Theorem 5.1 also applies in the case of g = 1 and
so ρ(Brun3) = SL2(Z)[4]. The group BI3 is contained in the center of B3,
which has trivial intersection with Brun3. It follows that:

Brun3
∼= SL2(Z)[4].
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A version of this isomorphism was previously observed by Cohen and Wu
[9].
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Birkhäuser Boston, Inc., Boston, MA, 1984. Jacobian theta functions and differential
equations, With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman
and H. Umemura.

[27] M. Newman and J. R. Smart. Symplectic modulary groups. Acta Arith, 9:83–89, 1964.
[28] Andrew Putman. The Picard group of the moduli space of curves with level structures.

Duke Math. J., 161(4):623–674, 2012.
[29] N. F. Smythe. The Burau representation of the braid group is pairwise free. Arch.

Math. (Basel), 32(4):309–317, 1979.
[30] William P. Thurston. Shapes of polyhedra and triangulations of the sphere. In The

Epstein birthday schrift, volume 1 of Geom. Topol. Monogr., pages 511–549. Geom.
Topol. Publ., Coventry, 1998.

[31] T. N. Venkataramana. Image of the Burau representation at d-th roots of unity. Ann.
of Math. (2), 179(3):1041–1083, 2014.

[32] Bronislaw Wajnryb. On the monodromy group of plane curve singularities. Math.
Ann., 246(2):141–154, 1979/80.

[33] Bronislaw Wajnryb. A braidlike presentation of Sp(n, p). Israel J. Math., 76(3):265–
288, 1991.

[34] Jiu-Kang Yu. Toward a proof of the Cohen-Lenstra conjecture in the function field
case. Preprint.

Tara E. Brendle, School of Mathematics & Statistics, 15 University Gar-
dens, University of Glasgow, G12 8QW, tara.brendle@glasgow.ac.uk

Dan Margalit, School of Mathematics, Georgia Institute of Technology,
686 Cherry St., Atlanta, GA 30332, margalit@math.gatech.edu


