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Abstract. Let SI(Sg) denote the hyperelliptic Torelli group of
a closed surface Sg of genus g. This is the subgroup of the map-
ping class group of Sg consisting of elements that act trivially on
H1(Sg;Z) and that commute with some fixed hyperelliptic involu-
tion of Sg. We prove that the cohomological dimension of SI(Sg)
is g − 1 when g ≥ 1. We also show that Hg−1(SI(Sg);Z) is infin-
itely generated when g ≥ 2. In particular, SI(S3) is not finitely
presentable. Finally, we apply our main results to show that the
kernel of the Burau representation of the braid group Bn at t = −1
has cohomological dimension equal to the integer part of n/2, and
it has infinitely generated homology in this top dimension.

1. Introduction

Let Sg denote the closed, connected, orientable surface of genus g, and
let s be some fixed hyperelliptic involution of Sg. The mapping class
group Mod(Sg) is the group of isotopy classes of orientation-preserving
homeomorphisms of Sg, and the hyperelliptic Torelli group SI(Sg) is
the subgroup of Mod(Sg) consisting of elements that commute with
the homotopy class of s and that act trivially on H1(Sg;Z). The group
SI(Sg) arises, for example, as the fundamental group of the branch lo-
cus of the period mapping [12, Section 4]. Also, for small g, Ellenberg
[9] gives a description of the Sp(2g,Z)-module structure of the coho-
mology of the full Torelli group (see below) in terms of the cohomology
of SI(Sg).

Cohomological dimension. The cohomological dimension cd(G) of a
group G is the supremum over all n so that there exists a G-module M
withHn(G;M) 6= 0. If a group G has torsion, then cd(G) = ∞. On the
other hand, if G contains a torsion-free subgroup H of finite index, then
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we can define the virtual cohomological dimension vcd(G) = cd(H). It
is a theorem of Serre that vcd(G) is well defined [25, Théorème 1].

Main Theorem 1. For g ≥ 1, we have cd(SI(Sg)) = g − 1.

Dimensions of Torelli groups. Let I(Sg) denote the Torelli group

of Sg, that is, the subgroup of Mod(Sg) consisting of elements that
act trivially on H1(Sg;Z). Let K(Sg) denote the subgroup of I(Sg)
generated by Dehn twists about separating simple closed curves. It is a
fact that SI(Sg) is a subgroup of K(Sg); this follows immediately from
the naturality property of Johnson’s homomorphism τ [18, Lemma 2D]
and Johnson’s theorem that K(Sg) = ker(τ) [19, Theorem 6].

Since

Mod(Sg) > I(Sg) ≥ K(Sg) ≥ SI(Sg),

it follows from Fact 4.1 below that the dimensions of these groups also
form a decreasing sequence. For g ≥ 2, we in fact have the following:

vcd(Mod(Sg)) = 4g − 5

cd(I(Sg)) = 3g − 5

cd(K(Sg)) = 2g − 3

cd(SI(Sg)) = g − 1.

The first equality is due to Harer [13, Theorem 4.1]. An alternate
proof was given by Ivanov [16, Theorem 6.6]. The lower bound of
4g−5 was also given by Mess [21, Proposition 1], and the upper bound
follows from work of Culler–Vogtmann [8]. The inequality cd(I(Sg)) ≥
3g − 5 was proven by Mess [21, Proposition 1], and the inequality
cd(I(Sg)) ≤ 3g−5 was proven by Bestvina–Bux–Margalit [1, Theorem
A]. The dimension cd(K(Sg)) was computed by Bestvina–Bux–Margalit
[1, Theorem B].

In the case g = 2, the groups I(S2), K(S2), and SI(S2) are all equal
(combine [3, Theorem 8] with [24, Theorem 2]1). This agrees with the
fact that 3g − 5, 2g − 3, and g − 1 are all equal when g = 2.

The hyperelliptic Johnson filtration. The Johnson filtration of
Mod(Sg) is the sequence of groups Nk(Sg) defined by:

Nk(Sg) = ker(Mod(Sg) → Out(π1(Sg)/π
k
1(Sg))),

1Powell states his result for g ≥ 3, but his proof holds in the case g = 2.
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where πk
1(Sg) is the kth term of the lower central series for π1(Sg). By

definition, N1(Sg) = Mod(Sg) and N2(Sg) = I(Sg). It is a theorem of
Johnson that N3(Sg) = K(Sg) [19]. An argument of Farb [10, Theorem
5.10] and the fact that Nk(Sg) ≤ K(Sg) for k ≥ 3 gives

g − 1 ≤ cd(Nk(Sg)) ≤ 2g − 3

for g ≥ 2 and k ≥ 3 (see Fact 4.1 below).

We may also consider the groups SN k(Sg) = Nk(Sg) ∩ SMod(Sg). For
k ≥ 1, we have SN k(Sg) ≤ SI(Sg), and so cd(SN k(Sg)) ≤ g − 1 for
g ≥ 1 and k ≥ 1. On the other hand, we will prove in Proposition 4.14
below that SN k(Sg) contains a subgroup isomorphic to Z

g−1 for g ≥ 1
and k ≥ 1. Therefore, we have the following theorem.

Theorem 1.1. For g ≥ 1 and k ≥ 1, we have

cd(SN k(Sg)) = g − 1.

Top-dimensional homology. Bestvina–Bux–Margalit proved that
the top-dimensional homology of I(Sg) is infinitely generated [1, The-
orem C]. We prove the analogous result for SI(Sg).

Main Theorem 2. For g ≥ 2, the group Hg−1(SI(Sg);Z) is infinitely
generated.

Since I(S1) is trivial, Main Theorem 2 does not hold for g = 1. Mess
proved that SI(S2) = I(S2) is an infinite rank free group [22, Propo-
sition 4], from which it immediately follows that H1(SI(S2);Z) is in-
finitely generated.

It is not known in general whether or not the groups SI(Sg) are finitely
generated or finitely presented for g ≥ 3. However, we have the follow-
ing immediate consequence of Main Theorem 2.

Corollary 1.2. The group SI(S3) is not finitely presentable.

The Burau representation. Let Burn denote the kernel of the re-
duced Burau representation at t = −1. In Section 5, we explain the
precise connection between Burn and the hyperelliptic Torelli group.
We obtain the following theorem.

Theorem 1.3. For n ≥ 5, we have

cd(Burn) =
⌊n

2

⌋

.

Also, H⌊n
2 ⌋
(Burn;Z) is infinitely generated.
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Our approaches to proving our main theorems are modeled on the
arguments of the paper by Bestvina–Bux–Margalit [1]. On the other
hand, some of the details are more subtle in the present situation, and
we place most of our emphasis on these points.

Acknowledgments. We would like to thank Joan Birman and the
referee for their comments on earlier drafts. We also thank Alastair
Craw for helpful conversations.

2. The complex of symmetric cycles

Our main theorems will be proven by analyzing the action of SI(Sg) on
a contractible complex SBx(Sg), which we define in this section. This
complex is a symmetric version of the complex of minimizing cycles
introduced by Bestvina–Bux–Margalit [1].

Fix some nonzero x ∈ H1(Sg;Z). The complex SBx(Sg) will be defined
as a certain set of isotopy classes of 1-cycles in Sg representing x. The
complex does depend on the choice of x (there are finitely many iso-
morphism types of complexes for the infinitely many choices of x), but
the main feature of SBx(Sg), its contractibility, will not depend on x.

A 1-cycle in Sg is a finite formal sum
∑

kici

where ki ∈ R, and each ci is an oriented simple closed curve in Sg; the
set {ci : ki 6= 0} is called the support. We say that the 1-cycle is simple

if the curves of the support are pairwise disjoint, and we say that it is
positive if each ki is positive.

Let S denote the set of isotopy classes of oriented simple closed curves
in Sg. We may regard the isotopy class of a simple, positive 1-cycle in
Sg as an element of RS

≥0, the space of functions S → R≥0.

For an oriented simple closed curve (or 1-cycle) c, we denote by
←

c the
reverse of c, that is, the curve (or 1-cycle) obtained by reversing the
orientation of c. A 1-cycle σ is skew-symmetric (with respect to the
hyperelliptic involution s) if s(σ) =

←

σ.

A skew-symmetric pair of curves in Sg is a pair of disjoint, oriented
simple closed curves in Sg interchanged and reversed by s, that is, a
pair of disjoint, oriented curves of the form {c, s(

←

c)}. Both curves in a
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skew-symmetric pair must be nonseparating. This follows, for example,
from the fact that s acts by −I on H1(Sg;Z).

A skew-symmetric multicurve in Sg is a nonempty collection of skew-
symmetric pairs of curves in Sg that are homotopically nontrivial, pair-
wise disjoint, and pairwise non-homotopic. Note that a skew-symmetric
multicurve has no connected components that are preserved by s. Also,
two simple closed curves lying in a given skew-symmetric multicurve
can only be isotopic only if they lie in the same skew-symmetric pair.

A basic skew-symmetric cycle is a positive, skew-symmetric 1-cycle
n
∑

i=1

ki
2
(ci + s(

←

ci))

where the support {ci, s(
←

ci)} is a skew-symmetric multicurve, and where
the [ci] form a linearly independent subset of H1(Sg;R).

Let SM denote the set of isotopy classes of skew-symmetric multic-
urves in Sg that are unions of supports of basic skew-symmetric cycles
representing x.

Let M = {c1, s(
←

c1), . . . , cm, s(
←

cm)} be a skew-symmetric multicurve
whose isotopy class [M ] lies in SM. The set

PM =

{

(k1, . . . , km) ∈ R
m
≥0 :

m
∑

i=1

ki
2
(ci + s(

←

ci)) is a skew-symmetric

1-cycle representing x}

is a convex polytope in R
m
≥0. Indeed, it is the convex hull of the points

corresponding to basic skew-symmetric cycles representing x. The faces
of PM correspond exactly to skew-symmetric multicurves M ′ ⊆ M with
[M ′] ∈ SM.

The cell complex SBx(Sg) is defined as follows: the set of cells is

{PM : [M ] ∈ SM}.

We identify two cells if they are equal in R
S
≥0 and endow the quotient

with the weak topology. We refer to SBx(Sg) as the complex of sym-

metric cycles.

Theorem 2.1. Let g ≥ 1, and let x ∈ H1(Sg;Z) be any primitive

element. The complex SBx(Sg) is contractible.
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Bestvina–Bux–Margalit studied a complex Bx(Sg) on which SBx(Sg)
is modeled. Theorem 2.1 can be proven in the same way as the con-
tractibility of Bx(Sg); see [1, Theorem E] and [14, Proposition 7]. The
only thing to check is that their functions Drain and Surger preserve
skew-symmetry. But this is easy to verify. Thus, we do not repeat the
proof.

The quotient map Sg → Sg/〈s〉 is a branched cover of Sg over a sphere
S0,2g+2 with 2g+2 cone points of order two, namely, the images of the
2g + 2 fixed points of s.

For our purposes, the cone points are simply marked points; we only
use this terminology to distinguish these 2g + 2 points from other
marked points. When we discuss simple closed curves (and homotopies
of curves) in S0,2g+2, we treat cone points (and all marked points) as
if they are punctures. So, for instance, curves are not allowed to pass
through cone points.

The image of any skew-symmetric multicurve M under the quotient
Sg → S0,2g+2 is an unoriented multicurve M in S0,2g+2, that is, a collec-
tion of essential, pairwise disjoint, pairwise nonhomotopic simple closed
curves in S0,2g+2. Let Z = Z(M) denote the number of components
of S0,2g+2 −M that do not contain any of the 2g + 2 cone points, and
let P = P (M) denote the number of components that do contain cone
points.

Proposition 2.2. For any [M ] ∈ SM, we have

dim(PM) = Z.

Proof. Let W denote the space of all 1-cycles that represent x and
that are supported in M . This is a plane in R

|M |, whose dimension
is one fewer than the number of complementary components of M in
Sg; see [1, Lemma 2.1] and [14, Proposition 5]. The number of such
components is precisely P + 2Z.

Let σ ∈ W . For each skew-symmetric pair {ci, s(
←

ci)} in M , there is a
line in W through σ of the form

{σ + tci − t(s(
←

ci)) | t ∈ R};

indeed, [tci − t(s(
←

ci))] = 0 in H1(Sg;Z). These lines are linearly in-
dependent in R

|M | (their direction vectors are nonzero in different co-
ordinates) and so they determine an |M |-dimensional plane U inside
W .
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The cell PM is contained in the intersection of W with the subspace
of R|M | cut out by the conditions that, for each skew-symmetric pair
{ci, s(

←

ci)}, the coefficients of ci and s(
←

ci) are equal (specifically, PM is
the intersection of this plane with the positive orthant in R

|M |). These
|M | conditions specify a unique point in U . Thus, the dimension of
PM is |M | less than the dimension of W :

dim(PM) = P + 2Z − 1− |M | = P + 2Z − 1− (P + Z − 1) = Z,

as desired. �

3. The Birman–Hilden theorem

Let SHomeo+(Sg) denote the group of orientation-preserving homeo-
morphisms of Sg that commute with the hyperelliptic involution s. We
define the hyperelliptic mapping class group SMod(Sg) to be the group
of isotopy classes of elements of SHomeo+(Sg). We do not, a priori, re-
quire the isotopies to be s-equivariant. Thus, SMod(Sg) is a subgroup
of Mod(Sg).

There is a short exact sequence

1 → 〈s〉 → SHomeo+(Sg) → Homeo+(S0,2g+2) → 1.

This is useful because S0,2g+2 is a simpler object than Sg. As such,
one would hope for an analogous short exact sequence on the level of
mapping class groups. Birman–Hilden proved that this is indeed the
case [3, Theorem 7], that is, for g ≥ 2, there is a short exact sequence:

1 → 〈[s]〉 → SMod(Sg) → Mod(S0,2g+2) → 1.

This theorem amounts to the fact that, if an element of SHomeo+(Sg)
is isotopic to the identity, then it is isotopic to the identity within
SHomeo+(Sg).

We require a souped-up version. Let P be a set of 2p marked points in
Sg and say that s interchanges the points of P in pairs. Let P denote
the image of P in S0,2g+2. Let SMod(Sg, P ) be the set of isotopy classes
of orientation-preserving homeomorphisms of Sg that commute with s
and preserve the set P . Similarly, define Mod(S0,2g+2, P ) as the set
of isotopy classes of orientation-preserving homeomorphisms of S0,2g+2

that preserve the set of 2g + 2 cone points and preserve the set P .

We have the following generalized short exact sequence, also due to
Birman–Hilden [4, Theorem 1].
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Theorem 3.1. Let g ≥ 1. If g = 1, assume that p > 0. There is a

short exact sequence:

1 → 〈[s]〉 → SMod(Sg, P ) → Mod(S0,2g+2, P ) → 1.

The conclusion of Theorem 3.1 does not hold as stated for the case
where g = 1 and p = 0. Indeed, consider the element φ of SHomeo+(T 2)
that is rotation by π in one of the two circle factors. Let φ denote the
image of φ in Homeo+(S0,4). The mapping class [φ] is trivial, but the

mapping class [φ] is nontrivial, as it induces a nontrivial permutation
of the cone points of S0,4. Thus, we do not have a natural well-defined
map SMod(T 2) → Mod(S0,4).

We can, however, modify Theorem 3.1 in the case g = 1, p = 0.
First of all, each element of Mod(T 2) has a (linear) representative that
commutes with s, and so SMod(T 2) ∼= Mod(T 2). Second, there is a
non-canonical isomorphism Mod(T 2) → Mod(T 2, p), where p is one
of the fixed points of s. The reason for this is that each element of
Mod(T 2) has a (linear) representative that fixes the image of the origin
under the covering map R

2 → T 2.

Let p denote the image of p in S0,4, and let Mod(S0,4, p) denote the
subgroup of Mod(S0,4) consisting of elements that fix the marked point
p. We have the following special case of the Birman–Hilden theorem.

Theorem 3.2. There is a short exact sequence:

1 → 〈[s]〉 → SMod(T 2) → Mod(S0,4, p) → 1.

Note that, in the statement of Theorem 3.2, the group Mod(S0,4, p) is
a subgroup of Mod(S0,4), not Mod(S0,5), since p is already a cone point
of S0,4.

4. Cohomological dimension

In this section, we prove Main Theorem 1, which states that cd(SI(Sg)) =
g− 1. We start by showing that cd(SI(Sg)) ≥ g− 1 (Proposition 4.2).

We will use the following fact [7, Chapter VIII, Proposition 2.4].

Fact 4.1. If H is a subgroup of a group G, then cd(H) ≤ cd(G).

Proposition 4.2. For g ≥ 1, we have cd(SI(Sg)) ≥ g − 1.
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Proof. We can find a collection of g − 1 mutually disjoint, essential,
homotopically distinct, separating simple closed curves in Sg that are
fixed by s. The Dehn twists about these curves generate a subgroup
of SI(Sg) that is isomorphic to Z

g−1 [11, Lemma 3.17]. It is a basic
fact that cd(Zn) = n for any n ≥ 0; see [7, Section VIII.2]. Applying
Fact 4.1, we deduce the desired lower bound. �

We now aim to show that cd(SI(Sg)) ≤ g− 1 (Proposition 4.13). Our
basic tool is the following fact [7, Section VIII.2, Exercise 4].

Proposition 4.3. Suppose that a group G acts on a contractible cell

complex X. We have

cd(G) ≤ sup
τ

{cd(StabG(τ)) + dim(τ)}

where the supremum is taken over all cells τ of X.

Of course, we will apply Proposition 4.3 to the case of the SI(Sg)
action on the complex of symmetric cycles SBx(Sg).

4.1. The Birman exact sequence and dimension. Let Sg,n de-
note a closed, connected, orientable surface of genus g with n > 0
marked points. The group Mod(Sg,n) is the group of isotopy classes of
orientation-preserving homeomorphisms of Sg that preserve the set of
n marked points.

Assume 2g + n > 3. Denote the nth marked point of Sg,n by p, and
let Mod(Sg,n, p) denote the subgroup of Mod(Sg,n) preserving p. There
is a natural map Mod(Sg,n, p) → Mod(Sg,n−1) obtained by forgetting
that p is marked. The Birman exact sequence [2, Section 1] identifies
the kernel:

1 → π1(Sg,n−1, p) → Mod(Sg,n, p) → Mod(Sg,n−1) → 1.

Let PMod(Sg,n) denote the subgroup of Mod(Sg,n) consisting of ele-
ments that induce the trivial permutation of the marked points. We
also have the restriction:

1 → π1(Sg,n−1, p) → PMod(Sg,n) → PMod(Sg,n−1) → 1.

We would like to use the Birman exact sequence to gain information
about the cohomology of Mod(Sg,n) and its subgroups. The key is the
following fact [7, Chapter VIII, Proposition 2.4].

Fact 4.4. Suppose we have a short exact sequence of groups

1 → K → G → Q → 1.
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Then cd(G) ≤ cd(K) + cd(Q).

Proposition 4.5. For n ≥ 3 we have

cd(PMod(S0,n)) ≤ n− 3.

Proof. The group PMod(S0,3) is trivial [11, Proposition 2.3], and hence
it has cohomological dimension 0. Since π1(S0,n) is a free group, it has
cohomological dimension (at most) 1. The proposition then follows by
applying the Birman exact sequence and Fact 4.4 inductively. �

In the case of g ≥ 1, we will require the following more delicate bound
on cohomological dimension. As above, PMod(Sg, P ) is the group of
isotopy classes of homeomorphisms of Sg fixing each point in P .

Proposition 4.6. Let g ≥ 1. Suppose P is a set of p pairs of marked

points in Sg, where the points in each pair are identified by s. Let H
be some subgroup of SMod(Sg) with [s] /∈ H. Let F : SMod(Sg, P ) ∩
PMod(Sg, P ) → SMod(Sg) be the forgetful map, and let G be a subgroup

of F−1(H). Then cd(G) ≤ cd(H) + p.

Proof. Let P denote the image of P in S0,2g+2. Since [s] /∈ PMod(Sg, P ),
the Birman–Hilden theorem (Theorems 3.1 and 3.2) implies that the
groups F−1(H) and H are identified isomorphically with their images
in Mod(S0,2g+2, P ) and Mod(S0,2g+2), respectively. Applying the Bir-
man exact sequence inductively, and using Fact 4.4 and the fact that
cd(π1(S0,n)) = cd(Fn−1) = 1, we obtain cd(F−1(H)) ≤ cd(H) + p.
By Fact 4.1, we have cd(G) ≤ cd(F−1(H)), and the proposition fol-
lows. �

4.2. Dimensions of cell stabilizers. In this section, we fix some
g ≥ 2 and we fix some skew-symmetric multicurve M with [M ] ∈ SM.
The stabilizer of [M ] in SI(Sg) is exactly the stabilizer of the cell
PM ⊆ SBx(Sg) in SI(Sg).

As above, we denote the image of M in Sg/〈s〉 ∼= S0,2g+2 by M . Say

that S0,2g+2 − M has P connected components that contain some of
the 2g+2 cone points and Z components that do not contain any cone
points. Denote these subsurfaces by R1, . . . , RP and RP+1, . . . , RP+Z ,
respectively.

Say that Ri contains ki cone points and that the preimage Ri of Ri

in Sg has genus gi. Denote the number of components of M in the
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boundary of Ri by pi, so each Ri is homeomorphic to a sphere with
ki cone points and pi punctures. For our purposes, punctures play the
same role as marked points.

Lemma 4.7. Let 1 ≤ i ≤ P . Then Ri is homeomorphic to Sgi,2pi,

where gi = (ki − 2)/2.

Proof. By the Riemann–Hurwitz formula [11, Section 7.2.2], the orb-
ifold Euler characteristic of Ri is

χ(Ri) = 2− pi − ki/2.

Since orbifold Euler characteristic is multiplicative under orbifold cov-
ering maps, we have

χ(Ri) = 4− 2pi − ki.

Now, to each curve of M , there corresponds exactly two curves of M .
Therefore, Ri has 2pi punctures. Also, when ki > 0, the cover Ri has
one connected component. Plugging the last two facts into the general
formula χ(Sg,n) = 2−2g−n, we obtain a second formula for the Euler
characteristic of Ri:

χ(Ri) = 2− 2gi − 2pi.

Combining our two formulas for χ(Ri), we find that gi = (ki−2)/2. �

Lemma 4.8. We have
P
∑

i=1

gi = g − P + 1.

Proof. Combining Lemma 4.7 with the fact that
∑

ki = 2g + 2, we
have

P
∑

i=1

gi =

P
∑

i=1

ki − 2

2
=

(

1

2

P
∑

i=1

ki

)

− P =
2g + 2

2
− P = g − P + 1.

�

Lemma 4.9. We have

|M |+ 1 = P + Z.

Proof. The quantity on the right hand side is the total number of com-
ponents of S0,2g+2 −M . Since S0,2g+2 is a sphere, the number of com-

plementary components is |M |+ 1. �
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Let G(M) be the free abelian group generated by the Dehn twists in
the curves of M .

Lemma 4.10. The group G(M) ∩ SI(Sg) is trivial.

Proof. Because M contains no separating curves (see Section 2), the
intersection G(M)∩K(Sg) is trivial [1, Theorem A.1]. As in the intro-
duction, SI(Sg) < K(Sg). The lemma follows. �

Lemma 4.11. Assume that Main Theorem 1 is true for all genera

between 1 and g − 1 inclusive. We have

cd(StabSI(Sg)(M)) ≤ g − 1− Z.

Proof. There is a short exact sequence

1 → G(M) → StabMod(Sg)(M) → Mod(Sg −M) → 1

(see [11, Proposition 3.20]). SinceG(M)∩SI(Sg) is trivial (Lemma 4.10),
StabSI(Sg)(M) is isomorphic to its image G in SMod(Sg −M).

By a theorem of Ivanov, each element of G fixes each Ri and fixes
each puncture of each Ri [17, Theorem 3]. Thus for each i there is a
well-defined map StabSI(Sg)(M) → PMod(Ri) ∩ SMod(Ri) (we define
SMod(Ri) in the usual way); denote the image by Gi. The group G is
contained in

∏

Gi. By Fact 4.4, cd(G) ≤
∑

cd(Gi).

We claim that

(1) for 1 ≤ i ≤ P , we have cd(Gi) ≤ gi − 1 + pi, and
(2) for P + 1 ≤ i ≤ P + Z, we have cd(Gi) ≤ pi − 3.

We start with the first statement. If ki = 2, then gi = 0. Specifically,
Ri is a sphere with pi punctures and two cone points. By the Birman–
Hilden theorem [4], there is an injective homomorphism PMod(Ri) ∩
SMod(Ri) → Mod(Ri). Each element of the image fixes each of the
pi punctures. Because the image of SI(Sg) in Mod(S0,2g+2) lies in
PMod(S0,2g+2) (see [6]), the image of Gi in Mod(Ri) lies PMod(Ri) ∼=
PMod(S0,pi+2). By Proposition 4.5, Fact 4.1, and the fact that gi = 0,
we have cd(Gi) ≤ cd(PMod(Ri)) ≤ (pi + 2)− 3 = gi − 1 + pi.

Now assume ki > 2, i.e., gi > 0. By filling in the punctures of Ri,
we obtain a forgetful map PMod(Ri) ∩ SMod(Ri) → SMod(Sgi). The
image of Gi under this map is a subgroup of SI(Sgi) [1, Lemma 5.10].
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By induction, we have cd(SI(Sgi)) ≤ gi − 1. By Proposition 4.6, we
have cd(Gi) ≤ gi − 1 + pi.

We now address the second statement, which treats the case where
ki = 0. The surface Ri is homeomorphic to a sphere with pi punctures.
As in the previous case, the group Gi is isomorphic to a subgroup
of PMod(Ri). By Fact 4.1 then, cd(Gi) ≤ cd(PMod(Ri)). But by
Proposition 4.5, the latter is at most pi − 3.

We now have

cd(StabSI(Sg)(M)) = cd(G)

≤
∑

cd(Gi)

≤
P
∑

i=1

(gi − 1 + pi) +

P+Z
∑

i=P+1

(pi − 3)

=

P
∑

i=1

gi +

P+Z
∑

i=1

pi − P − 3Z

= (g − P + 1) + 2|M | − P − 3Z

= g − 1− Z + 2
(

|M |+ 1− P − Z
)

= g − 1− Z.

The first equality and first inequality follow from the above discussion.
The second inequality is the content of the claim. The third equality
follows from Lemma 4.8 and the fifth equality from Lemma 4.9. The
other two equalities are just algebra. �

4.3. Finishing the proof of Main Theorem 1. Combining Propo-
sition 2.2 and Lemma 4.11 we obtain the following.

Proposition 4.12. Assume that Main Theorem 1 is true for all genera

between 1 and g − 1 inclusive. For any cell τ in SBx(Sg), we have

cd(StabSI(Sg)(τ)) + dim(τ) ≤ g − 1.

We can now obtain the following upper bound for cd(SI(Sg)) by in-
duction on g and applying Propositions 4.3 and 4.12

Proposition 4.13. For g ≥ 1, we have cd(SI(Sg)) ≤ g − 1.

Propositions 4.2 and 4.13 immediately imply Main Theorem 1.
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4.4. The hyperelliptic Johnson filtration. We now give a variant
of Proposition 4.2 which, together with our Main Theorem 1, gives
Theorem 1.1.

Proposition 4.14. For g ≥ 1 and k ≥ 1, we have cd(SN k(Sg)) ≥
g − 1.

Proof. Let c1, . . . , cg−1 denote the separating simple closed curves from
the proof of Proposition 4.2. We can find disjoint nonseparating simple
closed curves a1, . . . , ag−1 fixed by s and with the properties that the
geometric intersection numbers i(ai, ci) are all equal to 2 and i(ai, cj) =
0 for i 6= j. For each i, define di = Tai(ci), where Tai is the Dehn
twist about ai. By construction, each di is fixed by s. Also, we have
i(ci, di) = 4 and i(ci, dj) = 0 when i 6= j.

Fix some k ≥ 1 and some i. As in Farb’s proof of the lower bound
cd(Nk(Sg)) ≥ g− 1 [10, Theorem 5.10], some element γi,k of the group
〈Tci, Tdi〉 lies in Nk(Sg). Since each γi,k lies in SMod(Sg), the group
〈γ1,k, . . . , γg−1,k〉 lies in SN k(Sg). Since the γi,k all have infinite order
and are supported on pairwise disjoint subsurfaces of Sg, we in fact see
that this group is a free abelian group of rank g − 1. The proposition
now follows from Fact 4.1. �

5. Infinite generation of top homology

In this section, we prove Main Theorem 2. The basic strategy is to
employ the following fact, which is a consequence of the Cartan–Leray
spectral sequence [1, Fact 8.2].

Proposition 5.1. Suppose a group G acts without rotations on a con-

tractible cell complex X. Suppose that for each cell τ of X we have

cd(StabG(τ)) + dim(τ) ≤ D.

Then for any vertex v of X, the group HD(StabG(v);Z) injects into

HD(G;Z).

We will apply Proposition 5.1 to the case of the SI(Sg) action on
SBx(Sg). By Proposition 4.12, it suffices to show that the group
Hg−1(StabSI(Sg)(v);Z) is infinitely generated for some choice of vertex
v of SBx(Sg).
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We proceed by induction on g. By Mess’s theorem that I(S2) is an
infinite rank free group [22, Proposition 4], Main Theorem 2 holds for
g = 2. Now assume that g ≥ 3.

Let v be a vertex of SBx(Sg) corresponding to a skew-symmetric non-
separating curve (or, a skew-symmetric pair where the two curves in
the pair are homotopic), and let StabSI(Sg)(v) denote the stabilizer of
v in SI(Sg). There is a splitting

StabSI(Sg)(v)
∼= SI(Sg−1)⋉K,

where K is an infinite rank free group [5, Theorem 4.11 plus Lemma
5.8]. What is more, K contains a Dehn twist Tc, where c is a symmetric
separating curve in Sg cutting off a handle containing v. It follows from
the explicit description of the splitting that Tc is fixed by the action of
SI(Sg−1).

Now, whenever we have a semidirect product of groups G⋉K, where
p = cd(G) and q = cd(K) are finite, we haveHp+q(G⋉K) ∼= Hp(G,Hq(K)).
This follows, for instance, from the Hochschild–Serre spectral sequence;
see [15] and [1, Fact 8.1]. We thus obtain

Hg−1(StabSI(Sg)(v);Z)
∼= Hg−2(SI(Sg−1);H1(K;Z)).

Johnson defined a homomorphism that maps K(Sg) to a free abelian
group and maps each Dehn twist in K(Sg) nontrivially [23, Proposition
1.1]. Since K < SI(Sg) < K(Sg), it follows that A = 〈[Tc]〉 is a free
submodule of H1(K;Z).

Since A is torsion free, the universal coefficients theorem gives us

Hg−2(SI(Sg−1);A) ∼= Hg−2(SI(Sg−1);Z)⊗A.

Because A is a trivial SI(Sg−1)-module, the latter is infinitely gener-
ated by induction.

It thus remains to show that Hg−2(SI(Sg−1);A) injects into the group
Hg−2(SI(Sg−1);H1(K;Z)). The short exact sequence

1 → A → H1(K;Z) → H1(K;Z)/A → 1

induces a long exact sequence of homology groups:

· · · → Hg−1(SI(Sg−1);H1(K;Z)/A) → Hg−2(SI(Sg−1);A)

→ Hg−2(SI(Sg−1);H1(K;Z)) → · · · .

By Main Theorem 1, the first term shown is trivial.
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Thus, Hg−2(SI(Sg−1);H1(K;Z)) ∼= Hg−1(StabSI(Sg)(v);Z) is infinitely
generated. By Propositions 5.1 and 4.12, our Main Theorem 2 is
proven.

Application to the Burau representation. Let v be a vertex
of SBx(Sg) corresponding to a skew-symmetric nonseparating curve.
There are isomorphisms

Bur2g+1
∼= SI(Sg)× Z and

Bur2g+2
∼= StabSI(Sg+1)(v)× Z

when g ≥ 2; see [5, Lemma 5.8], [6], and [20].

The group StabSI(Sg+1)(v) is isomorphic to SI(Sg) ⋉ F∞. Thus, by
Main Theorem 1 and Fact 4.4, we have cd(StabSI(Sg+1)(v)) ≤ g. On the
other hand, we showed above that Hg(StabSI(Sg+1)(v);Z) is infinitely
generated, so in fact cd(StabSI(Sg+1)(v)) = g. Theorem 1.3 now follows
immediately from the Künneth formula.
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