ERRATUM TO: THE LEVEL FOUR BRAID GROUP

TARA E. BRENDLE AND DAN MARGALIT

As in our original paper [2], let ρ be the symplectic representation of B_{n}, let $\pi_{1}\left(D_{n}^{\prime}, p_{1}\right), \ldots, \pi_{1}\left(D_{n}^{\prime}, p_{n}\right)$ denote the point pushing subgroups of B_{n}, and for $1 \leq k \leq n$ set

$$
K_{n, k}=\pi_{1}\left(D_{n}^{\prime}, p_{1}\right) \cap \cdots \cap \pi_{1}\left(D_{n}^{\prime}, p_{k}\right)
$$

Also, let $\Gamma_{n}[m]$ denote $\operatorname{Sp}_{2 g}(\mathbb{Z})[m]$ when $n=2 g+1$ and $\left(\operatorname{Sp}_{2 g+2}(\mathbb{Z})[m]\right)_{\vec{y}_{g+1}}$ when $n=2 g+2$.

Theorem 5.1 describes $\rho\left(K_{n, k}\right)$ for $n \geq 5$. The theorem separately addresses the cases where $n=2 g+1$ and $n=2 g+2$. In each case, there are two statements. The first statement is that $\rho\left(K_{n, k}\right)$ contains $\Gamma_{n}[4]$ and the second statement describes the quotient of $\rho\left(K_{n, k}\right)$ by $\Gamma_{n}[4]$. We refer to these two statements as the containment statement and the quotient statement, respectively.

The proof of the containment statement of Theorem 5.1 is correct for $k=1$ and incorrect for $k \geq 2$. What our argument for the containment statement actually shows is that each $\rho\left(\pi_{1}\left(D_{n}^{\prime}, p_{i}\right)\right)$ contains $\Gamma_{n}[4]$ and hence the argument only proves the weaker statement that

$$
L_{n, k}=\rho\left(\pi_{1}\left(D_{n}^{\prime}, p_{1}\right)\right) \cap \cdots \cap \rho\left(\pi_{1}\left(D_{n}^{\prime}, p_{k}\right)\right)
$$

contains $\Gamma_{n}[4]$. Since $L_{n, 1}=\rho\left(K_{n, 1}\right)$, the argument for the containment statement is correct for $k=1$ and $n \geq 5$. For $k \geq 2$ we have $L_{n, k} \supseteq \rho\left(K_{n, k}\right)$, but this is not an equality in general.

It should be considered an open question as to whether the containment statement of Theorem 5.1 is correct for $k \geq 2$. At the end of the paper, we explain how our proof of Theorem 5.1 can be extended to the case $n=3$, in particular that $\rho\left(K_{3, k}\right)$ contains $\Gamma_{3}[4]=\mathrm{SL}_{2}(\mathbb{Z})[4]$. This statement, the $n=3$ version of the containment statement, is not correct. In particular, the last statement in the paper, that $\rho\left(K_{3,3}\right)=\Gamma_{3}[4]$, is not correct. In fact, $\rho\left(K_{3,3}\right)$ has infinite index in $\mathrm{SL}_{2}(\mathbb{Z})$. To see this, we first note that $K_{3,3}$ is the Brunnian subgroup of B_{3}. Let Z denote the kernel of $\rho: \mathrm{B}_{3} \rightarrow \mathrm{SL}_{2}(\mathbb{Z})$. The group Z is an infinite cyclic group generated by the square of the Dehn twist about the boundary of D_{3}^{\prime}. For $m \neq 0$, no element of the coset $\sigma_{1}^{m} Z$ is Brunnian, hence no power of the matrix $\rho\left(\sigma_{1}\right)$ lies in $\rho\left(K_{3,3}\right)$.

The statement and proof of the quotient statement of Theorem 5.1 are correct for $k=1$. Because of the $n=3$ case, we expect that the containment statement of Theorem 5.1 is not correct for any $k \geq 2$ and $n \geq 5$. If this is the case, the quotient statement does not make sense for $k \geq 2$.

As in the $n=3$ case, we expect that $\rho\left(K_{n, k}\right)$ in fact has infinite index in $\Gamma_{n}[4]$ for $n \geq 4$ and $k \geq 2$. As in the $n=3$ case, the $k=n$ version of this statement can be proven by showing that if $h \in \operatorname{ker}(\rho)$ then $\sigma_{1}^{m} h$ is not

Brunnian. Since $\operatorname{ker}(\rho)$ is generated by squares of Dehn twists about curves surrounding an odd number of punctures [1], we may assume that h is such a product.

What our argument for the quotient statement of Theorem 5.1 actually shows is that the image of $\rho\left(K_{n, k}\right)$ in $\Gamma_{n}[2] / \Gamma_{n}[4]$ is $(\mathbb{Z} / 2)^{2 g}, \mathbb{Z} / 2$, or 1 , according to whether k is 1,2 , or greater. In other words, $\rho\left(K_{n, k}\right)$ modulo $\rho\left(K_{n, k}\right) \cap \Gamma_{n}[4]$ is the abelian group given in the previous sentence. It is also true that $L_{n, k} / \Gamma_{n}[4]$ is the same abelian group. The given indices of $\rho\left(K_{n, k}\right)$ in $\Gamma_{n}[2]$ for $k \geq 2$ are the correct indices for $L_{n, k}$ in $\Gamma_{n}[2]$.

There are two other incorrect statements in Section 3 that we would like to point out. First, we incorrectly state that $\rho\left(\mathrm{B}_{n}\right)$ is the semi-direct product of a symmetric group with $\Gamma_{n}[2]$. In fact $\rho\left(\mathrm{B}_{n}\right)$ is a non-split extension of these groups. Also, we incorrectly state that $\psi: \mathrm{Sp}_{2 g}(\mathbb{Z} / 2) \rightarrow \mathfrak{s p}_{2 g}(\mathbb{Z} / 2)$ is the abelianization map for $\mathrm{Sp}_{2 g}(\mathbb{Z} / 2)$. We are grateful to David Benson and Nick Salter for these corrections.

References

[1] Tara Brendle, Dan Margalit, and Andrew Putman. Generators for the hyperelliptic Torelli group and the kernel of the Burau representation at $t=-1$. Invent. Math., 200(1):263-310, 2015.
[2] Tara E. Brendle and Dan Margalit. The level four braid group. J. Reine Angew. Math., 735:249-264, 2018.

