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The immersed boundary (IB) method is an approach to modeling

fluid-structure interaction (FSI) that we (and others) use to simulate cardiac

and cardiovascular fluid dynamics and other problems of biological fluid

dynamics.

Over the last decade, the IB method also has become increasingly used for more

“standard” engineering problems.



Why study cardiovascular fluid dynamics?

• Cardiovascular diseases have been the leading causes of death in Western

countries for more than a century. . .

• And they are now also the leading causes of death in China.

• Cardiovascular diseases kill 2.6 million people in China annually.

• And the prevalence of cardiovascular diseases in China is currently forecast

to increase by ≥50% between 2010 and 2030.

We are working to develop detailed, realistic models of the heart and vasculature

that can be used to develop improved treatments and therapies for patients

suffering from cardiac or cardiovascular diseases.









Eulerian and Lagrangian descriptions

To describe the motion of a fluid, it is generally most convenient to use an

Eulerian or spatial description.

An Eulerian description is one that is in terms of a fixed coordinate system.

We shall use the notation x = (x, y, z) ∈ Ω to denote fixed physical coordinates.

Then, for instance, we shall describe the fluid motion in terms of the fluid velocity

field u(x, t) = (u(x, t), v(x, t), w(x, t)), and the fluid pressure field p(x, t).

To describe the elasticity of a structure, it is generally most convenient to use a

Lagrangian or material description.

A Lagrangian description is one that is in terms of material coordinates that are

attached to and move with the structure.

We shall use the notation s = (q, r, s) ∈ U to denote the material coordinate

system, and the notation X(s, t) ∈ Ω to denote the physical position of material

point s at time t.



Eulerian and Lagrangian descriptions

Remark: A purely Lagrangian description is not especially useful for fluid

dynamics, because fluid particles that are initially close to one another do not

generally remain so.

On the other hand, a Lagrangian description is well-suited for elasticity problems

because elastic forces generally are present that act to keep nearby material

points close to one another.



The IB approach to fluid-structure interaction

• Use an Eulerian description of the viscous incompressible fluid;

• Use a Lagrangian description of the immersed elastic structure; and

• Use integral transforms with delta-function kernels to mediate interaction

between Lagrangian and Eulerian variables.

x = (x, y, z) are Cartesian (physical) coordinates;
u(x, t) is the Eulerian (fluid) velocity; and
p(x, t) is the Eulerian (fluid) pressure.

s = (q, r, s) are Lagrangian (material) coordinates;
X(s, t) is the position of s at time t; and
F(s, t) is the Lagrangian elastic force density.



The equations of motion for the fluid-structure system

ρ

„

∂u

∂t
(x, t) + u(x, t) ·∇u(x, t)

«

= −∇p(x, t) + µ∇2u(x, t) + f(x, t),

∇ · u(x, t) = 0,

f(x, t) =

Z

U

F(s, t) δ(x − X(s, t)) ds,

∂X

∂t
(s, t) =

Z

Ω

u(x, t) δ(x − X(s, t)) dx,

F(s, t) = F [X(s, t); s, t],

in which

• x = (x, y, z) ∈ Ω are Cartesian (physical) coordinates;

• s = (q, r, s) ∈ U are Lagrangian (material) coordinates;

• u(x, t) is the Eulerian material velocity field;

• f(x, t) is the Eulerian elastic force density;

• X(s, t) is the position of material point s at time t; and

• F(s, t) is the Lagrangian elastic force density.



The boundary advection equation

The material points of the structure move according to:

∂X

∂t
(s, t) =

Z

Ω

u(x, t) δ(x − X(s, t)) dx.

The defining property of the Dirac delta function therefore implies that:

∂X

∂t
(s, t) =

Z

Ω

u(x, t) δ(x − X(s, t)) dx = u(X(s, t), t).

This equation states that the immersed structure moves at the local fluid velocity,

i.e., it sticks to the fluid.

This equation can therefore be interpreted as a formulation of the no-slip

condition, which generally appears as a boundary condition in the equations of

fluid dynamics. Here, however, instead of appearing as a constraint on the fluid

motion, the no-slip condition determines the motion of the immersed structure.



Equivalence of f(x, t) and F(s, t) as densities

Let V ⊆ U be an arbitrary region of the Lagrangian coordinate space, and let

Vt = X(V, t) be the current configuration of material region V at time t. Then,
Z

Vt

f(x, t) dx =

Z

Vt

Z

U

F(s, t) δ(x − X(s, t)) dsdx

=

Z

U

Z

Vt

F(s, t) δ(x − X(s, t)) dxds

=

Z

U

F(s, t)

Z

Vt

δ(x − X(s, t)) dxds.

The defining property of the Dirac delta function implies that

Z

Vt

δ(x − X(s, t)) dx =

(

1, if X(s, t) ∈ Vt ⇐⇒ if s ∈ V , and

0, otherwise.

Therefore,
Z

Vt

f(x, t) dx =

Z

V

F(s, t) ds.

Because V ⊆ U is arbitrary, f(x, t) and F(s, t) are equivalent as densities.



Equivalence of f(x, t) and F(s, t) as densities

In fact, we can make a statement of equivalence between f(x, t) and F(s, t) that
is stronger than simply that

Z

Vt

f(x, t) dx =

Z

V

F(s, t) ds

for V ⊆ U arbitrary, with Vt = X(V, t).



Equivalence of f(x, t) and F(s, t) as densities

Let v(x) be a smooth test function defined on Ω. Then

Z

Ω

f(x, t) · v(x) dx =

Z

Ω

„
Z

U

F(s, t) δ(x − X(s, t)) ds

«

· v(x) dx

=

Z

U

F(s, t) ·

„
Z

Ω

v(x) δ(x − X(s, t)) dx

«

ds

=

Z

U

F(s, t) · v(X(s, t)) ds.

Defining V(s, t) = v(X(s, t)), we have that, for all v(x),
Z

Ω

f(x, t) · v(x) dx =

Z

U

F(s, t) · V(s, t) ds.

Notice that, by choosing v(x) appropriately, we can recover the conclusion that
Z

Vt

f(x, t) dx =

Z

V

F(s, t) ds

for V ⊆ U arbitrary, with Vt = X(V, t).



Equivalence of f(x, t) and F(s, t) as densities

Suppose further that F(s, t) is smooth. Then from
Z

Vt

f(x, t) dx =

Z

V

F(s, t) ds,

for V ⊆ U arbitrary, it follows that f(x, t) and F(s, t) are pointwise equivalent in
the sense that

f(x, t) =

(

1
J(X−1(x,t),t)

F(X−1(x, t), t), for x ∈ Ut = X(U, t),

0, otherwise.

in which J(s, t) = det (F(s, t)) = det
`

∂X

∂s
(s, t)

´

is the Jacobian determinant of

the deformation gradient tensor F(s, t) = ∂X

∂s
(s, t).

For this definition to make sense, clearly the mapping (s, t) #→ X(s, t) must be
invertible.

Remark: F(s, t) may not always be sufficiently smooth for this pointwise
equivalence to be well defined.



The IB approach to fluid-structure interaction

• Discretize the Eulerian equations on a Cartesian grid;

• Discretize the Lagrangian equations on a moving curvilinear mesh; and

• Discretize the interaction equations via regularized delta functions.

(i, j, k) indicate Cartesian grid points;
xi,j,k is the position of grid point (i, j, k);
ui,j,k is the velocity at xi,j,k; and
pi,j,k is the pressure at xi,j,k.

(q, r, s) indicate curvilinear mesh nodes;
Xq,r,s is the position of mesh node (q, r, s); and
Fq,r,s is the force at mesh node (q, r, s).



Regularized approximations to the Dirac delta function

φ(r)
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Three-dimensional regularized delta function δh(x) is the tensor product of
one-dimensional regularized delta functions δh(x):

δh(x) = δh(x) δh(y) δh(z)

with:

δh(x) =
1
h

φ
“x

h

”

,

in which h = ∆x = ∆y = ∆z is the Cartesian grid spacing.



Spread force to the Eulerian grid

f(x, t) =

∫
U

F(s, t) δ(x − X(s, t)) ds

≈

∑
q,r,s

Fq,r,s δh(xi,j,k − Xq,r,s)∆q ∆r ∆s

Xq,r,s

Xq,r,s+1

Xq,r,s−1
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Restrict velocity to the Lagrangian mesh

∂X

∂t
(s, t) =

∫
Ω

u(x, t) δ(x − X(s, t)) dx

≈

∑
i,j,k

ui,j,k δh(xi,j,k − Xq,r,s)h3
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Restrict velocity to the Lagrangian mesh

∂X

∂t
(s, t) =

∫
Ω

u(x, t) δ(x − X(s, t)) dx

≈

∑
i,j,k

ui,j,k δh(xi,j,k − Xq,r,s)h3

Uq,r,s

Xq,r,s

Xq,r,s+1

Xq,r,s−1



Regularized approximations to the Dirac delta function

A commonly used choice for φ(r) is the
four-point delta function, which satisfies
∀r ∈ R:

φ(r) = 0 |r| ≥ 2,
X

j∈Z even

φ(r − j) =
X

j∈Z odd

φ(r − j) =
1

2
,

X

j∈Z

(r − j) φ(r − j) = 0,

X

j∈Z

(φ(r − j))2 = C =
3

8
.

φ(r)

r
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These properties ensure conservation of force and torque during

Lagrangian-Eulerian interaction, and yield a second-order accurate interpolation

scheme for smooth velocity fields.



Eulerian spatial discretization

Staggered-grid (MAC) discretization: Normal components of the velocity

approximated on cell edges (faces in 3D); pressures approximated at cell centers:

(∇h · u)i,j :=
ui+ 1

2
,j − ui− 1

2
,j

∆x
+

vi,j+ 1

2

− vi,j− 1

2

∆y
,

“

(∇x
hp)i+ 1

2
,j , (∇

y
hp)i,j+ 1

2

”

:=

„

pi+1,j − pi,j

∆x
,
pi,j+1 − pi,j

∆y

«

,

(∇h ·∇hp)i,j =
`

∇2
hp

´

i,j
:=

pi+1,j − 2pi,j + pi−1,j

∆x2
+

pi,j+1 − 2pi,j + pi,j−1

∆y2
.



Notation for Lagrangian-Eulerian interaction

Force spreading:

fn
i,j,k =

X

q,r,s

Fn
q,r,s δh(xi,j,k − Xn

q,r,s)∆q ∆r ∆s

= (SnFn)i,j,k ,

in which Sn = S [Xn] is the force-spreading operator.

Velocity restriction:

d
dt

Xn
q,r,s =

X

i,j,k

un
i,j,k δh(xi,j,k − Xn

q,r,s) h3

= (Rnun)q,r,s ,

in which Rn = R [Xn] is the velocity-restriction operator.

Notice: For simplicity, these operators are stated for a cell-centered

discretization. Minor modifications are needed for the staggered-grid

discretization.

Remark: Because we use δh for both force spreading and velocity restriction,

R = S∗. This implies that the semi-discretized IB method conserves energy

during Lagrangian-Eulerian interaction.



Numerical methods

Given Xn, un, and pn− 1

2 , we wish to obtain Xn+1, un+1, and pn+ 1

2 by

discretizing the equations of motion.

A simple semi-implicit, first-order accurate discretization would be:

ρ

„

un+1 − un

∆t
+ Nn

«

= −∇hpn+ 1

2 +
µ
2
∇2

h

`

un+1 + un´

+ fn,

∇h · un+1 = 0,

fn = Sn Fn,

Xn+1 − Xn

∆t
= Rn un+1,

Fn = F [Xn] ,

in which Nn ≈ [u ·∇u]n.

It is straightforward to extend this discretization to second-order accuracy in time

by using a Runge-Kutta-type approach.

Notice: To solve these equations for Xn+1, un+1, and pn+ 1

2 , we need only to

solve a linearly implicit discretization of the incompressible Navier-Stokes

equations.



The projection method

The projection method is a fractional-step timestepping scheme.

Step 1: Solve the momentum equation without the incompressibility constraint for an
intermediate velocity u∗:

ρ

„

u∗ − un

∆t
+ N

(n+ 1

2
)
«

=
µ

2
∇2

h (u∗ + u
n) + f

(n+ 1

2
).

Step 2: Impose the incompressibility constraint:

ρ

„

un+1 − u∗

∆t

«

+ ∇hϕ = 0,

∇h · un+1 = 0.

Taking the divergence of the first of these equations, and using∇h · un+1 = 0, we have:

∇2
hϕ =

ρ

∆t
∇h · u∗.

It follows that:

u
n+1 =

“

I −∇h

`

∇2
h

´−1
∇h ·

”

u
∗ = P u

∗.

The operator P =
“

I −∇h

`

∇2
h

´−1
∇h ·

”

is a projection operator (P 2 = P ).

Step 3: Evaluate:

pn+ 1

2 =

„

I −
∆t

ρ

µ

2
∇2

h

«

ϕ.



The projection method as a preconditioner

The projection method can be recast as a preconditioner for a Krylov method

(e.g., GMRES).

Krylov methods are iterative methods for solving linear systems of equations

Ax = b by constructing Krylov subspaces, i.e.,

Kr(A, b) = span
`˘

b, Ab, A2b, . . . , Ar−1b
¯´

.

The convergence of such methods depends on the condition number of the

matrix A.

For ill-conditioned matrices, it may be faster to apply the Krylov method to the

preconditioned linear system

(BA)x = Bb.

To obtain good performance, the preconditioner B should be an “approximate

inverse” of A that is inexpensive to compute.



The projection method as a preconditioner

Our semi-implicit discretization can be written in block matrix form:

Ax :=

„ ρ
∆t

I − µ
2∇

2
h ∇h

−∇h · 0

«„

u

p

«

To solve this system using a Krylov method, we need an effective preconditioner.

The projection method can be recast as a preconditioner B for the matrix A:

B :=

 

I −∆t
ρ
∇h

0 I − ∆t
ρ

µ
2∇

2
h

!

„

I 0
0 (∇2

h)−1

«

·

„

I 0
− ρ

∆t
∇h · − ρ

∆t
I

«„
` ρ

∆t
I − µ

2∇
2
h

´−1
0

0 I

«

This approach can be viewed as using a Krylov method to eliminate the splitting errors of
the basic projection method.

Key points:

• Need a velocity subdomain solver for the operator
` ρ

∆t
I − µ

2∇
2
h

´

and a pressure

subdomain solver for the operator∇2
h.

• Exact subdomain solvers are not needed.

• The “artificial” boundary conditions required by the subdomain solvers do not affect
the actual boundary conditions imposed on the coupled system.



Some loose ends. . .

What solvers do we use for the operators
`

ρ
∆t

I − µ
2∇

2
h

´

and ∇2
h?

• FFT (for periodic domains).

• Multigrid or multigrid-preconditioned Krylov methods (for either periodic or

nonperiodic domains).



Some loose ends. . .

How do we approximate u ·∇u?

• Centered differences.

• Higher-order upwind differences.



Centered approximation to u ·∇u

We can easily compute centered approximations to u ·∇u at cell edges in

advection, conservation, or skew-symmetric forms.



Centered approximation to u ·∇u

An approximation to (u ·∇u) at xi− 1

2
,j in advection form may be computed as

(u ·∇u)i− 1

2
,j ≈ Ax + Ay,

with:

Ax :=
1
2

„ui+ 1

2
,j + ui− 1

2
,j

2

ui+ 1

2
,j − ui− 1

2
,j

h
+

ui− 1

2
,j + ui− 3

2
,j

2

ui− 1

2
,j − ui− 3

2
,j

h

«

,

Ay :=
1
2

„vi,j+ 1

2

+ vi,j− 1

2

2

ui,j+ 1

2

− ui,j− 1

2

h
+

vi,j− 1

2

+ vi,j− 3

2

2

ui,j− 1

2

− ui,j− 3

2

h

«

.



Centered approximation to u ·∇u

An approximation to (u ·∇v) at xi,j− 1

2

may be computed similarly.



Some loose ends. . .

What is F = F [X; s, t], and how do we compute it?

• For an elastic structure comprised of systems of elastic fibers, with (q, r)
labeling individual fibers and s running along a particular fiber,
F = ∂

∂s
(Tτ ), in which T is the fiber tension and τ is the unit tangent vector

in the fiber direction, i.e., τ = ∂X

∂s
/

˛

˛

∂X

∂s

˛

˛.

• In the simple special case in which T = κ
˛

˛

˛

∂X

∂s

˛

˛

˛
, F = κ ∂2

X

∂s2 .

• If we can describe the elasticity of the structure in terms of an energy

functional E[X(·, t)], then F = − δE
δX

, in which δE
δX

is the Fréchet (total)

derivative of E, i.e.,

δE[X(·, t)] = −

Z

U

F(s, t) · δX(s, t) ds.

(Note that here, δ is the perturbation operator, not the Dirac delta function!)

• For fiber-based models, we can approximate F via centered finite

differences. Typically, this amounts to describing the elasticity of the

structure in terms of systems of springs and beams.



A simple discretization of the Lagrangian force

Xq,r,s

Xq,r,s+1

Xq,r,s−1

Tq,r,s+ 1
2

= κ
|Xq,r,s+1 −Xq,r,s|

∆s

τq,r,s+ 1
2

=
Xq,r,s+1 −Xq,r,s

|Xq,r,s+1 −Xq,r,s|

Tq,r,s− 1
2

= κ
|Xq,r,s −Xq,r,s−1|

∆s

τq,r,s− 1
2

=
Xq,r,s −Xq,r,s−1

|Xq,r,s −Xq,r,s−1|

Fq,r,s =
Tq,r,s+ 1

2
τq,r,s+ 1

2
− Tq,r,s− 1

2
τq,r,s− 1

2

∆s

= κ
Xq,r,s+1 − 2Xq,r,s + Xq,r,s−1

∆s2



An adaptive IB approach to fluid-structure interaction

• Discretize the Eulerian equations on a locally refined Cartesian grid;

• Discretize the Lagrangian equations on a moving curvilinear mesh; and

• Discretize the interaction equations via regularized delta functions.



Structured Adaptive Mesh Refinement (AMR)

• Start with a global coarse grid that
covers the physical domain

• Indicate the portions of the domain that
require higher resolution by tagging
cells for refinement

• Generate the rectangular patches that
comprise the next finer level of the grid
(e.g., using the Berger-Rigoutsos point
clustering algorithm)

• Continue recursively until the maximum
number of levels have been generated

• Cells are tagged for refinement
whenever they contain curvilinear mesh
nodes or large values of
‖ω(x, t)‖ = ‖∇ × u(x, t)‖.
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Computing the x-component of the gradient on a uniform grid
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Simulating the fluid dynamics of a prosthetic mitral valve

Left: Prosthetic mitral valve designed by D. Wheatley and his group at U. 
Glasgow.  Right: Model of the prosthetic mitral valve developed by X. Luo 
and co-workers at U. Glasgow.







Simulating the fluid dynamics of a native aortic valve







Coupling between detailed and reduced models

Use the reduced circulation model to provide pressure boundary conditions for

the detailed FSI model, and use the detailed FSI model to provide flow boundary

conditions for the reduced model.



Coupling between detailed and reduced models

Use the reduced circulation model to provide pressure boundary conditions for

the detailed FSI model, and use the detailed FSI model to provide flow boundary

conditions for the reduced model.

Step 1: Treat the stored pressure in

the Windkessel model as fixed and

solve the IB equations over a time

increment ∆t for Xn+1, un+1, and

pn+ 1

2 .

Step 2: Treat Xn+1, un+1, and

pn+ 1

2 as fixed, compute Q = Qn+1,

the instantaneous flow rate out of

the detailed model vessel into the

reduced model, and solve the

reduced model equations over a

time increment ∆t for P n+1.













Comparison of simulated and clinical flow rates through the
aortic valve

A. B.
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A: Flow rate through the model valve. B: Aortic flow in a healthy human subject

(from Murgo et al., Circulation, 1980).

Note: In the model, only the upstream driving pressure and downstream

pressure load are specified. The flow rate is not specified in the model; instead, it

emerges from the FSI simulation.

















An IB method with finite element (FE) mechanics

Fiber-based structure models

• are well-suited for applications involving extremely anisotropic materials;

• permit an especially simple discretization; and

• may be used to handle complex geometry.

Additionally, with fiber models, the Lagrangian mesh must be approximately twice

as fine as the background Eulerian grid to avoid leaks at fluid-structure interfaces.

Unlike fiber models, FE-based structure models

• can take advantage of modern mesh generation technology;

• can easily use isotropic, orthotropic, or anisotropic material models,

including experimentally characterized constitutive models; and

• are straightforward to discretize in an adaptive manner.

Moreover, using FE structure models, it becomes possible for the Lagrangian and

Eulerian discretizations to be chosen independently.



Lagrangian and Eulerian notation

U

s

X(s, t)

X : (U, t) !→ Ω

Ω

• s ∈ U are Lagrangian (material) coordinates, with U ⊂ R
3 the Lagrangian

coordinate domain,

• x ∈ Ω are Eulerian (spatial) coordinates, with Ω ⊂ R
3 the physical domain,

• X(s, t) ∈ Ω is the physical position of material point s at time t,
• Ut = X(U, t) ⊆ Ω is the physical region occupied by the elastic structure at

time t, and
• Ω \ Ut = Ω \ X(U, t) is the physical region occupied by the fluid at time t.



Stress in Eulerian and Lagrangian forms

U

s

X(s, t)

X : (U, t) !→ Ω

Ω

If σ = σ(x, t) is the Cauchy stress tensor of the fluid-structure system, then

σ(x, t) =

(

σ
f(x, t) + σ

s(x, t) for x ∈ X(U, t),

σ
f(x, t) otherwise,

in which

σ
f = −pI + µ

h

∇u + (∇u)T
i

is the stress tensor of a viscous incompressible fluid, and σ
s(x, t) is the stress

tensor that describes the elasticity of the structure.



Stress in Eulerian and Lagrangian forms

U

s

X(s, t)

X : (U, t) !→ Ω

Ω

A convenient Lagrangian description of the elastic stress is the first

Piola-Kirchhoff elastic stress tensor P
s(s, t).

Let F = ∂X

∂s
denote the deformation gradient tensor, and let J = det(F).

P
s can be expressed in terms of σs and F by:

P
s = J σ

s
F
−T .



Stress in Eulerian and Lagrangian forms

U

s

X(s, t)

X : (U, t) !→ Ω

Ω

For a hyperelastic material with strain-energy functional W = W (F),

P
s =

∂W
∂F

.

For an incompressible neo-Hookean material, the strain-energy functional is:

W (F) =
C
2

“

I1

“

F
T

F

”

− d
”

=
C
2

“

trace
“

F
T

F

”

− d
”

=
C
2

(F : F − d) ,

for which

P
s(s, t) =

∂W
∂F

(s, t) = CF = C
∂X

∂s
.



Stress in Eulerian and Lagrangian forms

U

s

X(s, t)

X : (U, t) !→ Ω

Ω

Notice: We handle the incompressibility of the immersed structure in the

Eulerian fluid-like stress tensor. In the continuous formulation, there is no need

also to account for incompressibility in Lagrangian form.

When the equations are discretized, however, the computed deformation is

generally no longer exactly incompressible. In some cases, it may be useful to

adopt a nearly incompressible approach (e.g., by adding some penalty terms to

the strain-energy functional).



The equations of motion for the fluid-structure system

ρ

„

∂u

∂t
(x, t) + u(x, t) ·∇u(x, t)

«

= −∇p(x, t) + µ∇2u(x, t) + f(x, t) + t(x, t),

∇ · u(x, t) = 0,

f(x, t) =

Z

U

F(s, t) δ(x − X(s, t)) ds,

F(s, t) = ∇s · P
s(s, t),

t(x, t) =

Z

∂U

T(s, t) δ(x − X(s, t)) dA(s),

T(s, t) = −P
s(s, t)N(s),

∂X

∂t
(s, t) =

Z

Ω

u(x, t) δ(x − X(s, t)) dx.

The total force generated by the structure is comprised of two terms:

• an internal force density F(s, t) = ∇s · P
s(s, t), which is a volumetric force

density distributed in the interior of the structure; and

• a transmission force density T(s, t) = −P
s(s, t)N(s), which is a surface

force density concentrated on the boundary of the structure.



Weak form of the equations of motion

To facilitate discretization of the Lagrangian equations via C0 finite elements, we

introduce the weak formulation:

ρ

„

∂u

∂t
+ u ·∇u

«

= −∇p + µ∇2u + f + t,

∇ · u = 0,

f(x, t) =

Z

U

F(s, t) δ(x − X(s, t)) ds,

Z

U

F(s, t) · v(X(s, t)) ds = −

Z

U

P
s(s, t) : ∇sv(X(s, t)) ds

+

Z

∂U

P
s(s, t)N(s) · v(X(s, t)) dA(s), ∀v(x),

t(x, t) =

Z

∂U

T(s, t) δ(x − X(s, t)) dA(s),

T = −P
s N,

∂X

∂t
(s, t) =

Z

Ω

u(x, t) δ(x − X(s, t)) dx.



Weak form of the equations of motion

We can also adopt a weak formulation that eliminates the transmission force from

the equations of motion:

ρ

„

∂u

∂t
+ u ·∇u

«

= −∇p + µ∇2u + g,

∇ · u = 0,

g(x, t) =

Z

U

g(s, t) δ(x − X(s, t)) ds,

Z

U

G(s, t) · v(X(s, t)) ds = −

Z

U

P
s(s, t) : ∇sv(X(s, t)) ds, ∀v(x),

∂X

∂t
(s, t) =

Z

Ω

u(x, t) δ(x − X(s, t)) dx.

Remark: The two weak formulations are equivalent in the continuous setting, but

not when discretized. In practice, the “partitioned” formulation, in which the

interior and transmission forces are treated separately, seems to yield higher

accuracy, especially in the case in which the Lagrangian mesh is significantly

coarser than the background Eulerian grid.



Finite element discretization

Let Th be a triangulation of U , with elements Ue (Th = ∪eU
e), nodes {sl}, and

nodal basis functions {φl(s)}.

Standard nodal FE basis functions are interpolatory:

X

l

φl(s) = 1, and

φl(sm) =

(

1, if l = m,

0, otherwise.

Typically we use Q1 or Q2 basis functions.

We approximate the deformation in terms of the time-dependent nodal positions

{Xl(t)} via

X(s, t) =
X

l

Xl(t) φl(s),

and we approximate the internal force density in terms of the time-dependent

nodal forces {Fl(t)} via

F(s, t) =
X

l

Fl(t) φl(s).



Finite element discretization

We compute F(s, t) in a standard way, e.g., by requiring
Z

U

F(s, t) φm(s) ds = −

Z

U

P
s(s, t)∇sφm(s) ds

+

Z

∂U

P
s(s, t)N(s) φm(s, t) dA(s)

to hold for each basis function φm(s).

Plugging in F(s, t) =
P

l Fl(t) φl(s) leads to a linear system of equations for the

nodal forces {Fl(t)},
MF = b,

in whichMl,m =
`R

U
φl(s) φm(s) ds

´

is the mass matrix and b is a

right-hand-side vector that depends on P
s = P

s(F) = P
s( ∂X

∂s
).

In practice, we may replaceM with a diagonal (lumped) mass matrix.



Lagrangian-Eulerian interaction

We wish to compute:

f(xi,j,k, t) =

Z

U

F(s, t) δh(xi,j,k − X(s, t)) ds.

Letting Ue denote the elements of the triangulation Th of the Lagrangian domain

U , we have:

f(xi,j,k, t) =
X

Ue∈Th

Z

Ue

F(s, t) δh(xi,j,k − X(s, t)) ds.

We use Gaussian quadrature to approximate each of these element integrals.



Lagrangian-Eulerian interaction

f(xi,j,k, t) =
∑

Ue∈Th

∫
Ue

F(s, t) δh(xi,j,k − X(s, t)) ds

≈

∑
Ue

∑
s

e
Q∈Ue

F(se
Q, t) δh(xi,j,k − X(se

Q, t))ωe
Q



Lagrangian-Eulerian interaction

f(xi,j,k, t) =
∑

Ue∈Th

∫
Ue

F(s, t) δh(xi,j,k − X(s, t)) ds

≈

∑
Ue

∑
s

e
Q∈Ue

F(se
Q, t) δh(xi,j,k − X(se

Q, t))ωe
Q



Lagrangian-Eulerian interaction
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∑
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F(s, t) δh(xi,j,k − X(s, t)) ds

≈

∑
Ue

∑
s

e
Q∈Ue

F(se
Q, t) δh(xi,j,k − X(se

Q, t))ωe
Q



Lagrangian-Eulerian interaction

f(xi,j,k, t) =
∑

Ue∈Th

∫
Ue

F(s, t) δh(xi,j,k − X(s, t)) ds

≈

∑
Ue

∑
s

e
Q∈Ue

F(se
Q, t) δh(xi,j,k − X(se

Q, t))ωe
Q



Lagrangian-Eulerian interaction

f(xi,j,k, t) =
∑

Ue∈Th

∫
Ue

F(s, t) δh(xi,j,k − X(s, t)) ds

≈

∑
Ue

∑
s

e
Q∈Ue

F(se
Q, t) δh(xi,j,k − X(se

Q, t))ωe
Q



Lagrangian-Eulerian interaction

f(xi,j,k, t) =
∑

Ue∈Th

∫
Ue

F(s, t) δh(xi,j,k − X(s, t)) ds

≈

∑
Ue

∑
s

e
Q∈Ue

F(se
Q, t) δh(xi,j,k − X(se

Q, t))ωe
Q









Velocity restriction with the IB/FE method

We need to construct a velocity-restriction operatorR to determine the

deformation of the structure from the Eulerian velocity field:

dX
dt

= Ru.

We remark that, if T ≡ 0 and if
„

F,
dX
dt

«

s

= (f ,u)
x

,

then the IB/FE method conserves energy during Lagrangian-Eulerian interaction.

(It is also possible to incorporate T into F in a manner that also yields energy

conservation if T "≡ 0.)

We are thus motivated to constructR so that it is the adjoint of the

force-spreading operator S:
„

F,
dX
dt

«

s

= (f ,u)
x
⇐⇒ (F,Ru)

s
= (S F,u)

x
⇐⇒ R = S∗.



Velocity restriction with the IB/FE method

We rewrite the adjoint equation (F,Ru)
s

= (S F,u)
x
in matrix form:

(F,Ru)
s

=: FTMRu = (S F)T uh3 := (S F,u)
x

,

in whichM is the mass matrix with entriesMl,m =
`R

U
φl(s) φm(s) ds

´

.

For this to hold for all F and u, R must satisfy

MR = ST h3,

i.e.,

R = M−1 ST h3.

The construction of the restriction operatorR is purely algebraic; it may not be

clear what R actually does.



Velocity restriction with the IB/FE method

Let the continuous function U(s, t) be defined by the usual IB restriction
procedure:

U(s, t) =
X

i,j,k

ui,j,k δh(xi,j,k − X(s, t)) h3.

We wish to determine dX
dt

(s, t) from U(s, t); however, generally
U(s, t) "∈ span {φl(s)}.

Although we could use U(s, t) to determine the motion of a discrete set of points
in the FE mesh (e.g., the nodes of the mesh), , we cannot set dX

dt
(s, t) = U(s, t)

for all s ∈ U , because

dX
dt

(s, t) =
X

l

dXl

dt
(t) φl(s).



Velocity restriction with the IB/FE method

If we wish to use

U(s, t) =
X

i,j,k

ui,j,k δh(xi,j,k − X(s, t)) h3.

to determine dX
dt

(s, t), one approach would be to project U(s, t) onto
span {φl(s)}. To do this, we compute V(s, t) ∈ span {φl(s)} such that

Z

U

V(s, t) φm(s) ds =

Z

U

U(s, t) φm(s) ds.

for all m. In matrix form,

V = M−1U.

Because V(s, t) ∈ span {φl(s)}, we can use V(s, t) to determine the
deformation for each s ∈ U .

In fact, this is precisely what is done by our (continuous) restriction operatorR:
dX
dt

= Ru is the L2 projection of U(s, t) onto the FE basis functions.





















IBAMR: An adaptive and distributed-memory parallel
implementation of the IB method

IBAMR is a C++-based IB software framework that supports distributed-memory

parallelism via MPI.

Development supported by an NSF Software Infrastructure for Sustained

Innovation award.

Built on freely available, high-quality software libraries, including:

• SAMRAI (Lawrence Livermore National Lab)

• PETSc (Argonne National Lab)

• libMesh (University of Texas)

• hypre (Lawrence Livermore National Lab)

• other utility libraries (Blitz++, HDF5, Silo)

Used at NYU along with Northwestern University, Tulane University, University of

Cincinnati, University of Glasgow, University of Montana, University of North

Carolina-Chapel Hill, University of Utah, and others.

http://ibamr.googlecode.com
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