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Abstract. The hyperelliptic Torelli group is the subgroup of the mapping class
group consisting of elements that act trivially on the homology of the surface and
that also commute with some fixed hyperelliptic involution. The authors and Put-
man proved that this group is generated by Dehn twists about separating curves
fixed by the hyperelliptic involution. In this paper, we introduce an algorithmic
approach to factoring a wide class of elements of the hyperelliptic Torelli group
into such Dehn twists, and apply our methods to several basic elements.

1. Introduction

Let s : S1
g → S1

g be a hyperelliptic involution of a surface of genus g with one

boundary component; see Figure 1. The hyperelliptic Torelli group SI(S1
g ) is the

group of homeomorphisms of S1
g that commute with s, restrict to the identity on ∂S1

g ,

and act trivially on H1(S
1
g), modulo isotopy. This group arises as the fundamental

group of each component of the branch locus of the period mapping and also as the
kernel of the Burau representation at t = −1; see [7].

. . .

Figure 1. Rotation by π about the indicated axis is a hyperelliptic involution.

The simplest nontrivial element of SI(S1
g ) is a Dehn twist about a symmetric

separating curve, that is, a separating curve fixed by s. Hain conjectured SI(S1
g )

is generated by such elements, and the authors recently proved this conjecture with
Putman [5]. There are two other basic elements of SI(S1

g ):

Symmetric simply intersecting pair maps: If x and y are symmetric non-
separating curves with vanishing algebraic intersection ı̂(x, y), then the com-
mutator of their Dehn twists [Tx, Ty] lies in SI(S1

g ); see Figure 2.
Symmetrized simply intersecting pair maps: If u1, v1, u2, and v2 are

nonseparating curves with |u1∩v1| = 2, ı̂(u1, v1) = 0, s(u1) = u2, s(v1) = v2,
and (u1∪v1)∩(u2∩v2) = ∅, then [Tu1

Tu2
, Tv1Tv2 ] lies in SI(S1

g ); see Figure 2.
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When the authors first learned of Hain’s conjecture, it seemed intractable because
we did not know how to factor these elements into Hain’s proposed generators. In
this paper, we not only give relatively simple factorizations for both, but we also
give an algorithm for factoring a much wider class of elements. We expect that our
relations will play a role for SI(S1

g ) analogous to the critical role that the classical
lantern relation has played in our understanding of the full Torelli group.

The group SI(S1
g) is isomorphic to the kernel of the Burau representation of the

braid group B2g+1 evaluated at t = −1. In another paper [2], we use the idea from
our factorization algorithm to derive a “squared lantern relation” and we use it to
characterize the kernel of the Burau representation at t = −1, modulo 4.

Higher genus twists. The genus of a separating curve in S1
g is the genus of the

complementary component not containing ∂S1
g . In our earlier paper [4], we showed

that a Dehn twist about a symmetric separating curve of arbitrary genus is equal to
a product of Dehn twists about symmetric separating curves of genus 1 and 2. In
particular, by our theorem with Putman, SI(S1

g) is generated by Dehn twists about
such curves. As an application of the methods of this paper, we give an explicit
factorization of the Dehn twist about any genus k ≥ 3 symmetric separating curve
into Dehn twists about symmetric separating curves of smaller genus.

y

x

u1
v1

u2 v2

Figure 2. Left: The curves x and y form a symmetric simply inter-
secting pair. Right: the curves u1, v1, u2, and v2 form a symmetrized
simply intersecting pair.

Algorithmic factorizations. Let a be a symmetric nonseparating curve in S1
g , and

denote by SI(S1
g , a) the stabilizer of the isotopy class of a in SI(S1

g ). There is an

s-equivariant inclusion S1
g − a → S1

g−1 and this induces a surjective homomorphism

SI(S1
g , a) → SI(S1

g−1) [4, Proposition 6.6]. We denote the kernel by SIBK(S1
g , a):

1 → SIBK(S1
g , a) → SI(S1

g , a) → SI(S1
g−1) → 1.

Theorem 1.1. There is an explicit algorithm for factoring arbitrary elements of

SI(S1
g , a) into Dehn twists about symmetric separating curves of genus 1 and 2.

The idea is to identify SIBK(S1
g , a) with a subgroup of the fundamental group

of a disk with 2g − 1 points removed. Then the problem of factoring elements of
SIBK(S1

g , a) into Dehn twists about symmetric separating curves is translated into
a problem of finding special factorizations of certain elements of this free group.

Given any symmetric simply intersecting pair map or symmetrized simply inter-
secting pair map, we can find a curve a so that the given map lies in SIBK(S1

g , a);
choose a to be the core of any annular region in the complement of the union of the
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defining curves of the map. Therefore, we can understand both types of maps in
the context of Theorem 1.1.

If c is a genus k symmetric separating curve in S1
g , then we can choose a genus k−1

symmetric separating curve d and a symmetric nonseparating curve a so that TcT
−1
d

lies in the corresponding SIBK(S1
g , a); we take a to lie in the genus 1 subsurface

between c and d. Therefore, by Theorem 1.1, we can factor TcT
−1
d into a product

of Dehn twists about symmetric separating curves of genus 1 and 2.
We emphasize that the existence of this algorithm does not guarantee that one can

find a simple factorization for a given element of SIBK(S1
g , a). The factorizations

we give in this paper were only found after much trial and error (cf. [3]). Their
relative tameness suggests that SI(S1

g ) is more tractable than originally believed.
Finally, we can obtain factorizations in the hyperelliptic Torelli group of a closed

surface Sh by including S1
g into Sh where h ≥ g; the induced map SI(S1

g ) → SI(Sh)
is injective if h > g and has cyclic kernel 〈T∂S1

g
〉 otherwise; see [4, Theorem 4.2].

Acknowledgments. First, we would like to thank Andrew Putman for suggesting
the problem of factoring the symmetrized simply intersecting pair maps. We would
also like to thank Mladen Bestvina, Joan Birman, Leah Childers, and an anonymous
referee for helpful comments and conversations. Our work was greatly aided by the
Maple program β-Twister, written by Marta Aguilera and Juan González-Meneses.

2. The factoring algorithm

In this section we explain how to algorithmically factor an arbitrary element of
SIBK(S1

g , a) as per Theorem 1.1.

The setup. We would like to rephrase our problem about factoring elements of
SI(S1

g , a) into a problem about certain factorizations in a free group. We start by
giving some definitions and then outlining the idea.

Let D2g−1 denote a disk with 2g−1 marked points and D◦
2g−1 the punctured disk

obtained by removing the marked points. The fundamental group of D◦
2g−1 is a free

group F2g−1; we take the generators x1, . . . , x2g−1 for F2g−1 to be simple loops in
D2g−1 each surrounding one marked point; see Figure 3.

x2g−1 x2g−2 x1 p· · ·

Figure 3. The generators xi for π1(D
◦
2g−1).

Let F even
2g−1 denote the kernel of the map F2g−1 → Z/2Z given by xi 7→ 1 for all

i; this group is generated by the xδii x
δj
j with i ≤ j and δi ∈ {−1, 1}. Denote the
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generators for Z2g−1 by e1, . . . , e2g−1. Let ǫ : F
even
2g−1 → Z

2g−1 be the homomorphism

given by xδii x
δj
j 7→ ei − ej . We will require the following two facts, explained below.

(1) There is an isomorphism Ψ : SIBK(S1
g , a) → ker ǫ.

(2) ker ǫ is generated by squares of simple loops in D◦
2g−1 about 1 or 3 punctures.

Once we define Ψ, it will be easy to see that squares of simple loops in D◦
2g−1

surrounding 1 or 3 punctures correspond to products of Dehn twists about symmetric
separating curves in S1

g of genus 1 and 2. After discussing the above two facts, we
proceed to explain the factorization algorithm of Theorem 1.1.

The isomorphism Ψ. The isomorphism Ψ was given in our earlier paper [4,
Theorem 1.2]; we recall the construction. In what follows, the mapping class group
of a surface S is the group Mod(S) of isotopy classes of homeomorphisms of S that
restrict to the identity on ∂S and preserve the set of marked points.

The quotient S1
g/〈s〉 is a disk D2g+1 with 2g+1 marked points, and Mod(D2g+1)

is isomorphic to the braid group B2g+1. Let SMod(S1
g) be the subgroup of Mod(S1

g )
with elements represented by s-equivariant homeomorphisms. Birman–Hilden proved
the natural map Θ : SMod(S1

g ) → B2g+1 is an isomorphism [6, Theorem 9.1].

The group SI(S1
g , a) maps to Mod(D2g+1, a), the stabilizer of the isotopy class

of the arc a, the image of a in D2g+1. By collapsing a to a marked point p and
removing the other 2g − 1 marked points to obtain 2g − 1 punctures, we obtain a
homomorphism Ξ : Mod(D2g+1, a) → Mod(D◦

2g−1, p). Since the kernel of Ξ ◦ Θ is

generated by Ta, the restriction Ψ : SI(S1
g , a) → Mod(D◦

2g−1, p) is injective.
We then arrive at the following special case of the Birman exact sequence:

1 → π1(D
◦

2g−1, p) → Mod(D◦

2g−1, p) → Mod(D◦

2g−1) → 1.

The first nontrivial map here is actually an anti-homomorphism, as the usual orders
of operation in the two groups do not agree. Therefore, relations in π1(D

◦
2g−1, p)

will translate to the reverse relations in Mod(D◦
2g−1, p).

The image of SIBK(S1
g , a) under Ψ lies in the kernel π1(D

◦
2g−1, p) of the Bir-

man exact sequence. In our earlier paper [4, Lemma 4.5] we showed that for
α ∈ π1(D

◦
2g−1, p), the action of the lift (Ξ ◦ Θ)−1(α) on H1(S

1
g ;Z) is exactly given

by ǫ(α), and so the image of Ψ is precisely ker ǫ.

Squares of simple loops. If α ∈ π1(D
◦
2g−1, p) is a simple loop surrounding k

punctures, where k is odd, then α2 lies in ker ǫ = ImΨ and Ψ−1(α2) is equal to
TcT

−1
d , where c and d are the preimages in S1

g of the curves obtained by pushing
α off of p to the left and right, respectively, and positive Dehn twists are to the
left. The curves c and d are separating curves of genus (k+1)/2 and (k− 1)/2 (not
necessarily in that order) and a lies in the genus 1 subsurface between them. When
k = 1, note that one of the two separating curves is inessential.

We will now show that these α2 generate ker ǫ. To begin, the image of ǫ is Z2g−1
bal ,

the kernel of the map Z
2g−1 → Z recording the coordinate sum [4, Lemma 5.1].
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Also, the group F even
2g−1 is generated by elements of the form x2i and the xjx1, since

xixj = (xix1)(xjx1)
−1(x2j ) and xix

−1
j = (xix1)(xjx1)

−1,

and Z
2g−1
bal has a presentation whose generators are the images of these generators:

〈ǫ(x21), . . . , ǫ(x
2
2g−1), ǫ(x2x1), . . . , ǫ(x2g−1x1) | ǫ(x

2
i ), [ǫ(xix1), ǫ(xjx1)]〉.

It follows that ker ǫ is normally generated by the set

{x2i | 1 ≤ i ≤ 2g − 1} ∪ {[xix1, xjx1] | 1 ≤ i < j ≤ 2g − 1}.

We notice the following relation in ker ǫ:

[xix1, xjx1] = [x−2
j (xjxix1)

2(x−2
i )x

−1

1 x−2
1 ]xj ,

where xy denotes yxy−1. It now follows that ker ǫ is normally generated by

{x2i | 1 ≤ i ≤ 2g − 1} ∪ {(xjxix1)
2 | 1 ≤ i < j ≤ 2g − 1}.

Referring to Figure 3, we see that each xjxix1 is a simple closed curve in D◦
2g−1

when j > i. In particular, ker ǫ is generated by

{α2 | α is a simple loop surrounding 1 or 3 punctures}.

It follows that SIBK(S1
g , a) is generated by maps of the form Tc where c is a sym-

metric separating curve of genus 1 with a lying on the genus 1 side of c and of
the form TcT

−1
d where c and d are symmetric separating curves of genus 1 and 2,

respectively, with a lying in the genus 1 subsurface between.

The algorithm. We now give an algorithm for factoring arbitrary elements of ker ǫ
in terms of squares of simple loops in D◦

2g−1, each surrounding 1 or 3 punctures.

Suppose we are given some f ∈ SIBK(S1
g , a) as a product of Dehn twists about

symmetric curves in S1
g . We can realize f as an element f of the group Mod(D◦

2g−1, p)
using the following dictionary: a Dehn twist about a symmetric nonseparating curve
c corresponds to a half-twist about the image arc c in D◦

2g−1 and a Dehn twist about
a symmetric separating curve corresponds to the square of the Dehn twist about
the image curve in D◦

2g−1. As above, since f ∈ SIBK(S1
g , a), we know that f lies in

the kernel of the above Birman exact sequence. We can then use Artin’s combing
algorithm for pure braids [1] to write f as a word w0 in the x±1

i .
As above, the word w0 lies in F even

2g−1, and so it equals some word w in the x2i and

the xix1. Since Ψ(f) ∈ ker ǫ, the word w maps to a relator in Z
2g−1
bal with respect to

the presentation given above, that is, w maps to a word in the generators ǫ(x2i ) and
ǫ(xix1) that equals the identity. Therefore, there is a sequence of commutations,
free cancellations, and cancellations of ǫ(x2i )-terms transforming ǫ(w) into the empty
word (this is the obvious solution to the word problem for a free abelian group). By

the correspondence between relators for Z
2g−1
bal and normal generators for ker ǫ, we

obtain a factorization of w into a product of conjugates of the x2i , the [xix1, xjx1],
and their inverses. We already explained above how to factor [xix1, xjx1] into a
product of squares of simple loops surrounding 1 or 3 punctures, so we are done.
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Relations in genus two. Above, we explained how the commutator [xix1, xjx1]
corresponds to an element of SI(S1

2) and we factored this into a product of five
Dehn twists about symmetric separating curves in S1

2 (see [3, Theorem 3.1] for a
picture of the curves). If we cap the boundary of S1

2 with a disk, [xix1, xjx1] maps

to [T 2
c T

−2
e , T 2

b T
−2
d ]T 8

a in SI(S2); see Figure 4. The related (but simpler) element

[TcT
−1
e , TbT

−1
d ]T 2

a also lies in SI(S2) and so is a product of Dehn twists about
symmetric separating curves. Surprisingly, it equals a single (left) Dehn twist.

d
c

b

e

a

f

Figure 4. The curves a, b, c, d, e, and f from Theorem 2.1.

Theorem 2.1. Let a, b, c, d, e, and f be as in Figure 4. We have:

[TcT
−1
e , TbT

−1
d ]T 2

a = Tf .

One can check the relation in Theorem 2.1 using the Alexander Method [6, Section
2.3]; see [3, Section 4.1] for a conceptual proof.

3. Applications

In this section, we give explicit factorizations of symmetric simply intersecting
pair maps and symmetrized simply intersecting pair maps into Dehn twists about
symmetric separating curves. We also give an explicit factorization of the Dehn
twist about any genus k ≥ 3 symmetric separating curve into Dehn twists about
symmetric separating curves of smaller genus.

3.1. Factoring symmetric simply intersecting pair maps. We start by writing
the symmetric simply intersecting pair map from Figure 5 as a product of Dehn
twists about symmetric separating curves.

ay

x

v

w

Figure 5. The curves used in Theorem 3.1.

Theorem 3.1. Every symmetric simply intersecting pair map is the product of two

Dehn twists about symmetric simple closed curves. In particular, if x, y, v, and w
are the simple closed curves shown in Figure 5, we have:

[Tx, Ty] = T−1
v Tw.
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Note that the first statement follows immediately from the second statement and
the change of coordinates principle [6, Section 1.3].

We give two proofs of Theorem 3.1. The first is an easy application of the lantern
relation, a relation between (left) Dehn twists about 7 curves lying in a subsurface
homeomorphic to a sphere with four boundary components; see [6, Section 5.1.1].

First proof of Theorem 3.1. By the lantern relation, we have TvTxTy = M and
TwTyTx = M ′, where M and M ′ are the products of twists about the boundary
curves of the corresponding four-holed spheres. Since x and y appear in both lantern
relations and since a regular neighborhood of x ∪ y is a sphere with four holes, the
four-holed spheres in the two lantern relations are equal, and so M = M ′. Thus,

[Tx, Ty] = (TxTy)(T
−1
x T−1

y ) = (T−1
v M)(M−1Tw) = T−1

v Tw,

as desired. �

We now give a proof of Theorem 3.1 that is intrinsic to the braid group.

βα

x

y

v

w

γ

δ

d

e

q1 q2

Figure 6. Curves, loops, and arcs used in the second proof of Theorem 3.1

Second proof of Theorem 3.1. The images of x and y in D2g+1 are arcs x and y;
denote their endpoints by q1 and q2 (throughout, refer to Figure 6). As above, Tx

and Ty correspond to the half-twists Hx and Hy in Mod(D2g+1).
As a loop in the space of configurations of 2g + 1 points in the disk (see [6, The-

orem 9.1]), the product HxHy is given by the motion of points where q1 and q2
move around δ and γ, respectively (we multiply half-twists right to left). These mo-
tions correspond to the mapping classes T−1

v Td and T−1
v Te, respectively. Similarly,

H−1
x H−1

y corresponds to (TwT
−1
d )(TwT

−1
e ). Since Td and Te commute with all the

other twists, the original commutator [Tx, Ty] in SI(S1
g) corresponds to T−2

v T 2
w in

Mod(D2g+1). The preimage under Ψ is T−1
v Tw in SMod(S1

g ), as desired. �

The second proof of Theorem 3.1 has a connection with the algorithm from Sec-
tion 2. Let a be the symmetric simple closed curve in S1

g shown in Figure 5. Assum-

ing Theorem 3.1, and referring to Figure 6, we can see that T−2
v T 2

w, the image of
T−1
v Tw under Ψ, is α2β2, where α and β are as shown in Figure 6. This is a product

of squares of simple loops, each surrounding one puncture, as per Section 2.
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3.2. Factoring symmetrized simply intersecting pair maps. We now address
the symmetrized simply intersecting pair maps.

Theorem 3.2. Every symmetrized simply intersecting pair map is equal to a product

of six Dehn twists about symmetric separating curves.

uv

u1
v1

u2 v2

a

α

β

γ
δ

d e

Figure 7. The curves and loops used in the proof of Theorem 3.2.

Proof. Consider the symmetrized simply intersecting pair map shown in Figure 7
(throughout we refer to this figure). First we notice that [Tu1

Tu2
, Tv1Tv2 ] lies in

SIBK(S1
g , a). We claim that the image of this commutator under the map Ψ from

Section 2 is [δ, γ]. Indeed, we have Ψ(Tu1
Tu2

) = Tu and Ψ(Tv1Tv2) = Tv, and so
the claim follows from the fact that the images of δ and γ in Mod(D◦

2g−1, p) are

T−1
v Tv′ and T−1

u Tu′ and the fact that Tu′ and Tv′ commute with all other twists in
the commutator (remember that the order of multiplication gets reversed!).

Now that we have written Ψ([Tu1
Tu2

, Tv1Tv2 ]) as an element of the free group
π1(D

◦
2g−1, p), we observe the following factorization in this free group:

[δ, γ] = [β2(β−1γ)2(αγ)−2α2]α

As in Section 2, this is a product of squares of simple loops in π1(D
◦
2g−1, p)

surronding 1 or 3 punctures, and hence the preimage under Ψ is a product of Dehn
twists about symmetric separating curves of genus 1 and 2 in S1

g . The first and
fourth loops each correspond to a single Dehn twist, while the second and third
loops each correspond to a pair of Dehn twists. �

From the proof of Theorem 3.2, it is straightforward, though not necessarily
enlightening, to draw the six symmetric separating simple closed curves whose Dehn
twists factorize the symmetrized simply intersecting pair map shown in Figure 2.
For an explicit picture, see the first version of this paper [3].

In terms of the xi from Figure 3, we can also write the Ψ-image of a symmetrized
simply intersecting pair map as [x4x3, x2x1]. In the free group, this factors as:

[x4x3, x2x1] = [(x3x2x1)
2(x−2

3 )(x2x1)−1

(x4x2x1)
−2(x24)]

x4 .



FACTORING IN THE HYPERELLIPTIC TORELLI GROUP 9

Again, the right-hand side in this equality is a product of squares of simple loops
and so we obtain an alternate factorization.

The relation given in Theorem 3.2 involves 14 Dehn twists, twice the number of
Dehn twists involved in the lantern relation. However, there is no way to rearrange
our relation into a product of two lantern relations.

3.3. Factoring higher genus twists. Finally, we obtain the factorization of a
Dehn twist about an arbitrary symmetric separating curve into a product of Dehn
twists about symmetric separating curves, each having genus 1 or 2, by applying
the following theorem inductively.

Theorem 3.3. Let d denote the boundary of S1
g , and let c denote a symmetric

separating curve of genus g−1. The product TdT
−1
c is equal to a product of 10 Dehn

twists about symmetric separating curves in S1
g , each of genus at most g − 1.

Proof. Let a be a symmetric nonseparating curve in S1
g lying between c and d. The

image of d in D2g+1 is the boundary of the disk, and if we choose the identifica-
tion of S1

g/〈s〉 with D2g+1 appropriately, the image of c in D2g+1 is a round circle
surrounding the 2g − 1 leftmost marked points and the image of a is a straight arc
connecting the other two marked points.

Let y5 denote x2g−1x2g · · · x5. It follows from the previous paragraph that the
image of TdT

−1
c under Ψ is equal to the image of (y5x4x3x2x1)

2 under the point
pushing map π1(D

◦
2g−1, p) → Mod(D2g−1, p).

As in Section 2, we factor (y5x4x3x2x1)
2 into a product of simple loops each

surrounding an odd number of punctures:

[(x2x1y5)
2(x−2

2 )y
−1

5
x−1

1 (x3x1y5)
−2x23]

y5x4x3 [(x1y5x4)
2(x−2

4 )(x4x3x2)
2]x

−1

1 .

This is a product of 11 Dehn twists about symmetric separating curves, three of
genus g − 1, three of genus g − 2, four of genus 1, and one of genus 2. �
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