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Abstract. We define the flow group of any component of any stratum of
rooted abelian or quadratic differentials (those marked with a horizontal sepa-
ratrix) to be the group generated by almost-flow loops. We prove that the flow
group is equal to the fundamental group of the component. As a corollary, we
show that the plus and minus modular Rauzy–Veech groups are finite-index
subgroups of their ambient modular monodromy groups. This partially an-
swers a question of Yoccoz.

Using this, and recent advances on algebraic hulls and Zariski closures of
monodromy groups, we prove that the Rauzy–Veech groups are Zariski dense
in their ambient symplectic groups. Density, in turn, implies the simplicity
of the plus and minus Lyapunov spectra of any component of any stratum of
quadratic differentials. Thus, we establish the Kontsevich–Zorich conjecture.

1. Introduction

Moduli spaces of abelian or quadratic differentials consist of Riemann surfaces
endowed with abelian differentials or, respectively, meromorphic quadratic differ-
entials with at most simple poles. By integration along appropriate relative cycles,
these moduli spaces are endowed with local complex (orbifold) charts known as
period coordinates. The usual identification of C with R2 gives rise to a natural
SL(2,R)-action on period coordinates. The resulting diagonal action is known as
the Teichmüller flow.

Moduli spaces are a meeting ground of many mathematical disciplines. A very
deep example of this, which is moreover relevant for our work, is as follows. Fix
any differential q and form its SL(2,R) orbit closure. This is dynamically defined,
yet is an algebraic variety [Fil16]. In period coordinates the orbit closure is cut
out by homogeneous linear equations, with (real) algebraic coefficients [EMM15].

In general, one stratifies a space of differentials by fixing various topological and
combinatorial data such as the genus of the underlying surface S, the number and
character of the singularities, and so on. The resulting strata are not necessarily
connected; the classification of their components is known [KZ03; Lan08; CM14].

Suppose now that C is such a stratum component of abelian or quadratic differ-
entials. There is a forgetful map from C toM(S): the moduli space of Riemann
surface structures on S. Both C and M(S) are orbifolds; both have manifold
covers which we will need.

For M(S) this story is classical. Briefly, points in M(S) are in fact equiv-
alence classes; taking the universal cover breaks these classes apart. This gives
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the Teichmüller space T (S) which is homeomorphic to an open ball in R6g−6; here
g = genus(S). The deck group of this covering is the mapping class group Mod(S).

To obtain a manifold cover of C we consider rooted differentials. A choice of
root is simply a horizontal unit tangent vector at a singularity. The choice of root
removes any symmetry of the differential and so unwraps the orbifold locus. The
resulting finite cover is a manifold which may not be connected. For instance,
differentials with roots at zeroes of different orders lie in different components.
We fix a connected component of this cover and denote it by Croot.

The maps from the previous paragraphs give us the following sequence of ho-
momorphisms:

π1(Croot)→ πorb
1 (C)→ πorb

1 (M(S)) = Mod(S)
ρ−→ Aut(H1(S;Z)) ∼= Sp(2g,Z)

Here the third map, ρ, is the symplectic representation of the mapping class
group: the action of Mod(S) on the homology of S. We call the image of πorb

1 (C),
inside the mapping class group, the modular monodromy group. The image of the
modular monodromy group under ρ is known as the monodromy group.

The (modular) monodromy groups are “topological offspring” of the stratum
component C.

In an attempt to relate the topology and dynamics of C we ask the following:
to what extent can πorb

1 (C) be “detected” by the Teichmüller flow? More precisely,
let U ⊆ C be a contractible open set missing the orbifold locus. Fix a base-point
q0 ∈ U . Consider the Teichmüller trajectories that start and end in U . For each,
we connect its endpoints to q0 inside of U to get a loop based at q0. As U is
contractible, the resulting based homotopy class is independent of the choices we
made inside of U . We call these based homotopy classes almost-flow loops. The
flow group of C associated with the pair (U, q0) is the subgroup of πorb

1 (C) generated
by all such loops. The question can then be stated as:

Question 1.1. For any stratum component C of the moduli space of abelian or
quadratic differentials, is the flow group of C equal to πorb

1 (C)?

This is a version of a question of Yoccoz [Yoc10, Section 9.3].1
This question can also be stated for rooted differentials by defining the flow

group analogously. As Croot is a manifold, the open set U can be any contractible
open set in Croot. A positive answer to this question is our main result:

Theorem 5.6. Let Croot be any component of a stratum of the moduli space of
rooted abelian or quadratic differentials. Let q0 ∈ Croot be any base-point and U
any contractible open set containing q0. Then the flow group of Croot associated
with the pair (U, q0) is equal to π1(Croot, q0).

Since Croot is a finite cover of C, this theorem shows that the answer to Question 1.1
is yes, at least up to finite index.

Through the zippered rectangles construction, the Teichmüller flow on Croot

can be coded combinatorially by the reduced Rauzy diagram. In the course of the
proof of Theorem 5.6, we prove

Theorem 5.2. Let Dred be the reduced Rauzy diagram for Croot. Then the natural
homomorphism π1(Dred)→ π1(Croot) is surjective.

1Yoccoz asks if the image of the flow group in Mod(S) is all of Mod(S). However, what is
meant here is the modular monodromy group [Mat21].
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Taking a further image to Mod(S), this answers up to finite index, a weaker version
of Yoccoz’s question. The flow group and some of its applications to Teichmüller
dynamics are also discussed by Hamenstädt [Ham18, Section 4.2].

For strata of abelian differentials, previous work by Calderon and Calderon–
Salter also allows us to explicitly compute the image of the flow group inside of
Mod(S) and of Aut(H1(S;Z)) (or some larger group, such as Aut(H1(S,Z;Z))),
up to finite index [Cal20; CS19a; CS19b; CS20].

Cocycles. Fix C, a stratum component. Given a bundle over C, the Teichmüller
flow gives us a natural cocycle. The most studied of these is the Kontsevich–Zorich
cocycle. This can be lifted to a connected component T C of the Teichmüller space
of abelian or quadratic differentials (the choice of T C is, in general, not unique
[Cal20; CS20]).

In more detail, we define a vector bundle over T C with a suitable fibre. In
the abelian case, this fibre is the first cohomology of the underlying topological
surface; in the quadratic case, it is the first cohomology of the orientation double
cover. By Poincaré-duality, it is also possible to use the corresponding homology
groups as the fibre.

The SL(2,R)-action induces a trivial dynamical cocycle on this vector bundle.
By modding out by the mapping class group, the vector bundle descends to a
bundle over C known as the Hodge bundle; similarly the cocycle descends to the
Kontsevich–Zorich cocycle [KZ97; Kon97]. In the quadratic case, the cocycle then
naturally splits into two distinct symplectically orthogonal blocks, usually referred
to as the plus (or invariant) and minus (or anti-invariant) pieces.

Many interesting dynamical properties of abelian or quadratic differentials can
be written in terms of the Lyapunov exponents of the Kontsevich–Zorich cocycle.
An important example are the deviations of ergodic averages of the linear flow on
almost every abelian or quadratic differential [Zor97; EKZ14]. In fact, when the
Lyapunov spectrum of the Kontsevich–Zorich cocycle is simple, these deviations
can be precisely described.

Kontsevich–Zorich conjectured that the Lyapunov spectrum is simple for all
abelian stratum components [Zor97, Conjecture 2; Zor99, page 1499]. Their con-
jecture extends naturally to the quadratic case as follows. We form the branched
orientation double cover. The homology of the cover splits into the plus and
minus eigenspace for the involution; the SL(2,R) action preserves this splitting.
Simplicity is conjectured in both pieces [Zor18].

For the abelian case, this conjecture was established in the famous work by
Avila–Viana [AV07b]. The quadratic case is known for many stratum components
but not in full generality [Tre13; Gut17].

Our paper establishes simplicity in all cases; as discussed below, our proof
relies on certain machinery of these previous authors, but is independent of their
theorems.

Rauzy–Veech groups. The Rauzy–Veech groups are subgroups of the symplec-
tic group generated by the matrices (in a preferred basis) induced by evaluating
these cocycles over based loops in the Rauzy diagram. It follows from Theo-
rem 5.2 that Rauzy–Veech groups have finite index in the corresponding mon-
odromy groups. We leverage this finiteness with standard techniques of splitting
zeroes [AV07b; Gut19] to extend from simpler strata to more complicated ones in
order to prove the following.
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Theorem 9.1. The Rauzy–Veech groups for all components of all abelian strata
are Zariski dense in their ambient symplectic groups. The same holds for the plus
and minus Rauzy–Veech groups for all components of all quadratic strata.

The groups of Theorem 9.1 that arise, by splitting singularities, from abelian
strata are known to be finite index inside the ambient symplectic groups (over Z)
and hence Zariski dense. This was done by Avila–Matheus–Yoccoz [AMY18] for
abelian hyperelliptic components and by the fourth author [Gut19; Gut17] for all
other components mentioned above. Using our techniques, and again replying on
certain machinery from previous work, our Theorem 9.1 gives Zariski density in
all cases.

By the work of Benoist [Ben97], Zariski density of an appropriate Rauzy–Veech
group implies that the monoids associated with the Kontsevich–Zorich cocycles
are “rich” in the sense of the simplicity criterion of Avila–Viana [AV07a; AV07b].
As a consequence of Theorem 9.1, we can apply the Avila–Viana criterion to prove
the Kontsevich–Zorich simplicity conjecture.

Theorem 10.1. The Kontsevich–Zorich cocycle has a simple spectrum for all
components of all strata of abelian differentials. The plus and minus Kontsevich–
Zorich cocycles also have a simple spectrum for all components of all strata of
quadratic differentials.

As mentioned before, simplicity was known for all abelian [AV07b] and some
quadratic stratum components [Gut17]. It is also known for the principal stratum
of quadratic differentials by different methods through the recently announced
solution by Eskin–Mirzakhani–Rafi of the Furstenberg problem for random walks
on the mapping class group. However, we have claimed the known results as our
proof is self-contained and is uniform across all stratum components.

With Theorem 5.6 in hand, we can compute the Kontsevich–Zorich cocycle
over any loop in Croot and not just along the Teichmüller flow. This additional
flexibility implies that, for Zariski density, we can always consider a monodromy
group instead of a Rauzy–Veech group.

For the monodromy groups of abelian differentials, and also for the monodromy
groups induced by the minus piece of the cocycle for quadratic differentials, we
directly apply some of Filip’s results to obtain Zariski density [Fil17, Corollary
1.7]. For the monodromy groups induced by the plus piece of the cocycle, we need
to discuss algebraic hulls.

The algebraic hull of the Kontsevich–Zorich cocycle restricted to a linear in-
variant suborbifold can be thought of as the smallest algebraic group into which
the cocycle can be measurably conjugated. As such, the hull is both an algebro-
geometric and an ergodic-theoretic object. Eskin–Filip–Wright showed that the
algebraic hull is as large as it can be, namely it equals the stabiliser of the tauto-
logical plane (that is, the cohomology classes spanned by the real and imaginary
parts of the differential) in the Zariski closure of the monodromy group [EFW18,
Theorem 1.1].

The plus piece of the Kontsevich–Zorich cocycle does not meet the tautological
plane. The stabiliser then equals the Zariski closure of the monodromy, and hence
so does the algebraic hull. This result, together with Filip’s classification of the
possible Lie algebra representations of algebraic hulls [Fil17, Theorem 1.2], allows
us to show that the Zariski closure of the monodromy group corresponding to the
plus piece is Sp(2g,R) by a simple dimension count.
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Finally, we remark that, just as Eskin–Filip–Wright’s theorem shows that the
algebraic hull is as large as it can be, Theorem 5.6 shows that the flow group is
also as large as it can be. Thus, for stratum components, Theorem 5.6 can be
considered as a dynamical analogue of Eskin–Filip–Wright’s result.
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Fortier Bourque, Erwan Lanneau and Alex Wright for their helpful comments on
an earlier version of this article.
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2. Strategies

We outline the steps and the key ideas in our proofs.

Passing to rooted differentials. The dynamical issues considered here are sta-
ble under passing to a finite cover of the given stratum component C. We pass
to the space Croot of rooted differentials: differentials marked with a horizontal
separatrix (or, equivalently, a horizontal unit tangent vector at a marked point).
The reasons are two-fold. Unlike C, the cover Croot is a manifold, which simplifies
various transversality (and fundamental group) arguments. Also, a generic rooted
differential admits a description via a zippered rectangles construction.

Zippered rectangles and the based loop theorem. The zippered rectangles
construction is originally due to Veech [Vee82] for abelian stratum components
and due to Boissy–Lanneau [BL09] for quadratic stratum components. Parameter
spaces of zippered rectangles, where the length of the base-arc is normalised, define
contractible open sets in Croot which we call polytopes. The union of the polytopes
is dense in Croot. However, the complement of their union is complicated; the
polytopes do not give a cell structure on Croot. For instance, there are compact arcs
in Croot that intersect polytope faces infinitely many times. See Appendix A.1 for
an explicit example and relevant discussions. As a result, the based loop theorem,
which we explain below, cannot be deduced from naïve transversality arguments.

Fortunately, as discussed by Yoccoz [Yoc10, Proposition in Section 9.3], the
subset of rooted differentials that do not admit any zippered rectangle construction
is contained in the (codimension two) set of differentials that have both a vertical
and a horizontal saddle connection. Thus, any based loop γ : [0, 1]→ Croot can be
homotoped to be disjoint from such differentials.

After this homotopy, we can cover the image of γ by finitely many reasonably
nice charts. Unfortunately, these may not be contained in the interior of any of
the polytopes defined above. We arrange matters so that the boundaries of these
charts are codimension-one embedded submanifolds. A further homotopy makes
γ transverse to these boundaries remaining covered by the charts. Since a chart
may not be contained in the interior of a polytope, the lengths of the base-arcs in
these charts need not be normalised. We fix the required normalisation as follows.

Given a sufficiently small subsegment of γ, where the base-arcs are not nor-
malised, we apply the (forward or backward, as needed) Teichmüller flow. This
replaces (via homotopy) the subsegment of γ by two segments contained in the
flow and one segment contained in the interior of a polytope. Doing this finitely
many times, we homotope γ to be a concatenation of segments which are forward
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or backward Teichmüller segments or completely contained inside a polytope. This
is our based loop theorem, namely Theorem 4.23.

Rauzy induction and the Teichmüller flow. The combinatorial information
of a zippered rectangles construction is an irreducible generalised permutation
[BL09]. Also, there are various associated parameters such as the dimensions of
the rectangles and the heights of the various zippers. The combinatorics together
with the parameters uniquely specify the differential.

If we apply the forward Teichmüller flow, the base-arc grows until it violates
the normalisation. At this point we pass to the largest base-arc strictly contained
in the original base-arc. In this way we obtain a new irreducible generalised
permutation as well as new parameters. We call a single such operation a Rauzy–
Veech move.

The collection of all these moves gives a renormalisation procedure known as
the Rauzy–Veech renormalisation or the Rauzy–Veech induction. It was originally
defined by Rauzy and Veech for abelian differentials [Rau79; Vee82] and by Boissy–
Lanneau [BL09] for quadratic differentials. Applying the Teichmüller flow, we
obtain a sequence of pairs of combinatorics and parameters. Thus, the Rauzy–
Veech renormalisation gives a coding for the Teichmüller flow.

We encode this as an “automaton” (a directed graph) as follows. The vertices
are equivalence classes of irreducible generalised permutations suited to Croot. Two
permutations π and π′ are equivalent if we can precompose with a permutation σ
to obtain π ◦σ = π′. There is a directed edge from [π] to [ρ] if some representative
of the latter arises from a single Rauzy–Veech move. This automaton is called the
reduced Rauzy diagram. Since the Teichmüller flow is ergodic, as shown by Masur
[Mas82] and Veech [Vee82; Vee86], it follows that the reduced Rauzy diagram is
strongly connected : there is a directed path from any vertex to any other vertex.
By accelerating the renormalisation, we can derive a coding that has the properties
that the Avila–Viana criterion stated below requires.

Flow groups and the fundamental group. There is a natural homomorphism
from the fundamental group of the reduced Rauzy diagram (as an undirected
graph) to the fundamental group of Croot. By leveraging the based loop theorem
and Rauzy–Veech sequences for Teichmüller segments, we show that the homomor-
phism is surjective. This partially answers a question of Yoccoz [Yoc10, Remark
in Section 9.3].

We use the based loop theorem, and the above surjectivity, to show that the
flow group is equal to the fundamental group of Croot. See Theorem 5.5 and The-
orem 5.6. In other words, at the level of the fundamental group, the Teichmüller
flow captures the topology of Croot, and hence the topology of C, up to finite index.

Cocycle simplicity. By a criterion of Avila–Viana [AV07a; AV07b], simplicity of
natural integrable cocycles, such as the Kontsevich–Zorich cocycle, boils down to
the existence of a coding with an almost product structure and a notion of “rich-
ness” of the cocycle. As we indicated earlier, a coding with the required integra-
bility and distortion properties can be achieved by accelerating the Rauzy–Veech
renormalisation. This was done by Avila–Gouëzel–Yoccoz [AGY06] for abelian
differentials and by Avila–Resende [AR12] for quadratic differentials. See Sec-
tion 6 for more details. The remaining task, and the crux of the problem, is
to show the richness of the cocycle. The required richness was established by
Avila–Viana [AV07b] for abelian stratum components by a direct computation.
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In general, to obtain the richness condition for a symplectic cocycle it is enough
to establish the Zariski density of an appropriate group inside the symplectic group;
using work of Benoist [Ben97] it implies the above notion of richness (Zariski
density is, in fact, strictly stronger [AMY18, Appendix A]).

For the Kontsevich–Zorich cocycle, the relevant group is the Rauzy–Veech group.
Its Zariski density was proved for hyperelliptic components by Avila–Matheus–
Yoccoz. In fact, their result is stronger as they show it to be an explicit finite
index subgroup of its ambient symplectic group [AMY18, Theorem 1.1]. This
finite index result was extended by the fourth author to all abelian stratum com-
ponents and to quadratic stratum components that have abelian components on
their boundary [Gut19, Theorem 1.1; Gut17, Theorem 1.1].

Our main result, namely Theorem 5.6 stating that the flow group equals the
fundamental group of Croot, is crucial to achieve the Zariski density of the Rauzy–
Veech group of any stratum component. Indeed, it allows us to compute the
cocycle along any loop in Croot instead of only along almost T. This extra flexibility
is significant since we do not have to restrict to directed loops in the reduced Rauzy
diagram. In recent work [Fil17], Filip gives a finite list of possible Zariski closures
of the monodromy of a linear invariant suborbifold. From this description, he
also derives the fact that the Zariski closure of the monodromy restricted to the
symplectic block that contains the tautological plane is the full symplectic group
for this block. Combined with this fact, our Theorem 5.6 directly yields simplicity
for abelian components.

A quadratic stratum component lifts to a linear invariant suborbifold of its
orientation double-cover and hence Filip’s result applies to this situation. The in-
volution on the orientation double-cover splits the Kontsevich–Zorich cocycle into
two symplectically orthogonal blocks, usually referred to as the plus (or invariant)
piece and the minus (or anti-invariant) pieces. The minus piece contains the tau-
tological plane. Again by Filip’s corollary, the Zariski closure for the minus cocycle
is the full symplectic group. Simplicity of the minus cocycle follows directly from
combining this with Theorem 5.6.

It remains to tackle the plus cocyle. Here, we exploit our extra flexibility to
build a dimension argument that eliminates all but the full symplectic group as
the Zariski closure. We carry out the dimension argument first for components of
minimal strata and hyperelliptic components with two zeros to conclude Zariski
density for the monodromy groups of these components. This implies the Zariski
density of their Rauzy–Veech groups as they are finite index in the monodromy
groups (a consequence of Theorem 5.2). We then deal with a few remaining low
genera components by using a well-known criterion for Zariski density [PR14].
Finally, we extend the density to Rauzy–Veech groups of all quadratic compo-
nents by standard techniques of surgery/splitting zeroes. The density allows us
to apply the Avila–Viana criterion to conclude the proof of the Kontsevich–Zorich
conjecture in full generality.

3. Preliminaries

3.1. Moduli spaces of abelian and quadratic differentials. A connected,
oriented surface S of finite type, that is, with finite genus and finitely many marked
points, can be equipped with a conformal/complex structure by charts to the
complex plane and holomorphic transition functions. The Teichmüller space of S is
the space of marked conformal structures on S. The mapping class group Mod(S)
is the group of orientation preserving diffeomorphisms of S modulo isotopy. The
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mapping class group acts on the Teichmüller space by changing the marking. The
quotientM is the moduli space of Riemann surfaces homeomorphic to S.

The cotangent bundle to Teichmüller space is the space of (marked) meromor-
phic quadratic differentials on S with at most simple poles. The zeroes or poles of
the differential must lie at the marked points. The quotient by the mapping class
group is the moduli space Q of quadratic differentials. The space Q is stratified
by the orders at the marked points and components of the strata are classified by
the following combinatorial and algebraic invariants:

(1) The singularity data which can be encapsulated as follows. Let Z ⊆ S be a
non-empty and finite set of points; we set n = |Z|. Let κ : Z → {−1, 0}∪N
be any function so that

∑
κ(z) = 4g−4. The points z ∈ Z with κ(z) = −1

are called simple poles and these have to be the marked points of S. The
points with κ(z) = 0 are called regular points. To ensure generality, we
allow finitely many additional points in S to be marked as regular points.

(2) Abelian or quadratic, that is, whether the vertical foliations of differentials
in the component are orientable or not. In the abelian case, the function
κ is even at every z ∈ Z, so it is common to consider κ/2 instead of κ as
the function giving the singularity data. We will follow this convention.

(3) Hyperelliptic or non-hyperelliptic (when possible), that is, whether differ-
entials in the component have some rotational symmetry of order two with
2g + 2 fixed points [Lan04].

(4) Odd or even spin (only for abelian components for which κ(z) is even for
each z ∈ Z), which is defined as the Arf invariant of a specific quadratic
form [Joh80; Zor08, Appendix C].

(5) Regular or irregular (when possible), which can be distinguished by the di-
mension of a cohomology group corresponding to a specific divisor [CM14].

For the reader’s convenience, we state the complete classification of abelian and
quadratic stratum components in Section 8.1.

We note that, in general, a stratum component is an orbifold. We refer to the
book by Boileau–Maillot–Porti [BMP03] for background on orbifolds and their
fundamental groups, although in most of our exposition we will only consider the
fundamental groups of actual manifolds.

Remark 3.2. The extent to which q ∈ C is marked varies in different expositions.
For us, we are assuming that C is as small as possible; so we have forgotten the
marking by S and forgotten the marking by Z. However, this does not mean that
we erase marked regular points—we only erase their names, as well as the names
of all poles and zeros. Thus, travelling around a loop in C, a pair of points z, z′ ∈ Z
may be permuted. We deduce that, while there is no map from πorb

1 (C)→ Sym(Z),
for a loop in C there is a well-defined conjugacy class in Sym(Z).

3.3. SL(2,R)-action. We fix a stratum component C and let q be a differential
in C. By integrating a square-root of q we get charts from S to C with transition
functions that are translations (or half-translations), that is, transition functions
that are of the form z → z + c (or z → ±z + c).

The action of the group SL(2,R) on R2 = C can be restricted to the charts. As
the transition functions are translations (or half-translations), the SL(2,R)-action
preserves the form of the transition functions. As a result, it descends to an action
on the differentials. As the classifying invariants are also preserved, the SL(2,R)
orbit of any differential in C is contained in C.
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Fixing a basis for the relative homology of (S,Z), we can compute periods.
The period of a basis element is the integral of a square root of q over an arc in
the homology class of the element. The periods define local charts on C. By the
famous work of Eskin–Mirzakhani–Mohammadi [EMM15], closures of SL(2,R)-
orbits inside C are suborbifolds cut out by linear equations (with real coefficients
and no constant terms) in the period coordinates. Such an orbit closure is called
a linear invariant suborbifold.

The diagonal part of the SL(2,R)-action defines the Teichmüller flow.

3.4. Monodromy groups. The canonical projection C → M associates to a
differential the underlying conformal structure. So we may consider in πorb

1 (M) =
Mod(S) the image of πorb

1 (C) under the induced map on the orbifold fundamental
groups. The image group MMon(C) is called the modular monodromy group of C.

The mapping class group Mod(S) has a natural action on the (absolute) integral
homology H1(S;Z). The action preserves the symplectic form on H1(S;Z) given
by the algebraic intersection. As a result, Mod(S) admits a representation to
the automorphism group of H1(S;Z) that preserves the symplectic form. The
restriction of this symplectic representation to MMon(C) gives us a subgroup of
the symplectic group which we call the monodromy group Mon(C) of C.

3.5. Rooted differentials. For this article, we need to pass to a finite manifold
cover of C. We begin as follows.

Definition 3.6. Suppose that q ∈ C is a differential. Let z be a zero, regular
point, or pole of q. Let v be a unit tangent vector at z pointing along the horizontal
foliation. We call the pair (q, v) a rooted differential.

The usual difference between the order of a point and the total angle at a point
allows us to show that the number of rootings of q is 4g−4+2|Z|. However, some
rootings of q may be equivalent to others when q has a symmetry.

Rooted differentials are intended to reproduce the notion of amarked translation
surface that is widely used in the literature [Yoc10; Boi20]. We use Croot to denote
the space of rooted differentials.

4. Zippered rectangles

We now outline a procedure to pass from flat geometry to combinatorics with
parameters. To do so, we exhibit a generic rooted quadratic differential as a collec-
tion of rectangles with gluings. This is a well-known construction, originally due
to Veech [Vee82], called zippered rectangles. As we are interested in the topology
(fundamental group) of Croot and not just in the dynamics of the Teichmüller flow
on Croot, we will present the full details of the construction for greater clarity.

There are several useful systems of parameters. We make use of the singularity
parameters but there are other commonly used parameters such as zipper param-
eters introduced by Veech. We define the parameters and discuss how to move
between them.

4.1. The combinatorics. A saddle connection for a quadratic differential is a
flat geodesic that connects a pair of possibly distinct points in Z and is otherwise
disjoint from Z. We say that a quadratic differential q has a vertical vanishing
coordinate (respectively, horizontal vanishing coordinate) if q has a horizontal (re-
spectively, vertical) saddle connection. Let V ⊆ Croot be the set of such. So V is
a countable union of codimension-one loci.
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Continuing in this way, we say that a quadratic differential q is doubly vanishing
if q has both a horizontal and a vertical saddle connection. Let W ⊆ Croot be the
set of such differentials. So W is a countable union of codimension-two loci.

A quadratic differential is said to be vertically non-vanishing (respectively, hor-
izontally non-vanishing) if it has no horizontal (respectively, vertical) saddle con-
nections. We will call a quadratic differential doubly non-vanishing if it has neither
horizontal nor vertical saddle connections.

Given a rooted quadratic differential (q, v), let Iv be the horizontal separatrix
defined by v, which may be finite if q has a vertical vanishing coordinate. Given
a point x ∈ Iv, let I(x) be the subarc of Iv from the base of the root to x.

Definition 4.2. We say that I(x) is a base-arc if
(1) the interior of I(x) meets every leaf of the vertical foliation, and
(2) at least one of the two rays (going “up” or “down”) perpendicular to Iv and

starting at x hit a singularity in Z before hitting I(x) a second time.

The proof of the following lemma is analogous to the one given by Yoccoz in
the abelian case [Yoc10, Proposition 5.6].

Lemma 4.3. Let (q, v) be a rooted quadratic differential. If q is not doubly van-
ishing, then it admits a base-arc.

Proof. Assume first that q has no vertical saddle connection. Thus the vertical
foliation for q is minimal (as otherwise the closure of a vertical leaf would be a
subsurface with boundary, containing saddle connections). Thus, the interior of
any horizontal subarc of Iv will meet every leaf of the vertical foliation, so condition
(1) in Definition 4.2 is met. Shortening the arc as needed, we can arrange condition
(2) in Definition 4.2.

Assume instead that q has no horizontal saddle connection. Now the horizontal
foliation for q is minimal. Thus, we can and do take a sufficiently long subarc
of Iv so that its interior meets every vertical leaf. Then, condition (1) in Defini-
tion 4.2 is met. Making the arc longer as needed, we can arrange condition (2) in
Definition 4.2. �

Since I is simply connected, we can orient the vertical foliation in a small neigh-
bourhood of I. We so orient the vertical foliation (locally) so that the “upwards
direction” crosses I from right to left.

We consider the first return map to I, in q, defined by travelling along the
vertical foliation. We travel in both directions (up and down) to find both the
first return map and its “inverse”. Let St be the (finite) set of points x ∈ I where
the upward leaf from x runs in to a singularity in Z before returning to I. We
define Sb similarly. If q is horizontally non-vanishing, the sets St and Sb are
disjoint, but this is not true in general. To distinguish between the points in St

and Sb, we will add the labels t and b.
Let It be the components of I − St. We call these the top intervals. Similarly,

we define the bottom intervals Ib to be the components of I−Sb. Again, since if q
is horizontally non-vanishing, we have It ∩ Ib = ∅, but this is not true in general.
Thus, we will distinguish them by the labels t and b.

There is a fixed-point free involution τ on It × {t} t Ib × {b} as follows. Any
interval (J, ∗), where ∗ ∈ {t, b}, pairs with the interval (J ′, ∗′) = τ(J, ∗) so that
the first return map takes (J, ∗) to (J ′, ∗′). Thus |It| + |Ib| is even. We write
2d = |It|+ |Ib|.
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We capture the above information, combinatorially, as follows. Let A be a set of
d letters. Let ` = |It| andm = |Ib|. Note that the sets It and Ib are ordered by how
the intervals appear along I. We use this to index the intervals: It×{t} = {Ji}`i=1

and Ib × {b} = {Ji}`+mi=`+1. We define π : {1, 2, . . . , 2d} → A to be any two-to-one
map with the following property: for all a ∈ A, if {i, j} = π−1(a) then τ(Ji) =
Jj . Associated with π is a fixed-point free involution σ of {1, 2, . . . , 2d} where
σ(i) = j implies π(i) = π(j). Maps π of the above type were first considered by
Danthony–Nogueira [DN88; DN90], and by Boissy–Lannaeu [BL09] and are known
as generalised permutations. As shown by Boissy–Lanneau [BL09, Theorems A–D],
the generalised permutations π that arise in the above construction are irreducible.
Moreover, the set of generalised permutations that arise from Croot is known as
the Rauzy class of Croot. We denote the Rauzy class by R(Croot). Moreover,
as we vary over all stratum components and choices of rootings, all irreducible
generalised permutations arise from this construction. See the article by Boissy–
Lanneau [BL09] for a combinatorial definition of irreducibility and a proof of these
facts.

We refer to the letters π(1), . . . , π(`) as the top letters for π. Similarly, we refer
to the letters π(`+ 1), . . . , π(`+m) as the bottom letters. Any letter that is both
a top letter and a bottom letter is called a translation letter. Any letter that is
only a top letter (or only a bottom letter) is called a flip letter. We explain the
terminology below.

We say that π is a abelian permutation if it has no flip letters. We say that π is a
quadratic permutation it has (at least one) top flip letter and (at least one) bottom
flip letter. All generalised permutations that arise in the construction above are
of one of this two types.

From now on, will eschew the terminology “generalised permutation” and col-
lectively refer to abelian and quadratic permutations simply as permutations.

4.4. The rectangles. Let α ∈ A and let π−1(α) = {i, σ(i)}. There is an associ-
ated rectangle R = Rα with the following properties.

(1) The horizontal sides of R are exactly R ∩ I = Ji ∪ Jσ(i).
(2) With the exception of one rectangle, each vertical side of R contains ex-

actly one singularity. The exceptional rectangle is either Rπ(`+m) or Rπ(`)

depending on whether the right endpoint of I is in St or Sb, respectively.

4.5. The zippers. We now define the zippers. Let p ∈ St. By definition, the
perpendicular ray that goes up from p hits a singularity before it can return to
I. We call the resulting vertical segment Z(p) a top zipper. Similarly, we define
bottom zippers to be the segments of the perpendicular rays that go down from
points in Sb and hit a singularity before they return to I.

4.6. Singularity parameters. We have fixed an orientation on the surface. Let
R = Rα be the rectangle with letter α ∈ A. Recall that every rectangle R has two
vertical sides and two horizontal sides. Laying R out in the plane we call its sides
the east, north, west, and south sides. By construction, the east and west sides of
R lie in vertical leaves `E and `W that meet Z, the set of singularities, in exactly
one point before returning to I. We also lay out `E and `W in the plane. Let zE
and zW be the images of the singularities in `E and `W, as they lie in the plane.
Also by construction, at least one of zE or zW lies in (the closure of) a vertical
side of R.
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zW p

zE

m

`

xα = |m|

yα = |`|

(a) The curve γ turns left
at p and can be tightened
to a saddle connection.

zW p

zE

m

`

xα = |m|

yα = −|`|

(b) The curve γ turns right
at p and can be tightened to
a saddle connection.

zW p

zE

m

`

xα = |m|

yα = |`|

(c) The curve γ may not
be able to be tightened to
a saddle connection.

Figure 4.7. Three cases of singularity coordinates.

Breaking symmetry, suppose that zW lies in the west side of R, not just in `W.
Let m be the horizontal spanning arc of R, which has one endpoint at zW. Let p
be the endpoint of m lying in `E. We call p the projection of zW to `E. We define
the singularity width of the letter α to be

xα = |m|
that is, the unsigned length of m. Note that xα is exactly the width of R = Rα.

If p = zE, we define the singularity height of the letter α to be yα = 0. Other-
wise, let ` be the bounded segment of `E − {p, zE}. We orient the path γ = m∪ `
away from zW. Note that γ turns right or left at p depending on the position of zE
in `E. This turning is defined due to the orientation on q; also it is independent
of the choices made. We now define yα the singularity height of the letter α. We
take the magnitude of yα to be

|yα| = |`|
We take the sign of yα to be positive if and only if γ turns left at p

Remark 4.8. The singularity height yα is not, in general, the height of R = Rα.
We discuss this point further below.

Remark 4.9. For all but one rectangles R = Rα, the points zE and zW lie in
its east and west sides, respectively. When this happens, the path γ defined above
can be tightened to give a saddle connection in q. The parameter xα + iyα is then
(up to global change of sign) the period of γ. However, there are (abelian and
quadratic) differentials where γ is not homotopic (relative to its endpoints) to a
saddle connection Figure 4.7. This accounts for the complexity of the definition of
the singularity height yα.

Note that the horizontal edges of rectangles representing the top letters (cor-
rectly repeating the flip letters) are arcs whose union is exactly the base-arc I.
The same holds for the bottom letters. We deduce the width equality

(4.10)
∑̀
k=1

xπ(k) =

`+m∑
k=`+1

xπ(k).

Again, the left sum is over the top while the right is over the bottom. Since every
translation letter appears exactly once on each side, we deduce from the width
equality that

∑
xα =

∑
xβ ; here α ranges over the top flip letters and β ranges

over the bottom flip letters.
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4.11. Zipper parameters. Breaking symmetry, let p ∈ St×{t} where we assume
p 6= r × {t} if r ∈ St. Let Z(p) be a top zipper based at p. By a slight abuse of
notation, think of p as a point in I. Let Rπ(i) for i 6 ` be the rectangle to the left
of Z(p). Then the horizontal coordinate of p, that is the distance of p from the
left-endpoint of I, is given by

x(p) =
i∑

j=1

xπ(j).

The height of Z(p) is given by

h(Z(p)) =

i∑
j=1

yπ(j).

and we require this to be positive. This gives us the top zipper inequalities

(4.12)
i∑

j=1

yπ(j) > 0

for all i < `.
Similarly, if Z(p) for p ∈ Sb ×{b} and p 6= r×{b} if r ∈ Sb is a bottom zipper

and Rπ(i) for i > `+ 1 then the horizontal coordinate is

x(p) =
i∑

j=`+1

xπ(j)

and the height is

h(Z(p)) =

i∑
j=`+1

yπ(j).

Here we require the height h(Z(p)) to be negative. This gives us the bottom
zipper inequalities

(4.13)
i∑

j=`+1

yπ(j) < 0

for all `+ 1 6 i < `+m.
It remains to consider the right endpoint r. The zipper height of Z(r) gives us

a linear relation in the y parameters. Note that the above equalities express the
height h(Z(r)) in two ways; namely

h(Z(r)) =
∑̀
j=1

yπ(j)

and

h(Z(r)) =

`+m∑
j=`+1

yπ(j).

We deduce the height equality

(4.14)
∑̀
k=1

yπ(k) =

`+m∑
k=`+1

yπ(k).
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This is equivalent to
∑
yα =

∑
yβ , where α ranges over the top flip letters and β

ranges over the bottom flip letters.
The height and width equalities are essentially identical. Thus, the dimensions

of the space of x and y parameters are equal; they are |A| in the abelian case and
|A| − 1 in the quadratic case.

4.15. Rectangle parameters. For all rectangles R = Rα, at least one of the
points zE and zW lie in its east and west sides, respectively. Breaking symmetry,
suppose that α is a top letter and zE lies in its east side. Let Z(p) for p ∈ St×{t}
be the zipper with end point zE. If α is a translation letter then there is a zipper
Z(p′) for p′ ∈ Sb × {b} with endpoint zE such that the union Z(p) ∪ Z(p′) is the
east side of Rα. Recall that the heights of bottom zippers are negative. Hence,
the height h(Rα) satisfies

(4.16) h(Rα) = h(Z(p))− h(Z(p′)).

If α is a flip letter instead then there is a zipper Z(p′) for p′ ∈ St × {t} with
end point zE such that the union Z(p) ∪ Z(p′) is the east side of Rα. The height
h(Rα) is then

(4.17) h(Rα) = h(Z(p)) + h(Z(p′)).

A similar discussion follows if α is a bottom letter.

4.18. Polytopes in Croot. Because of the flexibility in choosing base-arcs, a
rooted differential can have (infinitely) many different zippered rectangles con-
structions. For example, suppose that q is a doubly non-vanishing rooted differ-
ential. Then the vertical foliation for q is minimal; to see this, note that otherwise
the closure of a vertical leaf would be a subsurface with boundary, containing
saddle connections. Thus, for this q any subarc I ⊆ Iv satisfying condition (2) in
Definition 4.2 can serve as a base-arc.

To remove this ambiguity from the combinatorics, an additional base-arc nor-
malisation must be imposed, as follows. Let R be the Rauzy class of Croot. Fix
an irreducible permutation π ∈ R.
Definition 4.19. We define the set Pπ of parameters for π to be the pairs (x, y) ∈
RA × RA satisfying

(1) the width and height equalities (4.10) and (4.14),
(2) the positivity condition xα > 0 for all α,
(3) the zipper inequalities (4.12) and (4.13), and
(4) the base-arc normalisation

1 <
∑̀
i=1

xπ(i) < 1 + min{xπ(`), xπ(`+m)}.

The pair of inequalities in (4) are the promised restrictions on the length of the
base-arc. Any zippered rectangles construction arising from parameters in this
way is called (base-arc) normalised.

Let q be a doubly non-vanishing rooted differential. Let Z(q, v) be the subset
of x along the separatrix Iv such that I(x) is a base-arc.

Lemma 4.20. Let q be a doubly non-vanishing rooted differential. Then the base
of the root is the only accumulation point of Z(q, v) in Iv.



THE FLOW GROUP OF ROOTED ABELIAN OR QUADRATIC DIFFERENTIALS 15

Proof. Suppose that a point x ∈ Z(q, v) is an accumulation point of Z(q, v) and
that x is not the root. As q is doubly non-vanishing, there is no upper bound on
the lengths of possible base-arcs. Hence, Z(q, v) contains a point x′ such that the
base-arc I(x′) is longer than I(x). But then the first return map to I(x′) along
the vertical has infinitely many intervals, which is a contradiction. See Yoccoz’s
lectures notes for more details [Yoc10, Section 3.1]. �

It follows that Z(q, v) contains a point r whose base-arc is the shortest among
those whose length is at least one. The base-arc I(r) is then the unique subarc of
Iv whose zippered rectangle construction yields an irreducible permutation with
parameters that satisfy condition (4) of Definition 4.19.

The above procedure applies to rooted quadratic differentials off of a (somewhat
complicated) measure zero set. For each such, it gives a pair (combinatorics,
parameter).

The opposite direction is provided by Boissy and Lanneau [BL09, Lemma 2.12].
Suppose that π in R(Croot) is an irreducible permutation. Suppose that (x, y) is
any parameter in Pπ. Then, by placing a marked point at the origin of C, by
laying out an arc on the positive real axis, by laying down rectangles, and gluing
according to the associated zipper lengths, Boissy and Lanneau build a quadratic
differential; the details are somewhat subtle.

We call this differential qπ(x, y); we use qπ : Pπ → Croot to denote the resulting
map. We call the image Cπ = qπ(Pπ) ⊆ Croot a polytope. For any doubly non-
vanishing rooted differential q in Cπ, if (π, (x, y)) are its normalised combinatorics
and parameters, then qπ(x, y) = q.

On the other hand, it may happen that the polytopes arising from distinct
permutations coincide as sets. More precisely, consider the following equivalence
relation on permutations. Two permutations π and π′ are equivalent through re-
indexing if there is a permutation p ∈ Sym(A) such that π′ = p ◦ π. As letter
re-indexing by p does not affect the geometric construction, it follows that if π
and π′ are equivalent then Cπ = Cπ′ .

Lemma 4.21. For any irreducible permutation π ∈ R, the map qπ is a homeomor-
phism from Pπ onto Cπ. Moreover, if π and π′ are not equivalent then Cπ∩Cπ′ = ∅.
The union of the sets Cπ is dense in Croot.

Proof. Fix π and a parameter (xα, yα)α∈A. For every letter α ∈ A we are given an
arc γα connecting a pair of singularities whose period is exactly xα + iyα. Boissy–
Lanneau show that these periods give coordinates in Croot [BL09, Lemma 2.12].
Since qπ is linear in these periods, it is continuous and injective. Since Pπ and Cπ
have the same dimension, the map qπ is a homeomorphism onto its image.

Thus, for any non-equivalent π and π′ the intersection Cπ∩Cπ′ is open. Hence, if
it is non-empty, it must contain a doubly non-vanishing differential. However, this
contradicts that uniqueness of the permutation given by the zippered rectangles
construction.

Furthermore, every doubly non-vanishing differential q in Croot lies in some Cπ,
so we are done.

�

The above lemma shows that we can pass unambiguously from a typical differen-
tial (such as a doubly non-vanishing differential) to combinatorics and parameters.
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4.22. Based loops in Croot. The main result of this article is the following the-
orem stating that every based loop in Croot can almost be straightened out into a
concatenation of Teichmüller geodesic segments.

Theorem 4.23. Let Croot be a stratum component of the moduli space of rooted
quadratic differentials. Let q0 be a base-point in Croot. Let γ : [0, 1] → Croot be a
loop based at q0. Then, up to a homotopy relative to the base-point, the loop γ can
be written as a finite concatenation of paths that are either

• (forward or backward) Teichmüller geodesic segments; or
• contained inside some polytope.

Proof. We fix a base-point q0 in Croot. For convenience, we assume that q0 is
doubly non-vanishing and hence contained in some polytope.

Recall that the set W ⊆ Croot of doubly vanishing rooted differentials is a
countable union of codimension-two loci. Moreover, if q ∈ Croot − W, then it
admits a base-arc by Lemma 4.3.

Let q be a differential in Croot−W and I be a base-arc. This gives a permutation
π and singularity parameters (x, y).

Since the singularity parameters are coordinates for Croot −W, there exists an
open set in Croot containing q given by the zippered rectangles construction with
underlying permutation π. Note that the base-arc I may not be normalised, so
q may not belong to Cπ. However, the only condition that the parameters (x, y)
may not satisfy to belong to Cπ is

1 <
∑̀
k=1

xπ(k) < 1 + min{xπ(`), xπ(`+m)},

which can be forced to hold by applying the Teichmüller flow. Thus, there exists
t(q) ∈ R such that gt(q)q ∈ Cπ.

We now define U(q) ⊆ Croot to be a contractible open set around q obtained
by varying the parameters (x, y) by a very small amount so that gt(q)U(q) ⊆ Cπ.
That is, with respect to the parameters (x, y), the set U(q) is a box with sides
parallel to the coordinate planes. Therefore, ∂U(q) is a union of finitely many
codimension-one embedded submanifolds (with boundary) in Croot.

The locus V of vanishing rooted differentials, that is, rooted differentials with
a horizontal or vertical saddle connection, can be covered by countably many
relatively open codimension-one charts. Hence, we may apply a homotopy (relative
to q0) to arrange that γ is transverse to V. This can be done by using standard
techniques in differential topology [Hir94, Theorem 2.5, page 78]. After this, the
loop γ is disjoint from W.

Now, the boxes (U(γ(s)))s cover γ, so, by compactness, there exists a finite
collection s0, . . . , sn ∈ [0, 1] such that (U(γ(sj)))j covers γ. Let Uj = U(γ(sj)).

We now perform a further homotopy (relative to q0) supported in the union
of the boxes. Again appealing to standard techniques [Hir94, Theorem 2.5, pp.
78], we now have that γ is transverse to the sides of the boxes Uj and is again
transverse to V.

We obtain that γ intersects ∂Uj only finitely many times and, therefore, that
γ−1(Uj) is a finite union of intervals in [0, 1] for each k. All such intervals are
open, except for possibly two intervals [0, s) and (s′, 1]. If these two intervals exist
in γ−1(Uj), we replace them by their union [0, s) ∪ (s′, 1].

Now, we select a minimal subcollection J0, . . . , Jm of these sets that covers [0, 1].
Thus, γ(Jk) is contained inside some Uj , which we denote by Vk. Observe that the
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gtqk g−tqk+1

γ

Vk−1 Vk+1

Vk

gtkVk

gtkγ

qk qk+1

gtkqk gtkqk+1

Figure 4.24. Illustration of the proof of Theorem 4.23. Part of
the loop γ is depicted as a solid curve. The dotted lines represent
the boundaries of the polytopes. Unlike the boxes Vk−1 and Vk+1,
the box Vk is not contained inside a polytope, so the Teichmüller
flow must be applied to it. The resulting segment δk is shown as
dashed curve.

list V0, . . . , Vm may contain repetitions. By setting Jm+1 = J0, we assume that the
indices are chosen so that Jk∩Jk+1 is a non-empty open interval or a set of the form
[0, s) ∪ (s′, 1]. Without loss of generality, we can assume that 0 ∈ Jm ∩ J0, since
this can be arranged by covering J0 and Jm with smaller intervals and rearranging
the indices.

Since γ is transverse to V, we have that γ(s) lies in V for at most countably
many s ∈ [0, 1]. Thus, there exists a doubly non-vanishing quadratic differential
qk+1 in the image of each set γ(Jk ∩ Jk+1) (with qm+1 = q0). Hence, we obtain
a sequence of times 0 = s0 6 s1 6 · · · 6 sm = 1 such that the closed intervals
[sk, sk+1] ⊆ [0, 1] cover [0, 1] and γ(sk) = qk.

Since Vk is equal to one of the Uj by construction, there exists a real number tk
such that gtkVk is completely contained inside some polytope Cπk . Let δk be the
path starting at qk and ending at qk+1 given by the concatenation of the paths

• gtqk for t ∈ [0, tk];
• gtkγ(s) for s ∈ [sk, sk+1]; and
• g−tqk+1 for t ∈ [−tk, 0].

if tk > 0 or

• g−tqk for t ∈ [0,−tk];
• gtkγ(s) for s ∈ [sk, sk+1]; and
• gtqk+1 for t ∈ [tk, 0].

if tk 6 0. See Figure 4.24 for an illustration of this proof.
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The union of the arcs δk and γk = γ|[sk, sk+1] bounds a disc in Croot foliated by
the arcs gtγk where t ∈ [0, tk]. In particular, δk is homotopic to γk, relative to the
endpoints.

Let δ be the concatenation of the paths (δk)k. By construction, δ is a closed
curve, homotopic to γ. Moreover, the pieces gtkγ(s) for s ∈ [sk, sk+1] in the
concatenation are the only paths that are not (forward or backward) Teichmüller
geodesic segments. This concludes the proof of the theorem. �

Remark 4.25. We do not attempt to make optimal choices to reduce the length of
geodesic pieces in the concatenation for δ. A simple way to reduce these lengths is
to choose the normalised zippered rectangle construction whenever q admits one.
Thus, if q ∈ Croot −W is contained in some polytope, then we can choose the box
U(q) to be contained inside the same polytope and set t(q) = 0 for such boxes. On
the other hand, when q does not lie in any polytope we can choose the length of
the base-arc to be as close to 1 as possible, so t(q) is as small as possible. See
Appendix A.4 for a concrete example of the construction.

4.26. Rauzy–Veech induction and the Teichmüller flow. We will now de-
fine Rauzy–Veech induction on zippered rectangles. The induction is defined by
passing to the smaller base-arc with length |I| −min{xπ(`), xπ(`+m)}.

Let π be an irreducible permutation in R. Let (x, y) be singularity parameters
for a zippered rectangle construction with underlying permutation π. Let α = π(`)
and β = π(`+m). Since π is irreducible, α 6= β and we will assume that xα 6= xβ .
Breaking symmetry, suppose that xα > xβ . In this case, we say that the top letter
wins. We set the new width parameters as

x′α = xα − xβ,
and x′ρ = xρ for all ρ 6= α. Similarly we set the new height parameters as

y′β = yβ + yα,

and y′ρ = yρ for all ρ 6= β. The parameter transformations can be encoded in terms
of a matrix. Let E = (ers)r,s∈A be the A×A elementary matrix with ones along
the diagonal, eαβ = 1 and all other entries zero. Then, Ex′ = x and ET y = y′.

To define the new permutation we consider the two cases:
(1) α is a translation letter; or
(2) α is a flip letter.
Suppose α is a translation letter and let π(j) = α for some `+ 1 6 j < `+m.

We then set
• π′(i) = π(i) for all i 6 j,
• π′(j + 1) = β, and
• π′(i) = π(i− 1) for all i > j + 1.

Suppose now that α is a flip letter and let π(j) = α for some 1 6 j < `. We
set the top indices to range from 1 to `+ 1 and the bottom indices to range from
`+ 2 to `+m and then set

• π′(i) = π(i) for all i < j,
• π′(j) = β,
• π′(i) = π(i− 1) for all i > j.

With the above definitions, We set Rt(π, x, y) = (π′, x′, y′). If xα < xβ instead,
then we say that the bottom letter wins. The definition of Rb is analogous.
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The codimension-one locus xα = xβ is contained in V. The induction is unde-
fined for it.

Rauzy–Veech induction makes the Rauzy class R = R(Croot) into a directed
graph. The vertices of D are irreducible permutations in R with an arrow from
permutation π to π′ if π′ = Rt(π) or Rb(π). A component D of this graph is called
a Rauzy diagram.

We now explain the coding of the Teichmüller flow using normalised parameters
and Rauzy–Veech induction.

Let Cπ = qπ(Pπ) be the polytope given by normalised singularity parameters
for an irreducible permutation π. Let α = π(`) and β = π(`+m).

We say that q is a forward-tied differential for π if there exists a sequence
qn = qπ(π, xn, yn) converging to q for which the length of the base-arc I tends to
1 + min{xπ(`), xπ(`+m)} from below. Similarly, we say q is backward-tied for π if it
is the limit of a sequence where the length of the base-arc tends to 1 from above.

The period of the base-arc is linear in period coordinates. Therefore, the
backward-tied differentials are contained in a codimension-one locus in Croot. It
will become clear using Rauzy–Veech induction that the forward-tied differentials
are also contained in a codimension-one locus in Croot.

Let F(π) and B(π) be the set of forward-tied and backward-tied differentials for
π. We call these the flow faces. Let q be a forward-tied differential. Suppose that
there is a sequence qn = qπ(π, xn, yn) converging to q for which the parameters xn
and yn are bounded away from zero and infinity respectively. Then the sequence
(xn, yn) converges to some (x, y) in the closure of Pπ such that all its widths
xα > 0 and heights yα are bounded. It follows that q is contained in the interior
of F(π) and the map qπ extends from Pπ to such parameters. We can similarly
characterise differentials in the interior of B(π) and extend qπ to such parameters.

Let q be a forward-tied differential in the interior of F(π) and further suppose
that xα > xβ . The Rauzy–Veech induction on (π, x, y) is then defined and let
(π′, x′, y′) = Rt(π, x, y). Let I be the base-arc for q = qπ(π, x, y) and I ′ the
base-arc for q = qπ′(π

′, x′, y′). Note that

|I ′| = |I| − xβ = 1 + min{xα, xβ} − xβ = 1.

This means that q′ is a backward-tied differential for π′.
We conclude that the interiors of F(π) ∩ {xα > xβ} and F(π) ∩ {xα < xβ} are

identified with corresponding subsets of B(Rt(π)) and B(Rb(π)), respectively.
Let q ∈ Croot − V and let gtq for t > 0 be the Teichmüller geodesic ray through

q. Since q is doubly non-vanishing, it is contained in some polytope Cπ and its
parameters satisfy xπ(`) 6= xπ(`+m). Let I be the base-arc in q. Then the length
of the base-arc in gtq is et|I|. Therefore, there is some time t1 > 0 such that
gt1q ∈ F(π). By Rauzy induction, gt1q is also contained in B(π′) where π = R∗(π)
where ∗ = t or ∗ = b, depending on which of xπ(`) and xπ(`+m) is larger. Let
α′, β′ ∈ A be the last top and bottom letters of π′, respectively. As gt1q is also
doubly non-vanishing, the widths corresponding to α′ and β′ do not coincide.
So there is time t2 > t1 such that gt2q is contained in F(π′). This description
continues iteratively.

It is possible that the Rauzy diagram D contains permutations π and π′ that are
equivalent under some re-indexing p ∈ Sym(A). For such permutations, Cπ = Cπ′ .
Note then that the permutations arising from π and π′ by Rauzy–Veech induction
are also pairwise equivalent under the same re-indexing p. It follows that p induces
a symmetry of D as a directed graph. We call the quotient of D by all such
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symmetries the reduced Rauzy diagram and denote it by Dred. It is then clear that
we should use the quotient graph Dred to code Teichmüller flow on Croot.

The above coding of Teichmüller flow has an immediate combinatorial conse-
quence. By the work of Masur and Veech [Mas82; Vee82], the Teichmüller flow
on Croot is ergodic for the Masur–Veech measure. By ergodicity, a positive mea-
sure set in Cπ − V, visits every Cσ under Teichmüller flow. This implies that the
reduced Rauzy diagram Dred is a strongly connected graph, that is, there is a
directed path between any pair of vertices. It then follows that each component of
D is also strongly connected. See the article by Boissy–Lanneau for more details
[BL09].

The following three lemma are standard facts in the theory of Rauzy–Veech se-
quences and are often implicitly used. We include proof sketches for completeness.

Lemma 4.27. For any doubly non-vanishing rooted differential (q, v) and any
T > 0 the geodesic segment [q, gT q] crosses finitely many flow faces.

Proof. By applying Teichmüller flow, we may assume that (q, v) is contained in
some B0 = B(π). Let B1,B2, . . . be the sequence of backward faces the geodesic
segment [q, gT q] crosses. Let 0 < tk 6 T be the monotonically increasing sequence
of times such that gtkq is contained in Bk.

Recall that Z(q, v) is the set of points x in Iv such that I(x) is a base-arc.
Identifying Iv with the positive real axis, it follows from the definitions that each
point e−tk is contained in Z(q, v).

By Lemma 4.20, the intersection Z(q, v)∩ [e−T , 1) is finite. Hence, the sequence
tk is finite and we are done. �

Remark 4.28. It follows from the previous lemma that the curve δ we construct
in the proof of Theorem 4.23 crosses finitely many flow faces.

Let ζ be a finite Rauzy–Veech sequence that starts at π and ends at π′. Let
Pζ ⊆ Pπ be the parameters of differentials in Cπ whose Rauzy–Veech sequence
begins with ζ. By inductively using the definition of Rauzy–Veech induction, it
follows that the set Pζ is a convex open subset of Pπ. In particular, Cζ = qπ(Pπ)
is path connected.

We say that a Teichmüller segment [q, gtq] is a ζ-segment if q ∈ Cζ , gtq ∈ Cπ′
and the Rauzy–Veech sequence of [q, gtq] is ζ.

Lemma 4.29. Let ζ be a finite Rauzy–Veech sequence that starts at π and ends
at π′. Then any pair of ζ-segments are isotopic in Croot through ζ-segments.

Proof. As [q, gtq] is a ζ-segment, it follows that there exists an open set U in qπ(Pζ)
centred at q such that gtU is contained in Cπ′ . Any ζ-segment with an endpoint
in U is thus homotopic to [q, gtq]. Indeed, for any q′ in U , we can connect q to q′
by an arc contained in U . We flow the arc for time t to get an arc in Cπ′ . We thus
have a homotopy between [q, gtq] and [q′, gtq

′]. We then do a further homotopy
from [q′, gtq

′] and [q′, gt′q
′]. The lemma then follows from the path connectedness

of qπ(Pζ). �

Lemma 4.30. Let U be an open set contained in some polytope Cπ. Then there
exists a Rauzy–Veech sequence θ (that depends on U) starting from π such that,
for every q ∈ Cθ, the Teichmüller segment in Cπ containing q intersects U .

Proof. Let ∆ be the standard simplex in RA. Let p : Pπ → ∆ be the projection
(x, y)→ x/‖x‖1.



THE FLOW GROUP OF ROOTED ABELIAN OR QUADRATIC DIFFERENTIALS 21

By iteration, the transformation on parameters induced by a Rauzy–Veech se-
quence ζ is encoded by a non-negative matrix Bζ , that is, if (x, y) is in Pζ then
the new parameters x(ζ) are related to x by Bζx(ζ) = x. Suppose ζ ends at π′. It
also follows that p(BζPπ′) = p(Pζ).

It then suffices to show that there is a Rauzy–Veech sequence θ such that
p(BθPπ′) is contained in p(q−1

π U), where π′ is the permutation that θ ends at.
This is a standard fact but we will include a brief justification for completeness.

By Masur’s [Mas82] and Veech’s [Vee82] solution of the Keane conjecture or
even more strongly by Kerckhoff–Masur–Smillie [KMS86], we can find q ∈ U with
a uniquely ergodic vertical foliation or more strongly giving a recurrent Teich-
müller ray. Let ζn be the Rauzy–Veech sequence of length n for q and Bn the
corresponding matrix. Also, let πn denote the permutation at its end. Since the
vertical foliation is uniquely ergodic, the nested sequence p(BnP (πn)) converges to
p(q−1

π (q)) as n→∞. Since all such sets are polytopes inside the standard simplex
∆, there is some n large enough such that p(BnPπn) is contained inside p(q−1

π U).
We make take θ to be ζn to conclude the proof.

�

5. The flow group is the fundamental group

Let π1(Dred, π) be the fundamental group based at π of Dred as an undirected
graph. Let q0 be a point in Cπ.

To simplify notation, we will fix a component of D evenly covering Dred. We
will continue to refer to a vertex in Dred as an irreducible permutation when in
fact it is an equivalence class of vertices related by letter re-indexing. Note that
every directed path in Dred is realised by an actual Rauzy–Veech sequence in D.
Thus, we will use the actual Rauzy–Veech sequences in D to concatenate sensibly.

Proposition 5.1. There is a natural homomorphism

π1(Dred, π)→ π1(Croot, q0).

Proof. Let σ be any irreducible permutation in Dred. As Dred is strongly con-
nected, we can choose a directed path ξ(σ) from π to σ and a directed path ξ′(σ)
from σ to π. We choose empty paths for ξ(π) and ξ′(π).

Every loop κ in Dred based at π can be written as a concatenation of alternating
forward and backward paths. Breaking symmetry, suppose the odd indexed paths
are forward paths and the even indexed paths are backward paths. We may then
write the concatenation as κ1κ

−1
2 κ3κ

−1
4 · · · .

Let σi and τi be the beginning and ending permutations for κi. Then we have
the string of relations π = σ1, τ1 = σ2, τ2 = σ3, etc. The concatenation for κ is
then equal to the concatenation λ1λ

−1
2 λ3λ

−1
4 · · · , where each λi is a loop based at

π given by λi = ξ(σi)κi ξ
′(τi).

It thus suffices to associate a loop in Croot based at q0 with a directed loop κ in
Dred based at π. Observe that an actual Rauzy–Veech sequence in D representing
κ might end at a permutation π′ equivalent to π. However, this will not matter
as Cπ′ = Cπ in that case. Let q be a point in Cπ. As Cπ is a polytope and hence
contractible, any pair of paths in Cπ from q0 to q are homotopic relative to the
endpoints. We fix one such path and call it ηq. By η−1

q , we mean the reverse path
from q to q0. We now choose any κ-segment γκ. By Lemma 4.29, any two choices
of γκ are homotopic. Let q and q′ in Cπ be the beginning and end points of γκ.
We then map κ to the based loop ηq γκ η−1

q′ in Croot.
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It remains to show that this map is a homomorphism. Let κ′ and κ′′ be two
directed loops based at π. Let κ = κ′κ′′ and let γκ be a κ-segment. Let q and q′′
in Cπ be the beginning and the end points of γκ. We deduce that there exists a
point q′ in Cπ on γκ such that if we write γκ = [q, q′] ∪ [q′, q′′] then γκ′ = [q, q′] is
a κ′-segment and γκ′′ = [q′, q′′] is a κ′′-segment. Then ηq γκ η−1

q′′ is homotopic to
(ηq γκ′ η

−1
q′ )(ηq′γκ′′η

−1
q′′ ) and so we conclude that the map is a homomorphism.

�

As a consequence of Theorem 4.23, we prove

Theorem 5.2. Let Croot be a component of a stratum of rooted abelian or quadratic
differentials. Let π be a permutation in Dred. Let q0 be a base-point in Croot

contained in the polytope Cπ. Then the natural homomorphism

π1(Dred, π)→ π1(Croot, q0)

is surjective.

Proof. By Theorem 4.23, a loop γ based at q0 is homotopic to a finite concatenation
of paths γi where each γi is either a (forward or backward) Teichmüller geodesic
segment or is contained inside a polytope. Breaking symmetry, we may assume γ is
the concatenation γ1γ2 · · · γk where the odd indexed γi are contained in a polytope
and the even indexed γi are (forward or backward) Teichmüller segments. By
Lemma 4.27, the Teichmüller segments γ2i give us finite Rauzy–Veech sequences
ζ2i such that

• ζ2 starts at π; and
• successive ζ2i can be concatenated as undirected paths in D.

The concatenation ζ2ζ4 · · · descends to a loop κ in Dred based at π. As before,
the actual sequence in D might end at a permutation π′ equivalent to π but that
will not matter as Cπ′ = Cπ. As in the proof of Proposition 5.1, the loop κ can
be written as a concatenation of (forward and backward) loops based at π. The
surjectivity follows. �

Remark 5.3. As the components of D evenly cover Dred, it follows from Theo-
rem 5.2 that there is a finite cover of Croot that corresponds to components of D.
We denote this cover by Clab. This cover is easy to describe intrinsically in the
case of an abelian stratum component but its description for a quadratic stratum
component is an interesting question.

Let q0 be a base-point in Croot and U be a contractible open set around q0. For
every q ∈ U , we choose a path ηq from q0 to q inside U . As U is contractible, any
choice of ηq is homotopic to any other choice relative to their end-points. We take
the convention that η−1

q is ηq in reverse connecting q to q0.
Let γ be a Teichmüller segment that begins at some q ∈ U and ends at some

q′ ∈ U . The concatenation ηqγη
−1
q′ is a loop in Croot based at q0. We call such

loops almost-flow loops (based at q0).

Definition 5.4. The flow group G(U, q0) is the subgroup of π1(Croot, q0) generated
by the almost-flow loops based at q0.

We first prove the following theorem.

Theorem 5.5. Let Croot be a component of a stratum of rooted abelian or quadratic
differentials. Let q0 be a base-point contained in some polytope Cπ. Then

G(Cπ, q0) = π1(Croot, q0).
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Proof. In the proof of Theorem 5.2, we showed that images of directed loops in
π1(Dred, π) generate π1(Croot, q0). So it suffices to show that every directed loop ζ
in Dred based at π is realised by an almost-flow loop in G(Cπ, q0). We choose any
q in Cζ and let [q, gtq] be a ζ-segment that it gives. By definition, q′ = gtq is also
contained in Cπ. Then the based loop ηqγη−1

q′ realises the loop ζ. This concludes
the proof of the theorem. �

As a corollary, we obtain one of our main results.

Theorem 5.6. For any base-point q0 in Croot and any contractible open set U
containing q0

G(U, q0) = π1(Croot, q0).

Proof. Let q be a point in U . As U is contractible, it follows that G(U, q) ∼=
G(U, q0). Since the union of polytopes is dense in Croot, we may then assume that
q0 is contained in some polytope Cπ. Suppose V ⊆ U is a smaller contractible
open set that contains q0. By definition of the flow groups, G(V, q0) is a subgroup
of G(U, q0). So we may assume that U is also contained in Cπ. It now suffices
to show that any directed loop ζ in Dred based at π can be written as a word in
almost-flow loops in G(U, q0).

By Lemma 4.30, there is a Rauzy–Veech sequence θ starting from π such that
for any q ∈ Cθ the Teichmüller segment in Cπ containing q intersects U . Note then
that the same is true for any finite extension θζ.

As D is strongly connected, we may extend θ to assume that it also ends at π.
If π′ is equivalent to π, we also get a loop θ′ based at π′ so that θ and θ′ descend to
the same loop in Dred. Let q be a differential in Cθθ. As the Teichmüller segment
in Cπ containing q intersects U , we may assume q is in U .

By definition, there exists a time t > 0 such that the Teichmüller segment
[q, gtq] is a θθ-segment. We may decompose [q, gtq] as [q, gsq]∪ [gsq, gtq] such that
both segments [q, gsq] and [gsq, gtq] are θ-segments. In particular, q′ = gsq is also
contained in Cθ. As the Teichmüller segment in Cπ containing q′ intersects U , by
tweaking s we may assume that q′ is also contained in U . Let γu = [q, q′]. Then
ηqγuη

−1
q′ is an almost-flow loop in G(U, q0) that realises θ.

Now, let ζ be an oriented loop in Dred based at π. We consider the oriented loop
ξ = θζθ. As a sequence in D, the loop ζ could terminate at some π′ equivalent
to π. In this case we mean the concatenation θζθ′, where θ′ is a loop in D based
at π′ that descends to the same loop in Dred as θ. We will assume first that ζ is
a loop based at π in D. The argument below extends to the case where ζ ends
instead at π′ by concatenating the appropriate arcs.

Let γξ = [q, gtq] be a ξ-segment. As the Teichmüller segment in Cξ containing
q intersects U , we may choose q to be in U . We then write γξ as a concatenation
[q, gsq] ∪ [gsq, gtq] where [q, gsq] is a θζ-segment and [gsq, gtq] is a θ-segment. Let
q′ = gsq and q′′ = gtq. As [q′, q′′] is a θ-segment, q′ is contained in Cθ. The
Teichmüller segment inside Cπ containing q′ intersects U . So by changing s, we
may assume that q′ is also contained in U .

The Teichmüller segment γ′ = [q, q′] then begins and ends in U . So the directed
loop θζ is realised by the almost-flow loop ηqγ′η−1

q′ in G(U, q0).
As we already established that θ is realised by an element in G(U, q0), we deduce

that ζ must also be realised by an element in G(U, q0). This concludes the proof
of the corollary.

�
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6. Dynamics of the Teichmüller flow

6.1. Coding formalism. Let Π be a finite or countable set. We consider the
symbolic space Σ = ΠZ endowed with the left shift map S. Suppose w ∈ Πm is a
finite word. The (forward) cylinder Σ(u) induced by u is defined as Σ(u) = {a ∈
Σ such that ak = uk for k = 0, . . . ,m− 1}. Given another word v ∈ Πn, we write
uv ∈ Πm+n for the concatenation of u and v.

Definition 6.2. We say that an S-invariant probability measure µ has bounded
distortion if there exists a constant K > 0 such that, for any finite words u ∈ Πm

and v ∈ Πn,
1

K
µ(Σ(u))µ(Σ(v)) 6 µ(Σ(uv)) 6 Kµ(Σ(u))µ(Σ(v)).

The bounded distortion property allows us to treat the symbolic space “almost”
as a Bernoulli shift. For this reason, it is also called an approximate product
structure. Since µ is shift-invariant, the previous definition would not change if
we used backward or centred cylinders instead of forward cylinders.

We will now describe how the Teichmüller flow can be coded by such a symbolic
setup. Let π be an irreducible generalised permutation in Dred. For a backward-
tied differential q in B(π), let (q, gtq), for some t > 0, be the longest Teichmüller
segment entirely contained in Cπ. It follows that gtq is contained in F(π). Let ζ
be a finite Rauzy–Veech sequence starting at π. Let Sζ be the differentials q in
B(π) for which the Teichmüller segment above is contained in Cζ .

Recall that ∆ is the standard simplex in RA and p : Pπ 7→ ∆ is the projection
(x, y) → x/‖x‖1. Let Bθ denote the matrix of a Rauzy–Veech sequence θ. As
indicated in the proof of Lemma 4.30, it is possible to find a sequence θ from π to
π such that p(BθPπ) is compactly contained in p(Pπ). Let p : (x, y) 7→ y be the
map that records the height parameters. By extending θ to a longer loop based at
π, we may also assume that p(Pπ) is compactly contained in p(BθPπ). We fix this
θ once and for all and consider Sθ. By finessing θ further, we may assume that it
is neat, that is, if θ = ζη and θ = η′ζ then ζ = θ. In the coding that we consider,
the set Sθ will serve as a transverse section to the Teichmüller flow.

We recall the bounded distortion theorem for Rauzy–Veech induction. This
theorem states that that there exists a constant K > 1, that depends only on the
topology of the surface, and a countable collection of finite Rauzy–Veech sequences
ζ from π to π such that

• for the map p(q−1
π (B(π)))→ p(q−1

π (B(π))) given by x 7→ Bζ x/‖Bζ x‖1, its
Jacobian J satisfies

1

K
J (x1) < J (x2) < KJ (x1)

for any pair of points (x1, y1), (x2, y2) ∈ q−1
π (B(π));

• no ζ contains θ, that is, ζ cannot be written as a concatenation ηθη′; and
• up to excising a set of differentials of measure zero,⋃

ζ

B(ζ) = B(π).

For more details, we refer the reader to the article by Avila–Gouëzel–Yoccoz
[AGY06, Section 4] for abelian differentials, and by Avila–Resende [AR12, Sec-
tions 4 and 5] for quadratic differentials.

We stress that the Rauzy–Veech sequences considered here are sequences in
Dred. To be precise with constraints that involve concatenations, they should
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be imposed over all lifts in D. For instance, fixing a lift of π in D, the second
constraint should be read as finding a loop ζ in D that returns to π and does not
contain a lift of θ. Alternatively, the coding we describe is a coding of the flow
lifted to Clab that is “equivariant” with respect to the Deck group for the covering
Clab → Croot.

With this setup, the first return maps under Teichmüller flow to Sθ are given
by Rauzy–Veech sequences of the form θζθ. Note then that, by tweaking the
constant K, the Jacobian of the map p(q−1

π (Sθ)) 7→ p(q−1
π (Sθ)) given by x 7→

Bθζθ x/‖Bθζθ x‖1 satisfies

1

K
J (x1) < J (x2) < KJ (x1)

for each ζ and for any pair of points (x1, y1), (x2, y2) ∈ q−1
π (Sθ). In fact, the

Jacobian property is enforced by the stronger property of the matrix that, up to
a constant, that depends only on the topology of the surface, all columns have
the same norm. More precisely, ‖Bθγθ x‖1 � ‖Bθγθ x′‖1 for any (x, y), (x′, y′) ∈
q−1
π (Sθ).
Moreover, we have that, up to excising a set of zero measure,

(6.3) Sθ =
⋃
ζ

Sθζθ.

We thus have a countable full measure partition of Sθ into sets Sθζθ such that
each Sθζθ is the image of smooth map φζ : Sθ 7→ Sθ. Each map φζ is diffeomorphic
onto its image and its inverse is a uniformly expanding Markov map in the sense
of Avila–Gouëzel–Yoccoz [AGY06, Definition 2.2]. We assemble the inverses of φζ
into a map Φ on Sθ.

For such an expanding map Φ, there exists a unique Φ-invariant absolutely
continuous probability measure ν, which is automatically ergodic and even mixing
[Aar97; AGY06, Section 2]. In the case of the Teichmüller flow, the measure ν is
the restriction of the Masur–Veech measure on Croot.

We now set Π as the countable set of sequences ζ above. The partition given
by (6.3) induces an equivariant bijection between (Σ, S) and (

⋃
ζ∈Π Sθζθ,Φ). The

measure µ that we will consider on Σ is the unique S-invariant probability measure
rendering this bijection a measure-theoretic conjugation. The bounded distortion
inherited by ν from the Jacobians becomes equivalent to the bounded distortion
of µ given by Definition 6.2.

6.4. Return times. A function ξ : Σ 7→ R is Hölder if there exists a non-negative
exponent α < 1 and a constant C > 0 such that for any finite sequence u and any
a, b ∈ Σ(u)

|ξ(a)− ξ(b)| 6 Cαm,
where m is the length of u.

A roof function is a Hölder function ξ : Σ 7→ R>0. A suspension of the symbolic
space is a space that is homeomorphic to Σ× [0, 1] with the identification (a, 0) ∼
(S(a), 1). The roof function equips the suspension with a flow ψ which flows in
the interval direction and satisfies ψξ(a)(a, 0) = (S(a), 1).

Definition 6.5. A roof function is said to have exponential tails if there exists
h > 0 such that ∫

Σ
ehξdµ <∞.



26 BELL, DELECROIX, GADRE, GUTIÉRREZ-ROMO, AND SCHLEIMER

The property of having exponential tails implies, in particular, that the volume
of the suspension with respect to the local product measure dµ dt is finite. We
will discuss this integrability in more detail when we talk of cocycles.

Note that under the measure-theoretic conjugacy, the section Sθ gets identified
with Σ×{0}. The function ξ we are interested in is the return time function to Sθ
under Teichmüller flow. It is easy to check that the return time on Sθζθ is given
by ξ(x) = log ‖Bθζθ x‖1. The measure dν dt is the Masur–Veech measure on Croot.
The coding of the Teichmüller flow can be summarised as follows.

Theorem 6.6. There exists a countable set Π whose full shift (Σ, S), Σ = ΠZ,
carries an S-invariant probability measure with bounded distortion and a roof func-
tion ξ with exponential tails such that there exists a measure-theoretic conjugacy
f : Σ× [0, 1]→ Croot (where Croot is equipped with the Masur–Veech measure) that
satisfies f ◦ ψt = gt ◦ f for all t ∈ R.

6.7. Cocycles. A linear cocycle with values in SL(m,R) for the Teichmüller flow
is a map C : C × R 7→ SL(m,R) satisfying

• C(q, 0) = I where I is the identity matrix, and
• C(q, s+ t) = C(gsq, t)C(q, s) for all q ∈ C and s, t ∈ R.

The most well known example is the Kontsevich–Zorich cocycle which records
the dynamics of the flow on the integral first homology group of the surface.
Choosing charts on C, one can choose a basis for a trivialisation of the surface
homology in these charts. As the Teichmüller flow has Poincaré recurrence, one
can consider the change of basis matrices as a flow trajectory returns to a chart.
This is the Kontsevich–Zorich cocycle. As the flow preserves the intersection form
on the homology, the cocycle takes values in the symplectic group over Z.

Another example is the Rauzy–Veech cocycle defined on Clab, which is the finite
cover of Croot corresponding to the cover D → Dred defined in Remark 5.3. Here,
the polytopes Cπ carry preferred coordinates through the normalised width and
height parameters. The itinerary through polytopes of a typical flow trajectory
is recorded by the Rauzy–Veech sequence. The coordinate transformation of a
Rauzy–Veech sequence is linear. This defines the Rauzy–Veech cocycle. For an
abelian stratum component, one can associate to an irreducible permutation a
natural spanning set for the absolute homology of the surface. With respect to
these spanning sets the Kontsevich–Zorich cocycle lifted to Clab is the same as
the Rauzy–Veech cocycle. Thus, the two can be studied simultaneously. This
structure is not available for stratum components of quadratic differentials.

A linear cocycle for the Teichmüller flow is said to be integrable with respect
to a finite flow invariant measure if for all t the functions q 7→ log ‖C(q, t)‖ and
q 7→ log ‖C(q, t)−1‖ are L1 with respect to the measure. As our cocycles are integer
valued, the condition q 7→ log ‖C(q, t)‖ being L1 suffices. The flow invariant
measure we are interested in is the Masur–Veech measure on C and its lifts to
Croot and Clab. The lift to Croot is exactly the measure dν dt.

The Teichmüller flow is ergodic with respect to the Masur–Veech measure. Thus,
if a cocycle is integrable, then Oseledets theorem applies: for almost every q and
every non-zero vector v ∈ Rm the limit

lim
t→∞

1

t
log
‖C(q, t)v‖1
‖v‖1
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exists and depends only on v and not on q. Moreover, the limit can achieve up to
m values: λ1 > λ2 > . . . > λm. This set of numbers is known as the Lyapunov
spectrum.

We say a cocycle on Croot is locally constant if the cocycle is constant over the
cylinder sets in our coding. By choosing a trivialisation of the homology over each
polytope Cπ, the Kontsevich–Zorich cocycle lifted to Croot is locally constant. The
Rauzy–Veech cocycle is locally constant by construction.

We normalise the invariant measure µ on the section Sθ to be a probability
measure. Let ζ be a symbol in Π and let Bθζθ be the associated Rauzy matrix.
By standard methods of computing volumes of images of projective linear maps,
there exists a constant C > 1 that depends only on the topology of the surface
such that

1

C‖Bθζθ‖d−1
1

< µ(Sθζθ) <
C

‖Bθζθ‖d−1
1

.

See our previous article for more details [Bel+19, Lemma 5.11]. Thus, for the
discrete Rauzy–Veech cocycle q 7→ B(q) on Sθ, we get that, up to a similar uniform
multiplicative constant,∫

Sθ
log ‖B(q)‖1 dµ(q) �

∑
ζ∈Π

log ‖Bθζθ‖1
‖Bθζθ‖d−1

1

.

To estimate the integral above, we organise the sequences ζ ∈ Π by the L1

norms of the matrices Bθζθ considered on a multiplicative scale on R+. Recurrence
estimates in the bounded distortion theorem for Rauzy–Veech sequences show that
there exist constants M > 1 and 0 < c < 1 that depend only on the topology of
the surface such that, for the set Πn = {ζ ∈ Π : ‖Bθζθ‖1 ∈ [1,Mn)},∑

ζ∈Πn

µ(Sθζθ) > 1− cn.

It follows that
∑

ζ log ‖Bθζθ‖1/‖Bθζθ‖d−1
1 is dominated by

∑
ncn and, hence, that

the discrete Rauzy–Veech cocycle is integrable. Note that up to an additive con-
stant that depends only on the surface, the first return time ξ(q) at any q in Sθζθ
is log ‖Bθζθ‖1. So the integrability of the Rauzy–Veech cocycle is equivalent to
the finiteness of the Masur–Veech volume of Croot.

Using the above estimates for γ ∈ Πn, it is straightforward to derive that, if a
locally constant cocycle with values in SL(m,Z) is integrable with respect to the
Masur–Veech measure, then it is integrable with respect to (Sθ, µ). As a result,
the integrability over (Sθ, µ) of the plus and minus cocycles (that we define in
Section 9) can be deduced from their integrability with respect to the Masur–
Veech measure. In any case, we will give a direct verification of the integrability
over (Sθ, µ) of the plus and minus cocycles in Section 10. To do that, we will need
the following lemma.

We say that a cocycle C is dominated by a cocycle C ′ if there is a constantK > 0
that depends only on the surface such that the L1-norms satisfy ‖C‖1 6 K‖C ′‖1.

Lemma 6.8. Suppose that C is a locally constant cocycle dominated by the Rauzy–
Veech cocycle. Then C is integrable in either sense.

Proof. The lemma follows directly from integrability of the Rauzy–Veech cocycle.
�
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Recall that a cocycle into SL(m,R) has a simple Lyapunov spectrum if its
Lyapunov spectrum consists on m distinct numbers. We will now state a weaker
version of the Avila–Viana criterion for simplicity of the Lyapunov spectrum. The
actual criterion is more general [AV07a; AV07b, Theorem 7.1], but we state it
specifically for our context.

Let γ1 and γ2 be almost-flow loops given by directed Rauzy–Veech sequences
η1 and η2. Then the concatenation γ1γ2 is also realised by an almost-flow loop
given by the Rauzy–Veech sequence η1η2. Thus, the almost-flow loops give us a
monoid. By evaluating a locally constant cocycle for each almost-flow loop, we
get a representation of the monoid into SL(m,R). As the cocyles we consider here
are defined over Z and preserve a symplectic structure, this representation has an
image in the symplectic group.

Criterion 6.9. Let C be a locally constant integrable cocycle for the Teichmüller
flow. If the associated monoid is Zariski dense in the symplectic group, then the
Lyapunov spectrum is simple.

As was previously mentioned, the criterion stated by Avila–Viana [AV07b, The-
orem 7.1] does not require Zariski density. Instead, it has the weaker hypothesis
of requiring the presence of pinching and twisting elements in the group generated
by the monoid. It is a classical fact that a Zariski dense monoid gives a group that
contains a pinching element. It follows from the work of Benoist [Ben97] that this
group also contains elements that are twisting relative to the pinching element.
As we directly establish Zariski density, we will omit the precise definitions of
pinching and twisting, which are technical to state.

Furthermore, the criterion stated by Avila–Viana does not, strictly speaking,
require the cocycle to be symplectic; it requires the cocycle to take values in the
special linear group and satisfy pinching and twisting. Nevertheless, we state
the criterion for symplectic cocycles as all of the cocycles that we consider are
symplectic.

7. Rauzy–Veech groups

Recall that Clab is the cover of Croot corresponding to the covering Dred → D,
as defined in Remark 5.3. In the definitions that follow, we operate in Clab.

7.1. Rauzy–Veech groups of abelian components. Let C be an abelian stra-
tum component. There is a natural spanning set for the absolute homology of
the surface that one can associate to any permutation π in its Rauzy diagram D
[AV07b; AMY18; Gut19]. For any loop δ in D based at π, one can define a matrix
in Sp(2g,Z) by computing the linear action on absolute homology induced by δ, in
terms of the preferred spanning set. The Rauzy–Veech group of π, denoted RV(π),
is the subgroup of Sp(2g,Z) generated by such matrices. The matrix associated
with any loop δ coincides with the Rauzy–Veech matrix Bδ but this is special for
abelian stratum components.

7.2. Minus and plus pieces for quadratic stratum components. Let C be
a component of a stratum of quadratic differentials. There is a branched double
cover S̃ of S such that the lifts q̃ for q ∈ C are abelian differentials on S̃. This is
often called the orientation double cover of the quadratic differential. The cover
is branched over every zero of q with odd order and every pole of q. We will
give the construction of the orientation double cover of a typical rooted quadratic
differential shortly.
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The differential q̃ is symmetric with respect to an involution and the quotient
is q. Viewed as an involution of S̃, the induced linear action on H1(S̃, Z̃;Z) has
eigenvalues {1,−1}. The (+1)-eigenspace is usually referred to as the plus (or
invariant) piece and the (−1)-eigenspace is usually referred to as the minus (or
anti-invariant) piece. By Poincaré-duality, we can also consider it as a splitting of
the homology H1(S̃, Z̃;Z).

The Teichmüller flow on C defines a cocycle by its action onH1(S̃, Z̃;Z). The co-
cyle preserves the plus and minus eigenspaces. The plus Kontsevich–Zorich cocycle
is its restriction to the plus piece. Similarly, we also get the minus Kontsevich–
Zorich cocycle.

7.3. Plus Rauzy–Veech groups and integrability of the plus cocycle. As
the absolute part of the plus piece is invariant under the involution, it is isomorphic
to the absolute homology of S. Hence, the plus Rauzy–Veech group RV+(π) can
be defined in a similar way to the abelian case by associating to each irreducible
quadratic permutation a preferred spanning set for the absolute homology of S.
Then, for any loop δ in the Rauzy diagram D based at π, we may associate a
matrix for the homology action induced by δ using the preferred spanning set.
This matrix does not coincide in general with the Rauzy–Veech matrix Bδ and so
we prefer to give a direct proof of the integrability of the plus cocycle.

More precisely, for each quadratic permutation in D there is a choice of a span-
ning set {cα}α∈A for the plus piece such that the matrix for the plus cocycle has
a simple form in each Rauzy–Veech move. See the work by the fourth author
[Gut17, Section 4.1] for the description of the spanning set.

The simple form of the matrix has the following description. Suppose α and β
are top and bottom letters in π. Breaking symmetry, suppose that xα > xβ . Let
δ = σ → τ be the Rauzy–Veech move dictated by the width constraint. If cα and cβ
have non-zero algebraic intersection then the matrix satisfies Cδ = I+Mα,β , where
Mα,β is the matrix whose (α, β)-entry is one and zero otherwise. On the other
hand, if cα and cβ have zero algebraic intersection, then Cδ = I −Mα,β − 2Mα,α.

The explicit matrices give us a direct proof of the integrability of the plus
cocycle. Inductively, the matrix for the cocycle can be defined for any finite
Rauzy–Veech sequence δ as a product of matrices for individual Rauzy–Veech
moves.

Lemma 7.4. For any finite Rauzy–Veech sequence δ

‖Cδ‖1 6 ‖Bδ‖1,

where Bδ is the Rauzy–Veech matrix for δ.

Proof. For any matrix C with coefficients crs, let |C| be the non-negative matrix
with coefficients |crs|.

Note that for an individual Rauzy move δ the plus cocycle satisfies |Cδ| = Bδ.
Now let δ = δ1δ2 . . . δk be a finite Rauzy–Veech sequence. We observe that

‖Cδ‖1 = ‖Cδ1 . . . Cδk‖1 6 ‖|Cδ1 | . . . |Cδk |‖1 = ‖Bδ1 . . . Bδk‖1 = ‖Bδ‖1
�

As the above lemma shows, the plus cocycle is dominated by the Rauzy–Veech
cocycle. The integrability of the plus cocycle now follows from Lemma 6.8.
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(b) Double cover after a Rauzy move.

Figure 7.5. Example of the spanning set for the minus piece
rendering the linear transformations coming from Rauzy moves
equal to the Rauzy–Veech matrices. The original permutation is(

1 2 1 2 3
3 4 4

)
representing the stratum Q(2,−1,−1), which becomes(

1 2 1 2
3 3 4 4

)
after one bottom Rauzy move. In this case, the cycles in

the spanning set can be tightened to saddle connections, so they
are drawn in this manner. The general case is similar.

7.6. Minus Rauzy–Veech groups and integrability of the minus cocycle.
The minus piece is in the kernel of the map induced on homology by the branched
covering S̃ → S. As a result, the minus cocycle has to be analysed directly
in the orientation double cover of a quadratic differential. Here again, for each
irreducible quadratic permutation there is a natural choice for a spanning set for
the minus piece. Using this preferred set, the minus Rauzy–Veech group RV−(π)
can now be defined in a similar way to the other types of Rauzy–Veech groups. For
rooted quadratic differentials that admit a zippered rectangles construction, we
will explicitly construct their orientation double cover and then precisely describe
the resulting matrices. These matrices preserve a specific alternating form defined
by Avila–Resende [AR12, Equation 9].
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Consider the arcs between singularities that we used to define singularity pa-
rameters. These arcs are a spanning set in the relative homology. Using these
arcs, we can build a spanning set for the minus piece as follows.

To construct the orientation double cover of the rooted differential, we take two
copies of the zippered rectangles. Let 1 6 i 6 `+m. As notation, a rectangle Ri
will be denoted as R(1)

i in the first copy and R(2)
i in the second copy. The gluings

are now constructed as follows.
• If π(i) is a translation letter, then R(1)

i is glued to R(1)
σ(i) and R(2)

i is glued

to R(2)
σ(i) as before.

• If π(i) is a flip letter then R(1)
i is glued to R(2)

σ(i) by a translation.
The resulting abelian differential is the orientation double cover of the original
quadratic differential. The involution rotates each rectangle by 180 degrees and
maps it to the corresponding rectangle in the other copy.

Let α ∈ A be a letter. Let aα be the arc in the original quadratic differential
oriented so that its period is xα + yα where xα, yα are the singularity parameters.
Let a(1)

α and a(2)
α be the lifts of aα to the double cover. The spanning set for the

minus piece in the relative homology of the orientation double cover is now defined
as follows:

• Suppose α is a translation letter. Then let Aα = a
(1)
α + a

(2)
α .

• Suppose α is a flip letter. Then let Aα = a
(1)
α − a(2)

α .
See Figure 7.5 for an illustration of these cycles.
It is straightforward to check that in a Rauzy–Veech move the linear change

of these spanning sets is exactly encoded by the Rauzy–Veech matrix. Thus the
Kontsevich–Zorich cocycle on the minus piece of the relative cohomology (by du-
ality) coincides with the Rauzy–Veech cocycle. In particular, the L1-norm of the
restriction to the minus piece in absolute cohomology is dominated by the L1-norm
of the Rauzy–Veech matrix. Thus, the minus cocycle is integrable.

7.7. Modular Rauzy–Veech groups. By considering mapping classes instead
of the homological actions induced by loops in the Rauzy diagram, we can define
the modular Rauzy–Veech groups, the plus modular Rauzy–Veech groups and the
minus modular Rauzy–Veech groups. These groups are then subgroups of mapping
class groups and their images by the symplectic representations coincide with the
corresponding Rauzy–Veech groups. They are denoted MRV(π), MRV+(π) and
MRV−(π), respectively.

7.8. Rauzy–Veech groups and monodromy groups. Elementary theory of
covering spaces together with our main theorems Theorem 4.23 and Theorem 5.5
implies that Rauzy–Veech groups are finite-index subgroups of appropriate mon-
odromy groups. More precisely:

Corollary 7.9. Let C be a component of a stratum of abelian or quadratic dif-
ferentials and let π be an irreducible permutation that represents C. Let C̃ be any
finite manifold cover of C (which, in particular, can be taken to be either Croot or
Clab). Then, the following groups are finite-index subgroups inside the following
larger groups:

(1) π1(C̃) inside πorb
1 (C);

(2) the (modular) monodromy group of C̃ inside the (modular) monodromy
group of C;
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(3) if π is abelian, the (modular) Rauzy–Veech group of π inside the (modular)
monodromy group of C of π;

(4) if π is quadratic, the (modular) plus (respectively, minus) Rauzy–Veech
group of π inside the (modular) monodromy group of C corresponding to
the plus (respectively, minus) piece of the homology.

Proof. Since C̃ is a finite cover of C, parts (1) and (2) follow from elementary
theory of covering spaces.

Suppose that π is abelian. Then the modular Rauzy–Veech group of π is a sub-
group of the modular monodromy group of Clab. The push-forward of the modular
Rauzy–Veech group to Croot is exactly the image of the flow group G(Cπ, q0) inside
the mapping class group. By Theorem 5.5, this image equals the modular mon-
odromy group of Croot. By part (2), it is a finite-index subgroup of the modular
monodromy group of C. The rest of part (3) is obtained by applying the symplectic
representation. Part (4) is obtained analogously. �

Part (3) of the previous corollary provides a partial answer (that is, up to finite
index) to a question of Yoccoz [Yoc10, Remark in Section 9.3]. Part (4) extends
these partial answers to analogous questions for quadratic stratum components.

Remark 7.10. For abelian components, the overall structure of how various groups
that we have considered fit together can be organised in the following commutative
diagram:

π1(D) π1(Clab) MRV(π) RV(π)

π1(Dred) G(Cπ) = π1(Croot) MMon(Croot) Mon(Croot)

πorb
1 (C) MMon(C) Mon(C)

Mod(S) Sp(2g,Z)

f.i. f.i. f.i. f.i.

f.i. f.i. f.i.

where “f.i.” stands for “finite index”, and recall that MMon is the modular mon-
odromy group and that Mon is the monodromy group. This diagram actually allows
us to define the “most general” version of a Rauzy–Veech group, which is the image
of the group homomorphism π1(D)→ π1(Clab). Theorem 5.2 shows that this group
is actually equal to π1(Clab). Thus, any other version of Rauzy–Veech group can
be obtained as the image of π1(Clab) by an appropriate group homomorphism.

Similar commutative diagrams can also be stated for quadratic components by
considering the images into the plus and minus pieces separately.

Combining Corollary 7.9 with the work of Calderon and Calderon–Salter [Cal20;
CS19a; CS19b; CS20], we obtain a classification of the modular Rauzy–Veech
groups and the Rauzy–Veech groups in relative homology, up to finite index, for
genus at least five for non-hyperelliptic components. More precisely:

Corollary 7.11. Let S be a topological surface of genus at least five. Let C be a
non-hyperelliptic component of a stratum of abelian differentials on S whose set of
marked points is Z. Let φ is the absolute framing induced by the horizontal vector
field of a surface in C. We have that:
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(1) The modular Rauzy–Veech group in Mod(S,Z) is a finite-index subgroup
of Mod(S,Z)[φ], that is, of the stabiliser of φ inside Mod(S,Z).

(2) The Rauzy–Veech group in PAut(H1(S,Z;Z)) is a finite-index subgroup
of the kernel of the crossed homomorphism Θφ : PAut(H1(S,Z;Z)) →
H1(S,Z/2Z) defined by Calderon–Salter [CS19b, Section 4].

This classification was already known for hyperelliptic components, and in this
case the index is known to be one [AMY18].

8. Classification of components and a reduction strategy

8.1. Classification of the components of strata of abelian and quadratic
differentials. For the reader’s convenience, we restate the complete classification
of the components of abelian and quadratic strata.

Theorem 8.2 ([KZ03]). The following is the classification of the components of
the strata of abelian differentials (up to regular marked points).

• In genus one, the only stratum is H(0). It is non-empty, connected and
hyperelliptic.
• In genus two, the only strata are H(2) and H(1, 1). They are non-empty,
connected and hyperelliptic.
• In genus three, the strata H(4) and H(2, 2) have two components. One of
them is hyperelliptic and the other one corresponds to odd spin structures.
Every other stratum is non-empty and connected.
• Finally, for genus g at least four:

– The stratum H(2g − 2) has three components. One of them is hy-
perelliptic, and the other two are distinguished by even and odd spin
structures.

– The stratum H(g − 1, g − 1) can have two or three components de-
pending on the parity of g. If g is even, it has two components. One
of them is hyperelliptic, and the other one is not. If g is odd, it has
three components. One of them is hyperelliptic, and the other two are
distinguished by even and odd spin structures.

– All other strata of the form H(2κ1, . . . , 2κn) have two components,
distinguished by even and odd spin structures.

– The remaining strata are non-empty and connected.

Theorem 8.3 ([Lan08; CM14]). The following is the classification of the compo-
nents of the strata of quadratic differentials (up to regular marked points).

• In genus zero, every stratum is non-empty and connected.
• In genus one, the strata Q(0) and Q(1,−1) are empty. All other strata are
nonempty and connected.
• In genus two, the strata Q(4) and Q(3, 1) are empty. Moreover, the stratum
Q(2, 2) is non-empty, connected and hyperelliptic.
• In genus three, the strata Q(9,−1), Q(6, 3,−1) and Q(3, 3, 3,−1) have two
components, known as regular and irregular components.
• In genus four, the strata Q(6, 6), Q(6, 3, 3) and Q(3, 3, 3, 3) have three
components. One of them is hyperelliptic, and the other two are known as
regular and irregular components. Moreover, the strata Q(12) and Q(9, 3)
have two components, known as regular and irregular components.
• Finally, for genus at least two:
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– The strata of the form Q(4j + 2, 4k + 2), Q(4j + 2, 2k − 1, 2k − 1)
and Q(2j − 1, 2j − 1, 2k − 1, 2k − 1) for j, k > 0 not contained in the
previous list have two components. One of them is hyperelliptic and
the other one is not.

– The remaining strata are non-empty and connected.

8.4. Adjacency of strata and a reduction strategy. For abelian differentials
[AV07b], the adjacency between components of different strata was exploited to
show that Rauzy–Veech groups of simpler components are contained inside the
Rauzy–Veech groups of more complex ones. We will exploit the same strategy to
obtain the containment of Rauzy–Veech groups of quadratic stratum components.

We start with the notions of simple extensions.

Definition 8.5. Let σ be an irreducible permutation. We say that a permuta-
tion τ is a type preserving simple extension of σ if τ is quadratic (respectively,
abelian) when σ is quadratic (respectively, abelian) and τ can be obtained from σ
by inserting a single letter α in such a way that:

• at most one occurrence of α is at the beginning of a row in τ ; and
• no occurrence of α is at the end of a row in τ .

Similarly, we have

Definition 8.6. Let σ be an irreducible abelian permutation. We say that τ is a
type changing simple extension of σ is τ is quadratic and τ can be obtained from
σ by inserting a single top flip letter α and a single bottom flip letter β such that

• at most one occurrence of α (respectively, β) is at the beginning of a row
in τ ; and
• no occurrence of α (respectively, β) is at the end of a row in τ .

As irreducible quadratic permutations already possess flip letters, there are no
type changing extensions from a quadratic permutation to an abelian one.

The notion of simple extensions was original introduced by Avila–Viana [AV07b]
in their proof of the Kontsevich–Zorich conjecture for abelian differentials. By
expanding it to type changing extensions, the notion was extended to quadratic
differentials by the fourth author [Gut17].

Note that if σ is an irreducible permutation and τ is a (type preserving or
changing) simple extension of σ, then τ is also irreducible [Gut17, Lemma 3.2].
Also, note that the genera of the embodying strata of σ and τ are the same.

Let τ be a (type preserving or changing) simple extension of σ and suppose that
ζ is a directed loop based at σ in the Rauzy diagram D that contains σ. It is then
possible to shadow ζ by a Rauzy–Veech sequence starting from τ by requiring that
the added letter (or letters) always lose if they participate in a Rauzy move [Gut17,
Section 3]. It also follows from this description that the shadowing Rauzy–Veech
sequence also returns to τ . This implies that RV(σ) is a subgroup of RV(τ).

We now explain the geometric content underlying simple extensions. A type
preserving simple extension allows us to split a singularity into a pair of singu-
larities [Gut17, Lemma 5.1]. A type changing simple extension allows us to split
a singularity in to three singularities at least one of which has odd order [Gut17,
Corollary 5.2].

For quadratic stratum components which are our focus, the numerical invariant
κ gets re-organised as follows;
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• If κ1 > 1, κ2, . . . , κn > −1 are integers and κ1,1, κ1,2 > −1 are integers
satisfying κ1,1 + κ1,2 = κ1, then there exists a permutation σ whose em-
bodying stratum is Q(κ1, . . . , κn) and a permutation τ whose embodying
stratum is Q(κ1,1, κ1,2, κ2, . . . , κn) such that τ is a simple extension of σ.
• If κ1 > 0, κ2 . . . , κn > 1 are integers and κ1,1, κ1,2, κ1,3 > −1 are integers
which are not all even and satisfy κ1,1 + κ1,2 + κ1,3 = 2κ1, then there
exists a permutation σ whose embodying stratum is H(κ1, . . . , κn) and a
permutation τ whose embodying stratum is Q(κ1,1, κ1,2, κ1,3, 2κ2, . . . , 2κn)
such that τ is a simple extension of σ.

These facts suggest the following strategy to show the Zariski density of every
Rauzy–Veech group corresponding to the plus piece of quadratic differentials:

(1) Prove Zariski density for minimal quadratic strata, that is, for strata of
the form Q(4g − 4) for g > 3 with the exception of Q(12)reg and Q(12)irr

(with g = 4) whose density has to be proved separately for technical rea-
sons. Then use simple extensions to extend the density to every connected
stratum with g > 3. For strata in g > 3 that have two components, one
non-hyperelliptic and the other hyperelliptic, the non-hyperelliptic compo-
nent can also be reached by such simple extensions from minimal strata.
Note that a hyperelliptic component cannot arise by a simple extension of
a non-hyperelliptic one. So we pass to the next case in our strategy.

(2) Prove Zariski density for every hyperelliptic component that has the form
Q(4j+2, 4k+2) for j, k > 1. The rest of the hyperelliptic components arise
by a string of simple extensions of these and hence we can extend density,
except for those containing poles. Nevertheless, these last components
arise as a string of simple extensions from the hyperelliptic component of
minimal abelian strata.

The remaining cases are all in genus four and lower and we will outline
the strategy for those.

(3) The regular and irregular components in genus four arise by a simple ex-
tension from Q(12) or from H(6); the extensions from H(6) are already
treated in previous work by the fourth author [Gut17, Table 1]. The den-
sity then extends to these.

(4) Prove Zariski density explicitly for Q(9,−1)irr in genus three. The re-
maining regular and irregular components in genus three can be handled
by exhibiting a simple extension from Q(8) or from H(4); the extensions
from H(4) are again already treated in previous work by the fourth author
[Gut17, Table 1].

(5) Prove Zariski density explicitly for Q(5,−1) in genus two. The remaining
non-hyperelliptic components all have at least three singularities and not
all of these have even orders. So we may extend density from H(2) by
using simple extensions.

(6) All quadratic strata in genus one have at least three singularities and not
all of the singularities can have even orders. So we may extend density
from H(0) by using simple extensions.

For abelian differentials, a similar strategy gives containment of Rauzy–Veech
groups. As the Rauzy–Veech groups can be explicitly figured out in the base
cases, they can then also be classified in all abelian cases using the containment.
They turn out to be either the full symplectic group, or certain special finite
index subgroups of the symplectic group. See the work by Avila–Matheus–Yoccoz
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[AMY18] for hyperelliptic abelian components and by the fourth author [Gut19]
for general abelian components. Plus and minus Rauzy–Veech groups for quadratic
stratum components that can arise by a string of simple extensions from abelian
base cases are also more tractable even though here a complete classification is
not yet achieved [Gut17].

9. Zariski density

In this section we prove one of our main results.

Theorem 9.1. The Rauzy–Veech groups for all components of all abelian strata
are Zariski dense in their ambient symplectic groups. The same holds for the plus
and minus Rauzy–Veech groups for all components of all quadratic strata.

Being the full symplectic group or a finite index subgroup, Rauzy–Veech groups
for abelian strata and quadratic components that arise by simple extensions from
abelian strata are Zariski dense.

The Rauzy–Veech groups of the quadratic base cases are harder to track directly
and here we bypass them. Instead, we leverage Filip’s results [Fil17] to prove
Zariski density of their monodromy groups. By Corollary 7.9, Rauzy–Veech groups
are finite index in the monodromy groups. We deduce that they are Zariski dense.
For clarity, we again refer the reader to the commutative diagram in Section 7. We
then extend the density to all quadratic stratum components by simple extensions.

The proof presented here is self-contained and works for any (abelian or qua-
dratic) connected component. A key ingredient is the work [Fil17] of Filip that
gives a list of possible Zariski closures for algebraic hulls of linear invariant sub-
orbifolds.

9.2. Filip’s results. We briefly describe Filip’s results [Fil17, Theorem 1.2 and
Corollary 1.7] for the possible Zariski closures of the monodromy and algebraic
hulls of a linear invariant suborbifold. Let N be a linear invariant suborbifold.

• If p(TN ) is the subbundle of the Kontsevich–Zorich cocycle that contains
the tangent space to N , then the monodromy has no zero exponents on
p(TN ) and the closure of the monodromy for the action on p(TN ) is
the full symplectic group [Fil17, Corollary 1.7]. This readily implies the
Zariski density of the monodromy group of any abelian component, and, as
detailed in Section 9.4, also implies the Zariski density of the monodromy
group of the minus piece of any quadratic component.
• For strongly irreducible subbundles that do not contain the tautological
plane, Filip shows that the Lie algebra representation of the corresponding
piece of the algebraic hull must be, up to compact factors, one from the
following list [Fil17, Theorem 1.2]:
(1) sp(2g,R) in the standard representation,
(2) su(p, q) in the standard representation or su(p, 1) in any exterior power

representation,
(3) so(2n− 1, 2) in the spin representation,
(4) so∗(2n) in the standard representation, or so(2n − 2, 2) in either of

the spin representations.
On the other hand, Eskin–Filip–Wright show that the algebraic hull coincides

with the Zariski closure of the monodromy group for subbundles that do not
contain the tautological plane [EFW18, Theorem 1.1]. Therefore, the previous
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theorem also classifies the Lie algebra representations of the Zariski closure of
such monodromy groups.

9.3. Zariski density for abelian components. The Zariski density of the mon-
odromy group for all abelian components follows directly from Filip’s results, as
the subbundle p(TN ) is the entire Hodge bundle.

9.4. Zariski density for the minus piece. Assume that C is a component of a
stratum of the moduli space of quadratic differentials. Let C̃ be the linear invariant
suborbifold consisting on the abelian differentials obtained by the orientation dou-
ble cover of the quadratic differentials in C. Let S̃ be the underlying topological
surface of the elements of C̃.

Let p : H1(S̃, Z̃;Z)→ H1(S̃;Z) be the restriction map to the absolute homology.
By Filip’s classification, the monodromy group acting on p(T C̃) is Zariski dense
[Fil17, Corollary 1.7] in the full symplectic group. On the other hand, we have
that p(T C̃) is exactly H1

−(S̃;Z), that is, the cohomology classes which are anti-
invariant with respect to the action of ι. This can be seen by observing that if
(X,ω) is an element of C̃, then ι∗ω = −ω.

By Lefschetz-duality, this is equivalent to saying that the monodromy group is
Zariski dense when acting on H−1 (S̃, Z̃;Z), so we obtain Zariski density for the
minus piece of the homology.

9.5. Zariski density for the plus piece. It remains to show the Zariski density
for the plus piece. We will first prove the Zariski density of the monodromy
groups for minimal strata, hyperelliptic components with two singularities and
some sporadic components. As Theorem 5.2 implies that the Rauzy–Veech groups
are finite index in monodromy groups, it will follow that the Rauzy–Veech groups
for these base components are also Zariski dense. We will then extend the density
to the Rauzy–Veech groups of all components by simple extensions. In turn, this
will imply that the monodromy groups of all components are Zariski dense.

For the base components, we will work directly onH1(S;Z) as it is isomorphic to
H+

1 (S̃;Z) in such a way that the corresponding monodromy groups are conjugate.
First observe that the monodromies in H+

1 (S;Z) and H1
+(S;Z) are isomorphic

by Poincaré duality. Let M denote this monodromy group. Note that H1
+(S;Z)

does not contain the tautological plane. By Eskin–Filip–Wright [EFW18, Theo-
rem 1.1], the algebraic hull coincides with the Zariski closure of the monodromy
group M . This ensures that we can directly apply Filip’s classification. Moreover,
Treviño [Tre13, Theorem 1] proved that the plus Lyapunov spectrum contains no
zero exponents.

Recall that the action of M on H1(S;R) is said to be strongly irreducible if no
finite-index subgroup of M preserves a non-trivial vector subspace of H1(S;R).
We will later show that this action is indeed strongly irreducible.

Assume for now that the action of M is strongly irreducible and let m be the
Lie algebra of the Zariski closure of M . Applying Filip’s classification to m and
using the absence of zero exponents, we deduce that the possibilities for m are, up
to compact factors:

(1) sp(2g,R) in the standard representation (degree 2g, dimension g(2g+ 1));
(2) su(p, p) in the standard representation (degree 4p, dimension 4p2 − 1);
(3) so(2n− 1, 2) in the spin representation (degree 2n, dimension n(2n+ 1));
(4) so(2n − 2, 2) in one of the spin representations (degree 2n−1, dimension

n(2n− 1)); or
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(5) so∗(2n) in the standard representation for even n (degree 4n, dimension
n(2n− 1)).

This list can be further refined by observing that the degree and dimension of
the representation must match because of the strong irreducibility. In each of the
above cases, we derive:

(1) dimR sp(2g,R) = g(2g + 1);
(2) p = g/2, so dimR su(g/2, g/2) = g2 − 1;
(3) n = log2(2g), so dimR so(2n− 1, 2) = log2(2g) log2(8g2);
(4) n = log2(4g), so dimR so(2n− 2, 2) = log2(4g) log2(8g2); and
(5) n = g/2, so dimR so∗(g/2, g/2) = g(g − 1)/2.
Note that possibilities (2)–(4) require the genus to be even. Thus, if g is odd

and if the action of M is strongly irreducible then m has to be sp(2g,R). Hence,
for odd genus it suffices to establish the strong irreducibility of the M -action. For
even genus, along with showing the strong irreducibility, we will eliminate all but
the symplectic representation by setting up a dimension count. Here, we exploit
the additional flexibility that Theorem 5.6 provides.

As we use Dehn twists to build a dimension count, we record the following
formula: suppose c, c′ are oriented multi-curves. As an element of the homology

(9.6) T (c)(c′) = c′ + ω(c′, c)c,

where T is the left Dehn twist and ω(∗, ∗) is the algebraic intersection number.
The next lemma shows how Dehn twists inM can be used to prove the largeness

of a subspace of H1(S;R) invariant under some finite index subgroup of M .

Lemma 9.7. Let V 6= {0} a subspace of H1(S;R) on which a finite-index subgroup
N of M acts irreducibly. Suppose that T (v) ∈M for some v ∈ H1(S;R). If there
exists v′ ∈ V such that ω(v, v′) 6= 0, then v ∈ V .

Proof. By Equation (9.6) and the hypothesis, the linear combination T (v)k(v′)−v′
is then a non-zero multiple of v for every k > 1. Since |M : N | < ∞, T (v)k ∈ N
for some k > 1. The lemma follows.

�

We now state and prove a strong irreducibility criterion that we will use through-
out the discussion that follows.

Lemma 9.8. Let B be a finite set of cycles in H1(S;R) such that
• the span of B is H1(S;R);
• for any pair u 6= u′ ∈ B, there exists a chain u = u0, . . . , uk = u′ such that
ω(uj , uj+1) 6= 0 for all 0 6 j 6 k − 1; and
• T (u) is in M for all u ∈ B.

Then, M acts strongly irreducibly on H1(S;R).

Proof. Let V 6= {0} be a subspace on which a finite-index subgroup N of M acts
irreducibly. By hypothesis, it suffices to show that B is contained in V .

Since B spans H1(S;R), there exists v ∈ V , u ∈ B such that ω(v, u) 6= 0. Then,
by Lemma 9.7, u ∈ V . Let u′ 6= u be an element of B. By hypothesis, there is
a chain u = u0, . . . , uk = u′ such that ω(uj , uj+1) 6= 0 for all 0 6 j 6 k − 1. By
applying Lemma 9.7 inductively, it follows that for all j the cycles uj are contained
in V . We conclude that B is contained in V , so the lemma follows. �
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Remark 9.9. Explicit sets B to which we will apply the previous lemma, will
not always be a basis of H1(S;R); extra cycles may be needed to satisfy the chain
hypothesis.

9.10. Minimal strata. For g > 3, let d = 2g and

πd =

(
1 2 1 3 4 5 6 7 8 · · · d− 1
2 4 3 5 4 8 7 · · · d d− 1 d

)
.

The rooted differentials in Cπd belong to Q(4g − 4).
As the first step, we will prove that the action of the monodromy group on

H1(S;R) is strongly irreducible. To do so, we will choose an explicit set of cycles
spanning the homology. The parity of g will dictate a choice of slightly different
sets of cycles. See Figure 9.11a for a flat surface in Q(16) for g = 5, and Fig-
ure 9.11b and Figure 9.11c for a flat surface in Q(12) for g = 4. Note, however,
that the stratum Q(12) has two components, and that the figure depicts a qua-
dratic differential inQ(12)reg. We will complete the proof for g = 4 in Appendix B,
but for now we will only show the strong irreducibility for Q(12)reg. The pattern
for the cycles in even genus greater than four remains the same as in Figure 9.11b
and Figure 9.11c, so we don’t need a separate figure.

In the second step, we will prove Zariski density of the monodromy group for
even genus (odd genera being directly covered by Filip’s result).

In our proofs, we will use a subset of the cycles (and their combinations) that
are core curves of cylinders on the flat surface. Dehn twists in such cycles are in
the monodromy group, so we may use them in our computations.

Let M be the monodromy group and let m be the Lie algebra of its Zariski
closure. We set ε = (−1)g.

We consider the collection of the following homology classes:
• c1 and cd are the homology classes of the dashed curves;
• c2 and cd−1 are the homology classes of the dash-dotted curves; and
• c3, . . . , cd−2 are the homology classes of the solid curves.

These curves form a basis for H1(S;R) (which is symplectic if ordered appropri-
ately). The densely dotted slope-1 curve is b =

∑d
i=1 ci and the loosely dotted

horizontal curve is p = c1 + εcd. In even genus, we also need the curve b′ =∑d−4
i=1 ci− cd−1− cd obtained by modifying b. Note that the set {c2, . . . , cd−1, b, p}

is a basis forH1(S;R) when g is odd and the set {c2, . . . , cd−1, b, b
′, p} is a spanning

set for H1(S;R) when g is even.

Lemma 9.12. The action of M on H1(S;R) is strongly irreducible.

Proof. We set

B =

{
{c2, . . . , cd−1, b, p} if g is odd
{c2, . . . , cd−1, b, b

′, p} if g is even

As directly seen from Figure 9.11a and Figure 9.11b, the cycles in the set
{c2, . . . , cd−1, b} are given by core curves of cylinders on the corresponding flat
surfaces. Now consider the cylinder with core curve cd−3 − cd−2. A left-handed
shear applied inside of this cylinder makes the four horizontal saddle connections
have slope one. Equivalently, it performs a one-quarter Dehn twist. This straight-
ens the modified slope-one curve b′; see Figure 9.11c. Thus b′ is the core curve of
a cylinder on the deformed surface. We deduce that for any cycle u in B the Dehn
twist T (u) is in M .
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(b) Even g with the slope-1 curve b.
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(c) Even g with the modified slope-1 curve b′.

Figure 9.11. Basis and useful curves.

We also note that for any pair u 6= u′ in B there exists a chain u = u0, . . . , uk =
u′ such that ω(uj , uj+1) 6= 0 for all 0 6 j 6 k − 1.

It follows that the set B satisfies the hypothesis of Lemma 9.8 and thus the
action of M on H1(S;R) is strongly irreducible. �

The Dehn twist T (c) along a homology cycle c is also a symplectic transvection.
For the following calculation we will think of it as such. If T (c)k ∈ M , then
T (c)k − Id ∈ m. As notation, let D(c) = T (c)− Id, E(c) = T (c)2 − Id.

The cycles c2, . . . , cd−1 and p are realised as core curves of cylinders on the
surface. Hence, the Dehn twists T (ci) for i = 2, . . . , d − 1 and T (p) are in M .
Observe that:

D(c2)(c1) = −c2

D(c2i+1)(c2i+2) = c2i+1

D(c2i+2)(c2i+1) = −c2i+2

D(cd−1)(cd) = −cd−1

D(p)(c2) = p, D(p)(cd−1) = εp

D(c2)(ci) = 0 for i 6= 1

D(c2i+1)(cj) = 0 for j 6= 2i+ 2

D(c2i+2)(cj) = 0 for j 6= 2i+ 1

D(cd−1)(cj) = 0 for j 6= d

D(p)(cj) = 0 for j /∈ {2, d− 1}
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All elements above belong to m.
Moreover, for each 1 6 i, j 6 g−2 we have that the elements T (c2i+1 + c2j+1)2,

T (c2i+1 + c2j+2)2 and T (c2i+2 + c2j+2)2 all belong to M . Indeed, if i = j then
|ω(c2i+1, c2j+2)| = 1, so T (c2i+1 + c2j+2) ∈ M . Otherwise, this follows from a
result by the fourth author using b as the auxiliary vector [Gut19, Corollary 2.8].
Observe that

E(c2i+1 + c2j+1)(c2i+2) = 2(c2i+1 + c2j+1)

E(c2i+1 + c2j+1)(c2j+2) = 2(c2i+1 + c2j+1)

E(c2i+1 + c2j+2)(c2i+2) = 2(c2i+1 + c2j+2)

E(c2i+1 + c2j+2)(c2j+1) = −2(c2i+1 + c2j+2)

E(c2i+2 + c2j+2)(c2i+1) = −2(c2i+2 + c2j+2)

E(c2i+2 + c2j+2)(c2j+1) = −2(c2i+2 + c2j+2).

The number of elements of the form D(∗) is d − 1 = 2g − 1. The number of
elements of the form E(∗) are

(
2g−4

2

)
.

With basis {c1, . . . , cd}, we identify the vector space of linear transformations
of H1(S;R) with Matd×d(R). We may then associate a matrix to the elements
D(∗) and E(∗) considered above. Let Mi,j be the matrix with the (i, j)-entry one
and all other entries zero. We may then write the matrices for D(∗) and E(∗) as
linear combinations of Mi,j .

From the calculations above, we note that

• The matrix for D(c2i+1) is M(2i+1),(2i+2).
• The matrix for D(c2i+2) is −M(2i+2),(2i+1).
• The matrix M(2i+2),(2j+1) features only in the linear combination of the
matrix for E(c2i+1 + c2j+1).
• The matrix M(2i+2),(2j+2) features only in the linear combination of the
matrix for E(c2i+1 + c2j+2).
• The matrix M(2i+1),(2j+2) features only in the linear combination of the
matrix for E(c2i+2 + c2j+2).

It follows that all the elements considered above are linearly independent in
Matd×d(R). Thus,

dimRm >

(
2g − 4

2

)
+ 2g − 1 = 2g2 − 7g + 9.

We conclude that if g > 6, we have that

dimRm > dimR su(g/2, g/2) = g2 − 1

dimRm > dimR so(2n− 1, 2) = log2(2g) log2(8g2) for n = log2(2g)

dimRm > dimR so(2n− 2, 2) = log2(4g) log2(8g2) for n = log2(4g)

dimRm > dimR so∗(g/2) = g(g − 1)/2.

Hence, in these cases, m = sp(2g,R) and that M = Sp(2g,R). Recall directly
from the list that m is sp(2g,R) when g is odd, as the action of M on H1(S;R) is
strongly irreducible.

Since minimal strata only occur for g > 3, the only remaining case is g = 4. We
treat this case in Appendix B.
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Figure 9.14. Curves for the hyperelliptic case.

9.13. Hyperelliptic components with two singularities. Let r, s > 1 be odd
integers. Consider the permutation πr,s defined by(

A 0 1 2 · · · r − 1 A r r + 1 · · · r + s
r + s r + s− 1 · · · r B r − 1 r − 2 r − 3 · · · 0 B

)
.

The embodying component for this permutation is Q(2r, 2s)hyp and we can
assume that r > s. See Figure 9.14 for a flat surface in Q(6, 2)hyp. The genus of
the underlying surface is g = (r + s+ 2)/2. Let:

• c0, . . . , cr+s be the homology classes of the solid curves;
• cA and cB be the homology classes of the dashed curves; and
• cAB be the homology class of the dotted curve.

These cycles form a spanning set of the relative homology H1(S,Z;Z). As a
relative cycle, cAB = −cs + cr+s − cA + cB.

In absolute homology, cA + cB = 0. Excising cB (or cA) we obtain exactly
2g = r + s+ 2 curves. So {c0, . . . , cr+s} ∪ {cA} is a basis of H1(S;Z). Note that

• all cycles in {c0, . . . , cr+s}∪{cAB} are represented by core curves of cylin-
ders and hence all T (cj), for 0 6 j 6 r + s, and T (cA) are in M ; and
• any pair of cycles in {c0, . . . , cr+s} intersect. Moreover, cAB intersects c0.

Thus, the basis satisfies the hypothesis of Lemma 9.8 which proves that the action
of M on H1(S;R) is strongly irreducible.

We again consider the Dehn twist T (c) in a cycle c as a symplectic transvection.
If T (c)k ∈M , then T (c)k − Id ∈ m. As notation, let D(c) = T (c)− Id.

The cycles ci, for 0 6 i 6 r + s, and ci + cj , for 0 6 i < j 6 r + s, are
core curves of cylinders on the flat surface. Hence, T (ci), T (ci + cj) ∈ M for
each 0 6 i < j 6 r + s and, thus, D(ci), D(ci + cj) ∈ m. As before, we use
the basis {c0, c1, . . . , cr+s, cA} to identify linear transformations of H1(S;R) with
Mat2g×2g(R). Again as before, for 0 6 i, j 6 r + s let Mi,j be the matrix with
(i, j)-entry one and all remaining entries zero. Similarly, we have the definitions
for Mi,A and MA,A.

We use the following notation. If P (i, j) is a logical proposition on i and j, we
define

JP (i, j)K =

{
1 if P (i, j) is true
0 if P (i, j) is false.

We then note that

D(ci) = −
∑
k<i

Mi,k +
∑
k>i

Mi,k + Ji < rKMi,A.

Similarly, with i < j note that

D(ci + cj) =− (Mi,i +Mj,i) + (Mi,j +Mj,j)



THE FLOW GROUP OF ROOTED ABELIAN OR QUADRATIC DIFFERENTIALS 43

− 2
∑
k<i

(Mi,k +Mj,k) + 2
∑
j<k

(Mi,k +Mj,k)

+ 2Ji < j < rK(Mi,A +Mj,A)

+ Ji < r 6 jK(Mi,A +Mj,A).

Lemma 9.15. The collection of matrices {D(ci)} ∪ {D(ci + cj)}i<j are linearly
independent.

Proof. Any linear combination can be regrouped as
∑r+s

i=0 Si where

Si = aiD(ci) +
r+s∑
j=i+1

ai,jD(ci + cj).

In particular, when i = r + s the summation is empty and Sr+s = ar+sD(cr+s).
Note that the matrices in S0 are the only ones in the whole linear combination

whose first row does not vanish. Inductively, the matrices in Si+1 are the only ones
outside S0, . . . , Si whose (i + 1)-th row is empty. Hence, it suffices to argue that
each such collection {D(ci), D(ci+ci+1), . . . , D(ci+cr+s)} is linearly independent.

Let 0 6 i 6 r+ s and let W be the i-th row of D(ci). Moreover, for i+ 1 6 j 6
r + s, let Vj be the i-th row of D(ci + cj).

Claim 9.16. The row vectors W,Vi+1, . . . , Vr+s are linearly independent.

Proof (Claim). We index the standard basis in R2g as {e0, . . . , er+s, eA}. From
the formulae above, we deduce

W = −
∑
k<i

ek +
∑
k>i

ek + Ji < rKeA.

and for i+ 1 6 j 6 r + s

Vj =− 2
∑
k<i

ek − ei + ej + 2
∑
k>j

ek

+ (2Ji < j < rK + Ji < r 6 jK)eA
Consider Vr+s = −2

∑
k<i ek − ei + er+s + Ji < rKeA. Observe that the linear

combination of canonical vectors realising Vj − 2Vr+s does not feature er+s for
i+ 1 6 j < r + s. Thus, we redefine Vj to be Vj − 2Vr+s for such j and continue
inductively. That is, the next step redefine Vj to be Vj −2Vr+s−1 for every i+ 1 6
j < r + s− 1.

We obtain that

Vj = 2(−1)j+1
∑
k<i

ek + (−1)j+1ei + ej

+ 2(−1)jJi < j < rKeA
+ (−1)jJi < r 6 jKeA.

We also apply a similar process to W , redefining it to be W − Vr+s − Vr+s−1 −
· · · − Vi+1. Then, we obtain that

W =

{
−∑k<i ek + Ji < rKeA if i is even
+
∑

k6i ek − Ji < rKeA if i is odd.

We observe
• for i+1 6 j 6 r+s, the vector ej is featured only in the linear combination
for Vj , and
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• the vector W is in the kernel of the projection R2g → Rr+s−i given by
(u0, . . . , ur+s) 7→ (ui+1, . . . , ur+s).

We thus conclude the claim. �

By the claim, the collection {D(ci)}∪{D(ci+ cj)}i<j for each fixed i is linearly
independent. The lemma then follows from our grouping. �

By Lemma 9.15,

dimRm >

(
2g − 1

2

)
+ 2g − 1 = g(2g − 1).

We conclude that if g > 5, we have that

dimRm > dimR su(g/2, g/2) = g2 − 1

dimRm > dimR so(2n− 1, 2) = log2(2g) log2(8g2) for n = log2(2g)

dimRm > dimR so(2n− 2, 2) = log2(4g) log2(8g2) for n = log2(4g)

dimRm > dimR so∗(g/2, g/2) = g(g − 1)/2.

Thus, we obtain that m = sp(2g,R) and that M = Sp(2g,R) for g > 5.
To extend to g = 4, we include D(cAB) in the collection of matrices and prove

linear independence. Note that

D(CAB) = 3(M0,0 −Ms,0 −MA,0)

+ 4
∑
k<s

(M0,k −Ms,k −MA,k)

+ 2
r−1∑
k=s+1

(M0,k −Ms,k −MA,k).

We expand the collection S0 in the proof of Lemma 9.15 to include D(CAB). Let
{W,V1, . . . , Vr+s be the vectors that arise from S0 in Claim 9.16. It suffices to
show that the first row of D(CAB) cannot be written as a linear combination of
{W,V1, . . . , Vr−1}. This is readily seen after the vectors W,V1, . . . , Vr−1 are rede-
fined as per the Gaussian elimination process described in the proof of Claim 9.16.

For g = 3, we have directly from the list that m = sp(2g,R) since the action of
M on H1(S;R) is strongly irreducible.

The only remaining case is g = 2. Here, we have that

dimRm > 6 > 3 = dimR su(1, 1)

sp(4,R) ∼= so(3, 2)

dimR sp(4,R) = 10 < 15 = dimR so(4, 2),

so the only possibility for m is sp(4,R) ∼= so(3, 2).

9.17. Exceptional non-minimal strata. In Table 1, we exhibit an explicit sim-
ple extension from a component of a minimal stratum to each non-hyperelliptic
component of exceptional non-minimal strata that was not already treated by the
fourth author [Gut17, Table 1], except for Q(9,−1)irr. Indeed, there does not exist
a simple extension from Q(8) to this last component as noted by Lanneau [Lan08],
so we treat it separately in Appendix B. These computations were performed by
using the surface_dynamics package for SageMath [Ste+20].
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Source Target Permutation

Q(8) Q(9,−1)reg

(
1 2 1 3 4 3 5 2

6 5 4 A A 6

)
Q(12)reg Q(6, 6)reg

(
1 2 A 3 4 5 A 6 7 5

2 4 6 8 7 8 3 1

)
Q(12)irr Q(6, 6)irr

(
1 2 3 4 3 5 6 7

8 1 6 8 A 4 2 7 A 5

)
Q(12)reg Q(9, 3)reg

(
1 2 3 A 4 3 5 6 7
2 4 6 8 7 8 5 A 1

)
Q(12)irr Q(9, 3)irr

(
1 2 3 4 5 A 4 A 6 7

2 6 8 5 3 7 8 1

)
Table 1. Explicit extensions into non-hyperelliptic components of
exceptional strata with less than three singularities. The permu-
tation in the third column represents the component in the second
column. Erasing letters A and B produces a permutation repre-
senting the component of a minimal stratum in the first column.

10. Simplicity

We now prove the Kontsevich–Zorich conjecture.

Theorem 10.1. The Kontsevich–Zorich cocycle has a simple spectrum for all
components of all strata of abelian differentials. The plus and minus Kontsevich–
Zorich cocycles also have a simple spectrum for all components of all strata of
quadratic differentials.

Proof. Let C be any component of a stratum of abelian or quadratic differentials.
We have the following facts.

• The Teichmüller flow on a finite cover of C admits a coding as a countable
shift with approximate product structure.
• We have established that the plus and minus cocycles lifted to this cover
are locally constant and integrable.
• We have also established that associated monoids for the plus and mi-
nus cocycles (lifted to this cover) are Zariski dense in the corresponding
symplectic groups.

By Criterion 6.9, it follows that the Lyapunov spectra for the plus and minus
cocycles are simple. �

Appendix A. Examples

A.1. The decomposition of Croot is not polytopal. In this section, we present
an explicit example showing that the decomposition of Croot into the union of the
Cπ, where π ∈ R, is “not polytopal”. Indeed, a compact arc in Croot may intersect
S = Croot −⋃π∈R Cπ infinitely many times even if it is transverse to V.

Let C = H(0, 0) and consider the curve shown in Figure A.2. The rooted
differential γ(1) contains a “wide” vertical cylinder, that is, a vertical cylinder
such that an arc of length one emanating from the root ends before it crosses the
cylinder entirely. On the other hand, we assume that that the rooted differential
γ(0) is doubly non-vanishing, and that it admits a normalised zippered rectangles
construction for the underlying permutation π =

(
1 2 3
3 2 1

)
.
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(a) γ(0).
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(b) γ(1).

Figure A.2. A curve γ : [0, 1] → H(0, 0)root that ends at V. The
real periods are deformed following the arrows, while the imaginary
periods remain constant.

Starting from s = 0 and as s increases, the normalised base-arc shrinks until
its length is exactly equal to 1 + min{x1, x3} at s = s1 > 0. Thus, γ(s) admits
a zippered rectangles construction for every 0 6 s < s1, but γ(s1) does not.
Indeed, γ(s1) belongs to a flow face. As γ passes through this flow face, a forward
Rauzy move must be performed to again obtain a normalised zippered rectangles
construction. The winning letter is 3, so the resulting permutation after the Rauzy
move is again π.

This process continues inductively. Indeed, starting from s = sk, for any integer
k > 1, and as s increases, the normalised base-arc continues to shrink until the
curve hits the flow face again at s = sk+1 > sk. Thus, γ(s) admits a normalised
zippered rectangles construction for every sk < s < sk+1. A Rauzy move must be
performed when the curve crosses the flow face; the winning letter continues to be
3. Hence, the resulting permutation is again π.

In summary, there exists a countable collection 0 < s1 < · · · < sk < sk+1 < · · ·
such that:

(1) γ(s) admits a normalised zippered rectangles construction for 0 6 s < s1

and every sk < s < sk+1 for k > 1;
(2) γ(sk) belongs to a flow face for every k > 1.

Thus, γ intersects S infinitely many times and there is no finite Rauzy–Veech se-
quence shadowing γ. Moreover, as this process unfolds, the width of the rectangle
R1 goes to zero, while its height diverges grows indefinitely. Hence, the normalised
zippered rectangles constructions along γ become more and more degenerate and
do not converge to a well-defined element of Pπ. See Figure A.3 for an illustration
of this phenomenon.

Similar examples exist also for toppling faces, that is, when either some width
xα or some zipper height goes to zero. It is possible to find a compact arc in Croot

transverse to V that intersects infinitely many toppling faces. Indeed, a simple way
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(b) γ(s) for s1 < s < s2.
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(c) γ(s) for s2 < s < s3.

Figure A.3. Normalised zippered rectangles construction of γ(s).

to obtain such an example is to consider a horizontal slit J that does not meet
the normalised base-arc I, and such that some vertical segments emanating from
I meet J before their first return. Then, the slit can be rotated until it becomes
vertical (in a way that it still does not meet the base-arc). This forces the widths of
some rectangles to hit zero infinitely many times before the slit becomes vertical.

A.4. Crossing a toppling face. In this section, we present concretely the con-
struction used in the based loop theorem, namely Theorem 4.23, in which any loop
in π1(Croot, q0) is written as a finite concatenation of paths that are forward (or
backward) Teichmüller segments or are contained inside a polytope. The path in
Croot that we present is not closed, but it still illustrates the key point. For more
complicate paths or loops, this procedure has to be done several times.

Let C = H(0, 0). Consider the path γ : [0, 1] → Croot illustrated in Figure A.5.
Assume that γ(0) and γ(1) are doubly non-vanishing, while γ(1/2) has a vertical
saddle connection and, thus, belongs to V.

Since γ(0) is doubly non-vanishing, it admits a normalised base-arc. The result-
ing zippered rectangles construction, with underlying permutation π =

(
1 2 3
3 2 1

)
, is

shown in Figure A.6.
If 0 6 s < 1/2, a parameter (xs, ys) ∈ Pπ of this zippered rectangles con-

struction satisfies qπ(xs, ys) = γ(s). As s increases towards 1/2, these parameters
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(c) γ(1).

Figure A.5. A curve γ : [0, 1] → H(0, 0)root that passes through
V. The real periods are deformed following the arrows, while the
imaginary periods remain constant.
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Figure A.6. Normalised zippered rectangles construction of γ(0).
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(b) After cutting and pasting by two backward Rauzy moves.

Figure A.7. Zippered rectangles construction of γ(1/2) with a
base-arc of length at least 5/3.
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(a) γ(0).
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(b) γ(1).

Figure A.8. Zippered rectangles constructions with a base-arc of
length at least 5/3.

approach the boundary of Pπ and γ(1/2) /∈ Cπ. In particular, as s increases to
1/2, the width x2 tends to zero while all other parameters stay bounded away
from zero and infinity, and thus γ(1/2) can be said to lie on a toppling face.

On the other hand, γ(1/2) is not doubly vanishing. It thus admits a base-arc.
We take a base-arc of length at least 5/3, since the interior of any horizontal
segment with length at least 5/3 meets every leaf of the vertical foliation. The
resulting (unnormalised) zippered rectangles construction, with underlying permu-
tation σ =

(
1 3 2
3 2 1

)
, is shown in Figure A.7. As Teichmüller flow by T = − log(5/3)

normalises the base-arc, we have that gT (γ(1/2)) ∈ Cσ. Observe that σ is obtained
from π by two backward Rauzy moves.
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(b) After cutting and pasting by two backward Rauzy moves followed by two forward
Rauzy moves.

Figure A.9. Normalised zippered rectangles construction of γ(1).

For “large” deformations of parameters, the zippered rectangles construction
with a base-arc of length at least 5/3 is contained in Cσ after Teichmüller flow by
T = − log(5/3). In particular, we have that gT (γ(s)) ∈ Cσ for every s ∈ [0, 1]. Let
(x′s, y

′
s) ∈ Pσ such that qσ(x′s, y

′
s) = gT (γ(s)). Figure A.8 shows these zippered

rectangles constructions for γ(0) and γ(1).
Finally, γ(1) is also doubly non-vanishing. Thus it admits a normalised base-

arc. The resulting zippered rectangles construction, with underlying permutation
τ =

(
1 2 3
3 1 2

)
, is shown in Figure A.9. Observe that τ is obtained from π by two

backward Rauzy moves followed by two forward Rauzy moves.
If 1/2 < s 6 1, a parameter (xs, ys) of this zippered rectangles construction

satisfies qτ (xs, ys) = γ(s). As s decreases towards 1/2, these parameters approach
the boundary of Pτ and γ(1/2) /∈ Cτ .

Putting everything together, we obtain three open sets U0, U1/2, U1 ⊆ Croot

satisfying:

• U0 = qπ(W0), where W0 ⊆ Pπ is an open set containing (x0, y0) whose
closure is contained in Pπ;
• U1/2 = g−T (qσ(W1/2)), where W1/2 ⊆ Pσ is an open set containing (x′s, y

′
s)

for every s ∈ [0, 1] whose closure is contained in Pσ; and
• U1 = qτ (W1), where W1 ⊆ Pτ is an open set containing (x1, y1) whose
closure is contained in Pτ .

Then, γ is homotopic, relative to its endpoints, to the concatenation of the
paths:

• gtγ(0) for t ∈ [0, T ];
• gTγ(s) for s ∈ [0, 1]; and
• g−tγ(1) for t ∈ [0, T ].
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Therefore, the combinatorial description of this concatenation is(
1 2 3
3 2 1

)
b−1

−−→
(

1 3 2
3 2 1

)
t−1

−−→
(

1 3 2
3 2 1

)
b−→
(

1 2 3
3 2 1

)
t−→
(

1 2 3
3 1 2

)
which is the (undirected) Rauzy–Veech sequence shadowing γ.

Appendix B. Zariski density of the remaining cases

In this section, we explicitly check the Zariski density for the plus piece of the
four remaining components, namely Q(5,−1), Q(9,−1)irr, Q(12)reg and Q(12)irr.
We do this by using the following sufficient criterion.

Criterion B.1 ([PR14, Theorem 9.10]). Let G be a subgroup of Sp(2g,Z). We
have that G is Zariski dense in Sp(2g,R) provided the Zariski closure of G is not
a power of SL(2,R), and there exist elements A,B ∈ G satisfying:

(1) A is Galois-pinching in the sense of Matheus–Möller–Yoccoz [MMY15].
That is, all of its eigenvalues are real and have distinct moduli, and the
Galois group of its characteristic polynomial is maximal; and

(2) B has infinite order and does not commute with A.

Since A is symplectic, its characteristic polynomial P is reciprocal. Thus,
the Galois group of P is contained inside an appropriate hyperoctahedral group.
Hence, this group is maximal if and only if it has order 2gg!. Moreover, if a mon-
odromy group is a power of SL(2,R), then it has more than one compact factor,
which is forbidden for strongly irreducible pieces [Fil17, Theorem 1.2; EFW18,
Theorem 1.1]. Thus, if we can establish Criterion B.1 together with Lemma 9.8,
we obtain the Zariski density of G inside Sp(2,R).

For all of the remaining components, we will follow the same strategy to show
that the hypotheses of Criterion B.1 hold. We will start with a specific permutation
π. We will then exhibit two cycles δ1 and δ2 based at π in the reduced Rauzy
diagram such that their induced matrices A1 and A2 in a preferred basis (for the
action on absolute homology) can be combined to produce the matrices A and B
that the criterion requires. Specifically, in all cases, B can be taken to be A1 and
A can be taken to be A1A2.

These cycles δ1 and δ2 were found by a randomised computer search on the
reduced Rauzy diagrams. We tried to choose cycles that are relatively short to
avoid the resulting matrices having entries that are greater than 100.

B.2. Zariski density of Q(5,−1). Let

π =

(
1 2 3 2 4
4 5 5 3 1

)
and

δ1 = b3t2b3tb2tb3t2b3

δ2 = t2btbtbt3btbtb2t2

Consider the four curves c1, . . . , c4 depicted in Figure B.3 as solid or dashed
lines. These cycles form a basis for the absolute homology as their intersection
matrix is

Ω =


0 0 −1 −1
0 0 1 0
1 −1 0 −1
1 0 1 0


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Figure B.3. Representative of Q(5,−1).

that has determinant 1. On the other hand, the cycle v ∈ H1(S;R) depicted in
Figure B.3 as dash-dotted vertical lines can be written as v = −c2 +c3 +c4. Thus,
the set B = {c1, c3, c4, v} readily satisfies the hypotheses of Lemma 9.8, so the
M -action is strongly irreducible.

In the chosen basis, the matrices induced by δ2
1 and δ2

2 are

A1 =


1 −2 −2 0
0 −1 −2 0
0 0 1 2
0 0 0 −1

 , A2 =


−1 0 0 0
0 −2 2 −1
1 2 −1 2
−2 1 −2 0


Then, A = A1A2 has the form

A =


−1 0 1 −2
2 2 −4 3
2 6 −7 0
0 5 −4 −4


The characteristic polynomial P of A is P (t) = t4+10t3+22t2+10t+1. We verified
in Magma [BCP97] that A is Galois pinching, that is, it satisfies condition (1) of
Criterion B.1. Setting B = A1, we similarly check that B satisfies condition (2)
of the criterion. Thus, the plus piece of Q(5,−1) is Zariski dense inside Sp(4,R).

B.4. Zariski density of Q(9,−1)irr. Let

π =

(
1 2 3 4 5 6 3
7 7 6 5 4 2 1

)
and

δ1 = b4t5b3tb5tb6t2

δ2 = b4t2b3t3b7t3bt3bt2b2t3b2t2b2t2b2

Consider the six curves c1, . . . , c6 depicted in Figure B.5 as solid or dashed lines.
These cycles form a basis for the absolute homology, as their intersection matrix
is

Ω =


0 −1 0 −1 −1 −1
1 0 0 −1 −1 −1
0 0 0 1 1 1
1 1 −1 0 −1 −1
1 1 −1 1 0 −1
1 1 −1 1 1 0


that has determinant 1. On the other hand, the cycle v ∈ H1(S;R) depicted in
Figure B.5 as dash-dotted vertical lines can be written as v = c2 + c3. Thus, the
set B = {c1, c2, c4, c5, c6, v} readily satisfies the hypotheses of Lemma 9.8, so the
M -action is strongly irreducible.
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Figure B.5. Representative of Q(9,−1)irr.

In the chosen basis, the matrices induced by δ2
1 and δ2

2 are

A1 =


0 2 −1 −1 −1 −2
0 −1 0 0 0 0
−1 −1 0 −2 −2 −1
0 0 0 −1 0 0
0 0 0 0 −1 0
1 3 −1 2 2 0

 , A2 =


−3 −10 −2 −4 −6 −4
1 3 0 2 2 0
2 3 −2 0 −1 0
0 −2 −2 −1 −2 −2
−3 −7 1 −2 −2 0
0 0 0 0 0 −1


Then, A = A1A2 has the form

A =


−2 0 2 0 −1 −1
−6 −1 3 −2 0 −3
7 −1 −2 2 3 1
3 −3 2 1 3 −2
5 −3 3 2 3 −2
8 −2 −2 2 5 0


The characteristic polynomial P of A is P (t) = t6 + t5− 22t4− 52t3− 22t2 + t+ 1.
Again, we use Magma to check that A is Galois pinching. Setting B = A1, we can
readily check that B satisfies condition (2) of the criterion. Thus, the plus piece
of Q(9,−1)irr is Zariski dense inside Sp(6,R).

B.6. Zariski density of Q(12)reg. Let

π =

(
1 2 1 3 4 5 6 7
2 4 3 6 5 8 7 8

)
and

δ1 = b4t2bt6bt4b2tb4t2b7t2b2tb5t4btbtb

δ2 = btbt3bt6b2t4bt3b2t3b2tb4t2bt3b2t2b3tb5

Let M be the monodromy group of Q(12)reg. We have that the M -action is
strongly irreducible by Lemma 9.12.

Consider the six curves c1, . . . , c6 shown in Figure B.7. Ordered appropriately,
these curves form a symplectic basis. In this basis, the matrices induced by δ2

1 and
δ2

2 are

A1 =



2 5 −1 7 6 2 1 0
−1 0 1 −1 −2 1 3 0
−1 2 −1 2 1 1 −2 0
−1 −4 1 −6 −5 −2 0 0
1 1 2 1 0 2 5 0
−1 −3 1 −4 −4 −1 3 0
0 0 0 0 0 0 −1 0
−1 −5 7 −11 −10 2 11 −1


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Figure B.7. Representative of Q(12)reg.

A2 =



1 3 −5 1 6 −7 −3 −1
0 −2 2 0 −3 3 1 1
4 −1 −1 2 3 −4 1 0
−7 5 −3 −2 −1 3 −5 −1
5 −5 3 2 −2 1 5 2
2 0 −1 0 2 −3 0 −1
8 −1 −4 3 7 −10 0 −1
2 3 −5 1 6 −7 −3 −2


Then, A = A1A2 has the form

A =



17 −7 15 −17 5 11 36 20
23 −13 25 −38 8 24 62 33
6 0 0 7 0 −7 −5 −2
33 −20 34 −50 6 37 89 51
28 −16 31 −47 9 33 81 44
15 −7 12 −15 3 8 27 15
21 −6 5 12 −6 −6 7 11
1 −1 0 1 −2 1 1 2


The characteristic polynomial P of A is P (t) = t8 + 20t7 − 1686t6 − 24t5 +

36258t4 − 24t3 − 1686t2 + 20t + 1. Using Magma, we can check that A is Galois
pinching. Setting B = A1, we can also similarly check that B satisfies condition (2)
of the criterion. Thus, the plus piece of Q(12)reg is Zariski dense inside Sp(8,R).

B.8. Zariski density of Q(12)irr. Let

π =

(
1 2 1 3 4 5 6 7
2 6 5 4 3 8 7 8

)
and

δ1 = b3tb2t5bt5b2t3bt2b2t6bt2b2tbt3b2t6b4

δ2 = b5t5btbt4b3t7b2tbt4b4

Consider the six curves c1, . . . , c6 depicted in Figure B.9 as solid, dashed or
dash-dotted lines. These cycles form a basis for the absolute homology as their
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Figure B.9. Representative of Q(12)irr.

intersection matrix is



0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 −1 −1 −1 0 0
0 0 1 0 −1 −1 0 0
0 0 1 1 0 −1 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0


and has determinant 1. On the other hand, the cycle b, depicted as the slope-1
densely dotted lines, can be written as b = c1 + c2− c3 + c4 + c7− c8, and the cycle
p depicted as loosely dotted horizontal lines can be written as p = c1 + c8. Thus,
the set B = {c2, c3, c4, c5, c6, c7, b, p} readily satisfies the hypotheses of Lemma 9.8,
so the M -action is strongly irreducible.

In the chosen basis, the matrices induced by δ2
1 and δ2

2 are

A1 =



−1 6 −2 6 11 8 6 −4
2 −5 0 −6 −9 −6 −4 6
−1 −3 −2 −6 −8 −5 −3 4
−1 −5 −1 −9 −11 −7 −5 6
0 0 0 0 −1 0 0 0
1 3 1 6 8 4 3 −4
−2 −4 2 −4 −8 −6 −5 0
0 −6 2 −6 −11 −8 −6 3



A2 =



−2 1 1 1 −1 −2 −3 0
3 −5 3 3 3 0 −2 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 2 −2 −2 −1 2 2 0
−3 4 −3 −3 −3 −1 2 0
0 0 0 0 0 0 −1 0
−7 13 −9 −9 −7 2 5 −1


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Then, A = A1A2 has the form

A =



6 −15 1 1 6 12 2 43
−19 27 3 5 4 −25 4 −43
−7 −19 2 1 12 18 −2 51
−33 11 6 9 22 −11 4 13
−41 34 8 11 21 −33 8 −29
−24 30 5 7 8 −28 6 −40
−15 24 3 5 4 −23 5 −35
32 −12 −4 −6 −16 10 0 5


The characteristic polynomial P of A is P (t) = t8 − 47t7 − 794t6 + 11691t5 −
22022t4 + 11691t3 − 794t2 − 47t + 1. By using Magma again, we can explicitly
check that A is Galois pinching. Setting B = A1, we can similarly check that B
satisfies condition (2) of the criterion. Thus, the plus piece of Q(12)irr is Zariski
dense inside Sp(8,R).
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