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NONSTANDARD FINITE DIFFERENCE METHOD FOR

NONLINEAR RIESZ SPACE FRACTIONAL

REACTION-DIFFUSION EQUATION

LI CAI, MEIFANG GUO∗, YIQIANG LI∗, WENJUN YING, HAO GAO, AND XIAOYU LUO

Abstract. In this paper, a modified nonstandard finite difference method for the two-dimensional
Riesz space fractional reaction-diffusion equations is developed. The space fractional derivative
is discretized by the shifted Grünwald-Letnikov method and the nonlinear reaction term is ap-

proximated by Taylor formula instead of Micken’s. Multigrid method is introduced to reduce the
computation time of the traditional Gauss-Seidal method. The stability and convergence of the
nonstandard implicit difference scheme are strictly proved. The method is extended to simulate
the fractional FitzHugh-Nagumo model. Numerical results are provided to verify the theoretical
analysis.
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1. Introduction

Reaction-diffusion models are widely used in patten formulae in biology, chem-
istry, physics and engineering [26]. The computation of electrical wave propagation
in the heart is one of the most important applications of reaction-diffusion models
in physiology [28]. The simplest two-dimensional reaction-diffusion model can be
described by

(1)
∂u

∂t
= ∇ · (K∇u) + f(u),

where K is the diffusion coefficient and f(u) is a nonlinear function representing
the reaction source, u is a normalized transmembrane potential. If f(u) = u(1 −
u)(u− a), Eq. (1) reduces to the Nagumo reaction-diffusion equation [6, 24].

Over the last few decades, fractional calculus has become famous of its ability
to model anomalous diffusion phenomena, which has attracted more and more
attention from researchers in various fields of science and engineering. Compared
with the traditional integer order, fractional-derivative models has the advantages of
describing the memory and hereditary properties of various processes. By applying
the space Riesz fractional operator [8, 22] to the Eq. (1), the fractional system is
given as following

(2)
∂u

∂t
= KRαu+ f(u).

Here Rα = (Rα
x , R

α
y ) = (∂α/∂|x|α,∂α/∂|y|α) is the Riesz fractional order operator
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with fractional power 1 < α ≤ 2. Due to the extensive applications of fractional-
derivative models, it is becoming increasingly important to find the effective meth-
ods to solve them. The methods include several analytical techniques, such as the
Fourier transform method, the Laplace transform method, and the Green func-
tion method [25]. Some numerical methods are also developed. For example,
Meerschaert [16] obtained the solution of the one-component fractional reaction-
diffusion equation by using a finite difference method; Liu [9, 10] proposed finite
difference method (FDM) and alternating direction implicit (ADI) method for the
two-dimension space fractional reaction-diffusion equation, and verified the stability
as well as convergence; Zeng [31] developed a Crank-Nicolson ADI spectral method
for fractional diffusion equations; Cai [4] proposed a high-resolution semi-discrete
Hermite central-upwind scheme for multidimensional reaction-diffusion equation.

In addition to standard finite difference methods, numerical solution can also be
obtained by applying the nonstandard finite difference method (NSFD) [18], which
has the following advantages. Firstly, the NSFD can be applied to the structurally
unstable planar dynamical system, for example, the Lotka-Volterra equations [17].
Secondly, the NSFD preserves the physical properties of the epidemic model and the
numerical results are qualitatively equivalent to the real dynamics of the epidemic
model [23]. Thirdly, a scheme based on NSFD is shown to be free of numerical
instabilities and contrived behaviours regardless of the step-size used in the numer-
ical simulations [7]. Finally, the NSFD has been applied to the fractional order
ODE [29] and PDE [13], and the results are in good agreement with the already
existing ones.

In this paper, we consider the following 2-D Riesz space fractional reaction-
diffusion equation (2D-RFRDE) on a finite domain Ω = [a, b]× [c, d] as

(3)
∂u

∂t
= kx

∂α1u

∂|x|α1
+ ky

∂α2u

∂|y|α2
+ f(u, x, y, t) (x, y, t) ∈ Ω× (0, T ),

with initial condition:

(4) u(x, y, 0) = φ(x, y) (x, y) ∈ Ω,

and Dirichlet boundary conditions:

(5)
u(a, y, t) = 0, u(b, y, t) = 0,
u(x, c, t) = 0, u(x, d, t) = 0.

Here 1 < α1, α2 ≤ 2, and kx, ky > 0 are diffusion coefficients. The space Riesz

fractional derivative operator ∂α1u
∂|x|α1 in [15] is defined as

(6)
∂α1u

∂|x|α1
= − 1

2 cos(πα1/2)

(
∂α1u

∂+xα1
+

∂α1u

∂−xα1

)
.

Here the left-handed (+) and the right-handed (−) fractional derivative are defined

later. Similarly, we can define the space Riesz fractional derivative ∂α2u
∂|y|α2 of order α2

with respect to y. An improved nonstandard finite difference scheme is constructed
to obtain the numerical solution of Eqs. (3)-(5).

The outline of this paper is showed as follows. In Section 2, we introduce some
notations and lemmas which are needed later on. In Section 3, the nonstandard
finite difference (NSFD) method for the 2D-RFRDE is proposed. The stability
and convergence are discussed in Section 4. Some numerical results are given in
Section 5. we draw the conclusions in Section 6.


