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Abstract

In this paper, we consider bifurcation from a circular cylindrical deformed configuration of a thick-walled circular cylin-
drical tube of incompressible isotropic elastic material subject to combined axial loading and external pressure. In partic-
ular, we examine both axisymmetric and asymmetric modes of bifurcation. The analysis is based on the three-dimensional
incremental equilibrium equations, which are derived and then solved numerically for a specific material model using the
Adams–Moulton method. We assess the effects of wall thickness and the ratio of length to (external) radius on the bifur-
cation behaviour.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The stability of elastic shells has been analyzed over the course of the past century since the initial work on
the topic by von Mises (1914), who derived an equation for the buckling pressure of a thin-walled elastic tube.
This gives the pressure as proportional to the cube of the ratio of wall thickness to mean diameter. Since then
buckling of circular cylindrical tubes under external pressure based has been studied extensively, for instance
by Batdorf (1947), Nash (1954) and Flügge (1973). In these studies, a simple one-term deflection function was
used and the problem was solved under special boundary conditions. More accurate solutions were obtained
by Ho and Cheng (1963), Sobel (1964) and Yamaki (1969) for a variety of loading and boundary conditions
where the pre-buckling state was given in terms of membrane theory. The same problem was then treated by
Yamaki (1970) but with pre-buckling effects. His key finding was that the mode number of the most unstable
mode increases as the tube length is decreased, and for a sufficiently long tube mode 2 bifurcation is the most
unstable mode. The length of the tube at which the transition between the higher mode and mode 2 occurs,
however, depends on the thickness ratio; the thicker the tube the shorter the length for which mode 2 becomes
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the most unstable mode (Yamaki, 1984). Good agreement between these studies and various experiments (e.g.,
Weissman and Mockros, 1967) have led to the buckling prediction for a cylindrical tube being regarded as a
solved problem (at least for thin shells).

Cylindrical tube bifurcation under external pressure is of interest not only in solid mechanics applica-
tions but it is also of great interest in the biomechanics context, specifically for the analysis of flow in
tubes that leads to collapse. There is a whole range of fascinating dynamic behaviour, as exemplified
by Bertram (1982, 1995), Bertram et al. (1990), Luo and Pedley (1996, 1998, 2000), Bertram and Elliot
(2003) and Luo et al. (2008). With different emphases, related extensive studies on stabilities of circular
cylindrical shells have also been carried out. Some of these, concerning geometrically non-linear vibrations
and dynamics of circular cylindrical shells, were reviewed by Amabili and Paı̈doussis (2003), with and
without fluid–structure intersections. Other recent advances in post-buckling analysis of thin-walled struc-
tures were reported by Kounadis (2006). With a particular interest in post-buckling behaviour Heil and
Pedley (1996) examined the stability of cylindrical shells under external pressure using a geometrically
non-linear shell theory and confirmed that the mode number of the most unstable mode increases as
the tube length is decreased, as predicted by Yamaki (1984). Heil and Pedley (1996) also found that
the bifurcation is not significantly affected by the presence of a full fluid–solid coupling (as long as the
critical loading is the same), although the subsequent post-buckling behaviour can be very different with
and without the internal flow. There is also an extensive literature on plastic buckling of circular tubes.
Experimental and modelling aspects of the compression of steel tubes in the plastic regime have been
reviewed in the recent works by Bardi and Kyriakides (2006) and Bardi et al. (2006), and we refer to these
papers for references to the relevant literature.

In experimental studies for these kinds of problems the tube wall thickness typically exceeds that which
might be appropriate for thin-shell theories (Bertram, 1982, 1987; Bertram et al., 1990). It is therefore reason-
able to ask if the bifurcation predictions of the classical theories remain valid. Bertram (1987) studied exper-
imentally the effects of wall thickness on the collapse of tubes and obtained agreement with the results of
Weissman and Mockros (1967). In Bertram’s study, wall thickness ratio h=R values used were 0.38 and 0.5,
where h is the thickness and R is the internal radius. The thick-walled tube problem was also analyzed by Mar-
zo et al. (2005) using the finite element method, and good agreement with the experiments of Bertram (1987)
and Weissman and Mockros (1967) was achieved. However, in Bertram (1987) and Marzo et al. (2005) results
were presented only for mode 2 bifurcation and for limited values of the wall thickness. Therefore, it remains
unclear how far the bifurcation predictions of thin-shell theory can be extended to thick-walled tubes, for
which non-linear elastic deformations can no longer be neglected.

For problems involving non-linear elastic deformations, a rigorous bifurcation theory has been established
based on the analysis of infinitesimal deformations superimposed on a known large deformation (Green et al.,
1952). Using this theory, Nowinski and Shahinpoor (1969) examined the stability of an infinitely long circular
cylinder of neo-Hookean material under external pressure assuming a plane strain deformation, and Wang
and Ertepinar (1972) investigated the stability of infinitely long cylindrical shells and spherical shells subjected
to both internal and external pressure. On the same basis but for different (incompressible, isotropic) material
models Haughton and Ogden (1979b) examined in some detail the bifurcation behaviour of circular cylindrical
tubes of finite length under internal pressure and axial loading.

In the present paper, following the analysis of Haughton and Ogden (1979b), we consider the bifurcation of
incompressible, isotropic thick-walled circular cylindrical tubes of finite length when subject to both axial
loading and external pressure. A new feature of the present work is the combination of finite deformations
of thick-walled tubes of hyperelastic material with external pressure and axial loading.

In Section 2 we summarize the necessary equations that describe finite elastic deformations, while in Section
3 these are specialized to the circular cylindrical geometry of a thick-walled tube that maintains its circular
cylindrical shape under axial extension and external pressure. The equations that describe a general (three-
dimensional) incremental deformation superimposed on the deformed circular cylindrical tube are then given
in Section 4. The three coupled partial differential equations governing the incremental displacement compo-
nents are highlighted in Section 5 along with the relevant incremental boundary conditions. Based on an
appropriate Ansatz for the displacement components the equations reduce to coupled ordinary differential
equations, for the solution of which a numerical scheme is then described. In Section 6 the numerical method
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is used in respect of a specific material model in order to obtain details of the onset of bifurcation in either an
axisymmetric or asymmetric mode.

For the thinner tubes it is found that under external pressure axisymmetric bifurcation occurs only for
0 < kz < 1, where kz is the principal stretch in the axial direction of the finite deformation. Moreover, the trend
of the bifurcation curves is very different from that of a tube under internal pressure. Since externally pressur-
ized tubes are particularly prone to asymmetric bifurcations, we devote most of our effort to the study of
asymmetric bifurcations. The bifurcation modes are characterized by azimuthal mode number m and the tube
length (which can be taken as a proxy for the axial mode number n). The bifurcation curves for modes m ¼ 1
to m ¼ 4 are presented, and the effects of wall thickness and the ratio of tube length to external radius on the
buckling pressure are also examined. For the simpler cases, our results are in agreement with the published
results in Marzo et al. (2005), Weissman and Mockros (1967), Bertram (1987) and Wang and Ertepinar
(1972), and, in particular, with the von Mises equation (von Mises, 1914; Weissman and Mockros, 1967).
We observe that the von Mises equation can only predict the buckling pressure well for thin shells. By con-
trast, the general analysis of bifurcation based on 3D finite deformation elasticity theory presented herein
is valid for both thin and thick shells.

2. Basic equations

2.1. Deformation and equilibrium

Consider a deformable continuous body for which we take X to be the position vector of an arbitrary mate-
rial point in the reference configuration, which is assumed to be stress free. Similarly, in the current configu-
ration, let x be the position vector of the same material point. Suppose that the initial deformation is defined
by the vector function v, so that x ¼ vðXÞ. Then the deformation gradient tensor F is defined by
F ¼ GradvðXÞ: ð1Þ
At this point we do not need to express this in component form. The local ratio of current to reference volume
is
J ¼ det F > 0; ð2Þ
and for an incompressible material the constraint
J ¼ det F � 1 ð3Þ
must be satisfied for every material point X.
We note that F can be written uniquely in the form F ¼ RU, where R is a proper orthogonal tensor and U is

positive definite and symmetric, the so-called right stretch tensor. The eigenvalues of U are the (strictly posi-
tive) principal stretches of the deformation, denoted ki; i ¼ 1; 2; 3.

Let S denote the nominal stress tensor, which, in general, is not symmetric. Then, if there are no body forces
the local equilibrium equation for the body has the (Lagrangian) form
Div S ¼ 0: ð4Þ
The corresponding Cauchy stress tensor, denoted r, is related to S by r ¼ J�1FS, is symmetric, and satisfies
the Eulerian form of the equilibrium equation, namely
divr ¼ 0: ð5Þ
2.2. The elastic constitutive law and strain-energy function

We consider the material body to be composed of an elastic material, whose properties are described in
terms of a strain-energy function, which we denote by W ¼ W ðFÞ per unit reference volume. Here we confine
attention to incompressible materials, so that the stress deformation relation is given by either
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S ¼ oW
oF
� pF�1; ð6Þ
where p (an arbitrary hydrostatic stress) is a Lagrange multiplier associated with the constraint (3), or
r ¼ F
oW
oF
� pI; ð7Þ
where I is the identity tensor.
Here we take the material to be isotropic, so that W depends on F only through the principal stretches

ki; i ¼ 1; 2; 3, and is a symmetric function of the stretches. We therefore represent W in the form
W ¼ W ðk1; k2; k3Þ, and, for an incompressible material, the constraint (3) may be written in terms of the
stretches as
k1k2k3 ¼ 1: ð8Þ

Moreover, (7) can be decomposed on principal axes as
ri ¼ ki
oW
oki
� p; i ¼ 1; 2; 3 ðno summationÞ; ð9Þ
ri; i ¼ 1; 2; 3, being the principal Cauchy stresses.
For subsequent convenience it is useful to regard W as a function of just two independent stretches, k1 and

k2 say, and to introduce the notation bW defined by
bW ðk1; k2Þ ¼ W ðk1; k2; k
�1
1 k�1

2 Þ: ð10Þ

It then follows from (9) that the principal stress differences can be written
r1 � r3 ¼ k1

o bW
ok1

; r2 � r3 ¼ k2

o bW
ok2

: ð11Þ
3. The circular cylindrical configuration

We now consider a thick-walled circular cylindrical tube with reference geometry described by
A 6 R 6 B; 0 6 H 6 2p; 0 6 Z 6 L; ð12Þ

where R;H; Z are cylindrical polar coordinates, A and B are the inner and outer radii, respectively, and L is the
length of the tube. This is depicted in Fig. 1(a).
The circular cylindrical tube in its reference configuration (a) and deformed configuration when subject to axial load and external
re (b).
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The initial deformed configuration of the tube, under the action of axial loading and external pressure, is
assumed also to be circular cylindrical, with geometry described by
a 6 r 6 b; 0 6 h 6 2p; 0 6 z 6 l; ð13Þ
where r; h; z are cylindrical polar coordinates, a and b are the internal and external radii, respectively, and l is
the length. Since the material is incompressible, the deformation is described by the equations
r2 ¼ a2 þ k�1
z ðR2 � A2Þ; h ¼ H; z ¼ kzZ; ð14Þ
where kz is the axial extension ratio (or axial stretch), which is uniform.
We use e1; e2; e3 to denote the unit basis vectors corresponding to the coordinates h; z; r, respectively. For

the considered deformation, since the material is isotropic, these define the principal directions of both the
stretch tensor U and the Cauchy stress r. Let k1; k2; k3 denote the corresponding principal stretches and
r1; r2; r3 the associated principal Cauchy stresses, which are given by (9). From the incompressibility con-
straint together with (14), we have
k2 ¼ kz; k1 ¼
r
R
� k; k3 ¼ ðk1kzÞ�1

: ð15Þ
For the symmetric configuration considered here, the only equilibrium equation not satisfied trivially is
r
dr3

dr
þ r3 � r1 ¼ 0; ð16Þ
and we have the associated boundary conditions
r3 ¼
0 on r ¼ a

�P on r ¼ b:

�
ð17Þ
Using bW , as defined in (10), (11)1, and the definitions (15), integration of (16) and application of the bound-
ary conditions (17) yields
P ¼ �
Z b

a
k bW k

dr
r
: ð18Þ
On application of the connections r ¼ kR and (14) this may be re-written with k as the integration variable in
the form
P ¼
Z kb

ka

bW k

ðk2kz � 1Þ
dk; ð19Þ
where
ka ¼
a
A
; kb ¼

b
B
: ð20Þ
We note here that if there is, additionally, an internal pressure, P i > 0 say, then the left-hand sides of (18)
and (19) are replaced by P � P i. Thus, the effect of an internal pressure can be captured by taking P < 0 in the
above formulas, this corresponding to a radial external tension on r ¼ b.

4. Incremental equations

Detailed derivation of the incremental equations can be found in Haughton and Ogden (1979b) for a thick-
walled and Haughton and Ogden (1979a) for a thin-walled tube (see also Haughton and Ogden, 1978a,b, for
corresponding results for spherical shells). Here we provide a summary of the main results needed for our
analysis. A superposed dot signifies an increment in the quantity concerned, and a subscript 0 indicates that
the quantity to which it is attached is calculated with respect to the deformed configuration as reference con-
figuration. First, let _xðXÞ denote the incremental displacement vector, and then define uðxÞ through
uðxÞ ¼ uðvðXÞÞ ¼ _xðXÞ. Next, introduce the notation g defined by
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g ¼ _F0 � _FF�1 ¼ gradu: ð21Þ

The incremental form of the incompressibility condition can then be written
trg ¼ 0: ð22Þ

The increment of the constitutive law (6) has the form
_S ¼ A _F� _pF�1 þ pF�1 _FF�1; ð23Þ

where
A ¼ o2W
oFoF

ð24Þ
is the elasticity tensor with components defined by
Aaibj ¼
o2W

oF iaoF jb
: ð25Þ
When the reference configuration is updated to the current configuration this becomes
_S0 ¼ Bgþ pg� _pI; ð26Þ

where I is again the identity tensor and B is the fourth-order tensor of instantaneous elastic moduli, whose
(Cartesian) components are related to those of A by
Bpiqj ¼ F paF qbAaibj: ð27Þ

For an incompressible isotropic elastic material the non-vanishing components of B referred to the princi-

pal axes of r can be written (see, for example, Ogden, 1974)
Biijj ¼ Bjjii ¼ kikjW ij; ð28Þ

Bijij ¼
kiW i � kjW j

k2
i � k2

j

k2
i ; ki 6¼ kj; ð29Þ

Bijji ¼ Bjiij ¼ Bijij � kiW i; i 6¼ j; ð30Þ
where W i ¼ oW =oki, W ij ¼ o
2W =okiokj.

The incremental form of the equilibrium Eq. (4) is Div _S ¼ 0 and when updated it becomes
div _S0 ¼ 0; ð31Þ

the incremental counterpart of (5).

For the problem to be considered in the following sections we shall be making use of the pressure boundary
condition, which, referred to the original reference configuration, may be written
STN ¼ �PF�TN; ð32Þ

where N is the unit outward normal vector to the boundary of the body in the reference configuration and P is
the pressure on the boundary per unit area of the deformed configuration. On taking the increment of (32) and
updating to the deformed configuration we obtain
_ST
0 n ¼ PgTn� _Pn; ð33Þ
which is the form of incremental boundary condition that we shall use.
We now specialize (31) to circular cylindrical coordinates based of the underlying solution discussed in Sec-

tion 3. The curvilinear coordinates are ordered so that ðx1; x2; x3Þ ¼ ðh; z; rÞ. Then, we have, in component
form,
_S0ji;j þ _S0jiek � ej;k þ _S0kjei � ej;k ¼ 0; i ¼ 1; 2; 3; ð34Þ

with summation over indices j and k from 1 to 3, where the subscript j(=1, 2, 3) following a comma represents
the derivatives ðo=roh; o=oz; o=orÞ. The only non-zero components of ei � ej;k are
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e1 � e3;1 ¼
1

r
; e3 � e1;1 ¼ �

1

r
: ð35Þ
Referred to the cylindrical polar axes the incremental displacement u is written in terms of its components
ðv;w; uÞ as
u ¼ ve1 þ we2 þ ue3: ð36Þ

Then, from the definition g ¼ grad u we obtain the component matrix of g referred to the axes in question as
½g� ¼
ðuþ vhÞ=r vz vr

wh=r wz wr

ðuh � vÞ=r uz ur

0
B@

1
CA; ð37Þ
where the square brackets indicate the matrix of components of the enclosed quantity and the subscripts
ðr; h; zÞ signify standard partial derivatives.

The incompressibility condition (22) can now be given explicitly as
trg � ur þ ðuþ vhÞ=r þ wz ¼ 0: ð38Þ
5. Asymmetric bifurcations and numerical methods

We now substitute (26), (37), (38) and the expressions for the components of Bijkl into (34) to obtain
_ph ¼ ðrB03131 þ B3131Þðuh þ rvr � vÞ=r þ ðB1111 � B1122 � B2112Þðuh þ vhhÞ=r

þ B2121rvzz þ B3131rvrr þ ðB1133 � B1122 � B2112 þ B3113Þurh; ð39Þ
_pz ¼ ðrB03232 þ B3232Þðuz þ wrÞ=r þ B1212ðwhh � ruzÞ=r2 þ B3232wrr

þ ðB2222 � B1221 � B1122Þwzz þ ðB2233 þ B3223 � B1221 � B1122Þurz; ð40Þ
_pr ¼ ðrB01133 � rB02233 � B1111 þ B1122Þðuþ vhÞ=r2 þ B1313ðuhh � vhÞ=r2 þ B3223wrz

þ ðB1331 þ B1133 � B2233Þvrh=r þ ðB3333 � B2233Þurr þ B2323uzz

þ ðrB03333 þ rp0 � rB02233 þ B3333 � 2B2233 þ B1122Þur=r: ð41Þ
On the cylindrical boundaries we apply the specialization of (33) to the present situation, with the inner
boundary free of incremental traction and the outer boundary subject to pressure P. Taking _P ¼ 0 in (33)
we then have, for i ¼ 1; 2; 3,
_S03i ¼
0 on r ¼ a

Pg3i on r ¼ b:

�
ð42Þ
At the ends of the tube we apply the incremental boundary conditions
u ¼ v ¼ 0; _S022 ¼ 0 on z ¼ 0; l: ð43Þ

This means that the ends of the tube are constrained so that no incremental rotation or radial displacement is
allowed, while the axial component of traction is of dead-load type.

To solve the equations, we assume that the solution takes the form
u ¼ f ðrÞ cos mh sin az; v ¼ gðrÞ sin mh sin az;

w ¼ hðrÞ cos mh cos az; _p ¼ kðrÞ cos mh sin az;

�
ð44Þ
where m ¼ 0; 1; 2; 3; . . . is the azimuthal mode number, m ¼ 0 corresponding to an axisymmetric solution. Sub-
stitution into the incompressibility condition (38) then yields
rf 0ðrÞ þ f ðrÞ þ mgðrÞ � arhðrÞ ¼ 0: ð45Þ

Also, on inserting (44) into (39)–(41) and using (45) to eliminate hðrÞ, we obtain three coupled equations for
f ðrÞ; gðrÞ and kðrÞ, namely
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ðrB03131 þ B3131 þ B1111 � B1122 � B2112Þmf ðrÞ þ ðB1133 � B1122 þ B3113 � B2112Þmrf 0ðrÞ
þ ½rB03131 þ B3131 þ m2ðB1111 � B1122 � B2112Þ þ a2r2B2121�gðrÞ
� ðrB03131 þ B3131Þrg0ðrÞ � B3131r2g00ðrÞ � mrkðrÞ ¼ 0; ð46Þ

½rB03232 � B3232 þ m2B1212 � a2r2ðrB03232 þ B3232 � B1212 þ B1122 þ B1221 � B2222Þ�f ðrÞ
� ½rB03232 � B3232 � m2B1212 � a2r2ðB2222 � B2233 � B3223Þ�rf 0ðrÞ
� ðrB03232 þ 2B3232Þr2f 00ðrÞ � B3232r3f 000ðrÞ þ ½rB03232 � B3232 þ m2B1212

þ a2r2ðB2222 � B1122 � B1221Þ�mgðrÞ � ðrB03232 � B3232Þmrg0ðrÞ � B3232mr2g00ðrÞ þ a2r3kðrÞ ¼ 0; ð47Þ

ðrB01133 � rB02233 � B1111 þ B1122 þ B3223 � m2B1313 � a2r2B2323Þf ðrÞ
þ ðrB03333 þ rp0 � rB02233 þ B3333 � 2B2233 þ B1122 � B3223Þrf 0ðrÞ
þ ðB3333 � B2233 � B3223Þr2f 00ðrÞ þ ðrB01133 � rB02233 � B1111 þ B1122 þ B3223 � B1313ÞmgðrÞ
þ ðB1133 � B2233 þ B1331 � B3223Þmrg0ðrÞ � r2k0ðrÞ ¼ 0: ð48Þ
Next, on substituting the expression for u from (44) in the boundary condition (43)1, we deduce that
a ¼ np=ðk2LÞ; ð49Þ
where n ¼ 1; 2; 3; . . . is the axial mode number. The boundary conditions for v are then automatically satisfied.
It is therefore clear that the behaviour for different mode numbers n can be captured, equivalently, by varying
the length L. Thus, in what follows it suffices to set n ¼ 1 and to consider L as a parameter that reflects either
changes in the axial mode number or changes in length.

From Eqs. (46)–(48), we can express f 000ðrÞ, g00ðrÞ and k0ðrÞ in terms of f ðrÞ, f 0ðrÞ, f 00ðrÞ, gðrÞ, g0ðrÞ and kðrÞ,
and hence we write the equations as a first-order system in the compact form
dy

dr
¼ Gðy; rÞ; ð50Þ
where y ¼ ðy1; y2; y3; y4; y5; y6Þ
T, G ¼ ðG1;G2;G3;G4;G5;G6ÞT,
y1 ¼ f ðrÞ; y2 ¼ f 0ðrÞ; y3 ¼ f 00ðrÞ; y4 ¼ gðrÞ; y5 ¼ g0ðrÞ; y6 ¼ kðrÞ; ð51Þ
and
G1 ¼ y2; G2 ¼ y3; G4 ¼ y5; ð52Þ
while G3;G5;G6 are lengthy expressions obtained by rearranging Eqs. (46)–(48) and are not listed here.
In the same notation, the components of the incremental pressure boundary condition (33) are given as
my1 þ y4 � ry5 ¼ 0;

ða2r2 þ m2 � 1Þy1 þ ry2 þ r2y3 ¼ 0;

ðB1133 � B2233Þðy1 þ my4Þ þ ðB3333 � B2233 þ k3W 3Þry2 � ry6 ¼ 0;

9>=
>; ð53Þ
each of which must hold on both r ¼ a and r ¼ b. To obtain these use has been made of the conditions
r3 ¼ k3W 3 � p ¼ 0 on r ¼ a and r3 ¼ k3W 3 � p ¼ �P on r ¼ b, and we have set _P ¼ 0 on r ¼ b.

To solve the system of first-order ordinary differential equations (with three independent solutions), we
choose starting values at r ¼ a for three independent solutions given by
y1
1ðaÞ y2

1ðaÞ y3
1ðaÞ

y1
4ðaÞ y2

4ðaÞ y3
4ðaÞ

y1
6ðaÞ y2

6ðaÞ y3
6ðaÞ

0
B@

1
CA ¼

1 0 0

0 1 0

0 0 1

0
B@

1
CA; ð54Þ
where, for each entry yj
iðaÞ in (54), subscripts i ¼ 1; 4; 6, correspond to dependent variables in (50) while the

superscript j refers to the jth set of initial values (j ¼ 1; 2; 3).
Substituting each set of the initial values, that is each column of the matrix (54), into the boundary condi-

tions (53) for r ¼ a, we obtain
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y1
2ðaÞ y2

2ðaÞ y3
2ðaÞ

y1
3ðaÞ y2

3ðaÞ y3
3ðaÞ

y1
5ðaÞ y2

5ðaÞ y3
5ðaÞ

0
B@

1
CA ¼ a11 my1

2ðaÞ a13

a21 �my1
2ðaÞ=a �y3

2ðaÞ=a

m=a 1=a 0

0
B@

1
CA; ð55Þ
where, for conciseness, we have introduced the notations
a11 ¼
B2233 � B1133

aðB3333 � B2233 þ k3W 3Þ
; a13 ¼

1

B3333 � B2233 þ k3W 3

; a21 ¼
1� m2 � a2a2 � ay1

2ðaÞ
a2

;

all terms being evaluated for r ¼ a.
Eqs. (54) and (55) together give the initial values for Eq. (50). This initial value problem is solved numer-

ically using the Adams–Moulton method (Gerald and Wheatley, 1984), with Predictor and Corrector given by
Predictor : ynþ1 ¼ yn þ
h

24
ð55Gn � 59Gn�1 þ 37Gn�2 � 9Gn�3Þ; ð56Þ

Corrector : ynþ1 ¼ yn þ
h

24
ð9Gnþ1 þ 19Gn � 5Gn�1 þGn�2Þ; ð57Þ
where h ¼ ðb� aÞ=x is the step size and x is the iteration number. Note that the Adams–Moulton method
requires four sets of initial values at previous steps. These are calculated using the fourth-order Runge–Kutta
method. Each method has local errors of Oðh5Þ. The solutions can be expressed as a linear combination of the
three independent solutions y1; y2; y3. Thus,
y ¼ C1y1 þ C2y2 þ C3y3; ð58Þ

where yi ¼ ðyi

1; y
i
2; y

i
3; y

i
4; y

i
5; y

i
6Þ

T
; i ¼ 1; 2; 3.

Bifurcation may occur if there exist constants C1;C2;C3, at least one of which is non-zero. For purposes of
numerical computation in Section 6 we shall specialize to a particular strain-energy function, for which
B1133 ¼ B2233 ¼ 0. On introducing this specialization and substituting (58) into the boundary conditions
(53), we obtain three equations for C1;C2;C3, namely
½myi
1ðbÞ þ yi

4ðbÞ � byi
5ðbÞ�Ci ¼ 0;

½ðm2 þ a2b2 � 1Þyi
1ðbÞ þ bðyi

2ðbÞ þ byi
3ðbÞÞ�Ci ¼ 0;

½bðB3333 þ k3W 3Þyi
2ðbÞ � byi

6ðbÞ�Ci ¼ 0;

9>=
>; ð59Þ
evaluated for r ¼ b, in each of which there is summation over the index i from 1 to 3. Thus, the bifurcation
criterion is obtained by the vanishing of the determinant of coefficients of C1;C2;C3, viz.
my1
1ðbÞ þ y1

4ðbÞ � by1
5ðbÞ my2

1ðbÞ þ y2
4ðbÞ � by2

5ðbÞ my3
1ðbÞ þ y3

4ðbÞ � by3
5ðbÞ

My1
1ðbÞ þ by1

2ðbÞ þ b2y1
3ðbÞ My2

1ðbÞ þ by2
2ðbÞ þ b2y2

3ðbÞ My3
1ðbÞ þ by3

2ðbÞ þ b2y3
3ðbÞ

bNy1
2ðbÞ � by1

6ðbÞ bNy2
2ðbÞ � by2

6ðbÞ bNy3
2ðbÞ � by3

6ðbÞ

�������
������� ¼ 0; ð60Þ
again with all terms evaluated for r ¼ b, where M ¼ m2 þ a2b2 � 1 and N ¼ B3333 þ k3W 3.
Substituting the equation
b2 ¼ a2 þ k�1
z ðB2 � A2Þ; ð61Þ
i.e. Eq. (14)1 with R ¼ B, into (60), we obtain an equation for the value of a that satisfies the bifurcation cri-
terion (60). The corresponding bifurcation pressure can be obtained from (19).

6. Numerical results and discussion

In the experiments of Weissman and Mockros (1967) and Bertram (1987) silicone rubber tubes were used,
and the numerical results of Marzo et al. (2005) were compared with experimental data for two thick-walled
collapsible tubes reported by Bertram (1987). It is therefore appropriate to employ a strain-energy function
that has been used extensively for fitting data on experiments for a wide range of rubberlike solids. Specifi-
cally, we apply the foregoing theory to the strain-energy function given by



Fig. 2.
ðkz; kaÞ
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W ¼
X3

r¼1

lrðkar
1 þ kar

2 þ kar
3 � 3Þ=ar; ð62Þ
where lr and ar; r ¼ 1; 2; 3, are material constants (see, for example, Ogden, 1997). Using the incompressibility
condition (8) and the energy function bW ðk1; k2Þ defined by (10), we have
bW ðk1; k2Þ ¼
X3

r¼1

lrðkar
1 þ kar

2 þ ðk1k2Þ�ar � 3Þ=ar: ð63Þ
For the numerical calculations we use the material constants given by
a1 ¼ 1:3; a2 ¼ 5:0; a3 ¼ �2:0;

l�1 ¼ 1:491; l�2 ¼ 0:003; l�3 ¼ �0:023;
ð64Þ
as in Haughton and Ogden (1978b), where l�r ¼ lr=l; r ¼ 1; 2; 3, and l is the shear modulus of the material in
the reference configuration given by (see, for example, Ogden, 1972)
2l ¼
X3

r¼1

lrar: ð65Þ
Representative values of the aspect ratios of the tube are taken as L=B ¼ 1; 2:5; 5; 10, and for numerical pur-
poses, without loss of generality, we set B ¼ 1 and change the value of the inner radius A to vary the thickness
of the tube. Two thickness ratios are considered, namely, A=B ¼ 0:85 (thinner tube) and A=B ¼ 0:5 (thicker
tube).

The qualitative nature of the results presented below are not unduly sensitive to the choice of material
parameters in (62), and there are also many other forms of strain-energy function that could equally well
be used to produce similar qualitative behaviour.

6.1. Equilibrium pressure curves

The dependence of the non-dimensional pressure P � ¼ P=l on the circumferential stretch ka is illustrated in
Fig. 2(a) in respect of the strain-energy function (63) with material constants (64) and for A=B ¼ 0:85 and sev-
eral values of kz. Fig. 2(a) shows that initially the external pressure increases slowly in order to compress the
tube radially as ka is reduced from 1. Thereafter, there is a plateau where a significant increase in pressure does
Plot of (a) the dimensionless pressure P � ¼ P=l against ka for A=B ¼ 0:85 and kz ¼ 1; 2; 3; 4; 5, and (b) equal pressure curves in
space for P � ¼ 0; 0:5; 1, with A=B ¼ 0:85 (dashed curves) and A=B ¼ 0:5 (continuous curves).



Fig. 3. Plots of the axisymmetric bifurcation curves for mode n ¼ 1 with aspect ratios L=B ¼ 2:5; 5; 10; 20 and A=B ¼ 0:85. The dashed
curve corresponds to the zero pressure curve P � ¼ 0.
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not produce significant further radial deformation of the tube. This trend becomes more pronounced as the
value of kz increases. This graph should be compared with the pressure-area (internal cross-sectional area
of the tube) diagram, also known as the ‘‘tube law” and most commonly used for collapsible tubes (Flaherty
et al., 1972). Although the tube law is based on the post-buckling behaviour of tubes it does not take account
of axial forces and bending moments.

The equal pressure curves corresponding to P � ¼ 0; 0:5; 1 are plotted in ðkz; kaÞ space for A=B ¼ 0:5 and 0.85
in Fig. 2(b), again using Eq. (19), except for P � ¼ 0, for which we have the connection
1 Pri
k2
akz ¼ 1; ð66Þ
which is independent of the wall thickness ratio A=B. We observe that at least for the range of values of kz and
ka considered, the equal pressure curves for the thicker tube ðA=B ¼ 0:5Þ lie above those for the thinner one
ðA=B ¼ 0:85Þ, indicating that to obtain the same deformation more pressure is required for the thicker tube, as
should be expected.

6.2. Axisymmetric bifurcation

First, we consider axisymmetric modes of bifurcation, corresponding to m ¼ 0 in (44). We set the longitu-
dinal mode number n to be 1 and in Fig. 3 we plot axisymmetric bifurcation curves for L=B ¼ 2:5; 5; 10 and 20
and A=B ¼ 0:85. In this case, as well as curves for an external pressure, curves for an internal pressure are
shown in order to compare with the results of Haughton and Ogden (1979b). With reference to the remarks
on internal pressure following Eq. (19), we recall that the effect of internal pressure is captured by taking
P � < 0 here. It can then be seen that for a tube subjected to internal pressure our results coincide with those
in Haughton and Ogden (1979b) except for a factor 2, which means the curves in Haughton and Ogden
(1979b) for L=B ¼ 2x are the same for those here with L=B ¼ x.1

When the tube is under external pressure (P � > 0), we note that the axisymmetric bifurcation curves all
intersect the curve P � ¼ 0 in the region 0 < kz < 1, which means that axisymmetric bifurcation cannot occur
for tubes with A=B ¼ 0:85 subjected to external pressure and axial extension (i.e. when kz > 1). In other words,
under external pressure, axisymmetric bifurcation only occurs when a tube is axially compressed. This is not
the case for tubes under internal pressure (Haughton and Ogden, 1979b).
vate communication with Dr. Haughton confirms that there is a factor of 2 missing in Eq. (61) of Haughton and Ogden (1979b).
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6.3. Asymmetric bifurcation

Since for tubes under external pressure, axisymmetric bifurcations do not occur when the tube is extended,
we focus on asymmetric bifurcations henceforth.

6.3.1. Thinner tube

In this section, all results are for the thinner tube A=B ¼ 0:85. From Eq. (49), we recall that either axial
mode number n or length of the tube L can be varied to obtain equivalent results. We therefore set n ¼ 1
and choose different values of the length L, and only azimuthal modes corresponding to m ¼ 1; 2; 3; 4 are con-
sidered. Therefore, in the following, the mode number referred to is always the azimuthal mode number m. We
restrict attention to m 6 4 because higher mode number bifurcations are not usually observed in collapsible
tube experiments. In any case, we have found that higher modes produce results very similar to those for
m ¼ 4. The asymmetric bifurcation curves are plotted using the bifurcation criterion (60) and the numerical
method discussed in Section 5.

Fig. 4 shows the mode 1 asymmetric bifurcation curves for L=B ¼ 1; 2:5; 5; 10 and both internal and exter-
nal pressure. For P � < 0 (tubes under internal pressure), the results here are again in agreement with those of
Haughton and Ogden (1979b), with the factor 2 difference indicated earlier, and we do not discuss this case
further. For P � > 0 (tubes under external pressure), we see that as the axial stretch kz is increased towards
1, along the equal pressure curve P � ¼ 0 the value of ka at bifurcation decreases as the value of L=B increases
from 2.5 to 10. This confirms the intuitive expectation that longer tubes buckle more easily than shorter ones.
In the region of axial extension, the tube with L=B ¼ 1 bifurcates slightly more readily into mode 1 than the
longer tubes. Fig. 4 also shows that the tube can bifurcate into mode 1 for small axial compression (values of
kz less than, but close to, 1). The value of ka at bifurcation seems to increase rapidly for kz below 1 (i.e. when
the tube is axially compressed). However, under axial extension ðkz > 1Þ, bifurcation into mode 1 requires a
relatively larger pressure than in axial compression and the corresponding value of ka becomes very small, as
does the internal radius of the tube.

The mode 2 asymmetric bifurcation curves are shown in Fig. 5. It is interesting to see that the bifurcation
pressure for longer tubes (L=B P 5) approaches zero. Thus, although the bifurcation pressures required in the
region of axial compression are similar for mode 1 and mode 2, much less pressure is required to achieve the
mode 2 bifurcation in the region of axial extension. Fig. 5 also shows that the mode 2 bifurcation does not
depend significantly on the length of the tube unless the tube is very short (with L=B about 1).

Similar bifurcation behaviour is found for modes m ¼ 3 and m ¼ 4, as illustrated in Fig. 6. Compared with
mode 2, the mode 3 and mode 4 curves are closer to (further from) the equal pressure line P � ¼ 0 for tubes
with L=B ¼ 1 (L=B ¼ 10), and hence the shorter tubes become more sensitive to a change in the external pres-
Fig. 4. Mode m ¼ 1 asymmetric bifurcation curves for L=B ¼ 1; 2:5; 5; 10 and A=B ¼ 0:85 in ðkz; kaÞ space. The dashed curve is the equal
pressure curve P � ¼ 0.



Fig. 5. As in Fig. 4 but for azimuthal mode number m ¼ 2.

Fig. 6. As in Fig. 4 but for (a) m ¼ 3 and (b) m ¼ 4.
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sure for higher mode numbers, while for longer tubes, mode 2 become the most unstable mode. The differences
in these modes can be seen more clearly in Fig. 7. Note that compared with higher modes, the mode 1 curve is
much further from the P � ¼ 0 curve, especially as axial extension is increased. This means that unless the tube
is slightly compressed, a much greater pressure is required for a tube to buckle into mode 1 than into higher
modes. This trend is even stronger for the longer tubes.
6.3.2. Thicker tube
To illustrate the influence of different mode numbers on the behaviour of thicker tubes, we plot the bifur-

cation curves for m ¼ 1; 2; 3; 4 in Fig. 8 for A=B ¼ 0:5 separately for each value L=B ¼ 1 and L=B ¼ 5. In
Fig. 8(a), for L=B ¼ 1, it can be seen that the bifurcation behaviour for the thicker tube is similar to that
for the thinner tube, i.e. curves of modes 2, 3 and 4 are closer to each other than that for mode 1. Thus, under
extension the tube may bifurcate into any of the modes 2, 3 and 4 but a relatively larger pressure is needed for
mode 1 to be activated. Two major differences are observed between thinner and thicker tubes. One is that the
mode 2, 3 and 4 curves are more separated for the thicker tube, the other is that for axial compression ðkz < 1Þ
the lower modes occur first, while for axial extension, mode 2 becomes the preferred mode for all values of kz.



Fig. 7. Asymmetric bifurcation curves for m ¼ 1; 2; 3; 4 and A=B ¼ 0:85 in ðkz; kaÞ space: (a) L=B ¼ 1; (b) L=B ¼ 5.

Fig. 8. Asymmetric bifurcation curves for m ¼ 1; 2; 3; 4 and A=B ¼ 0:5 in ðkz; kaÞ space: (a) L=B ¼ 1; (b) L=B ¼ 5.
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This is consistent with experimental observations and classical thin shell theory but is not so obvious for thin-
ner tubes.

Fig. 8(b) shows corresponding results for L=B ¼ 5. The curves for modes 2, 3 and 4 do not intersect. Com-
pared with the L=B ¼ 1 tube, the separations of the curves for m ¼ 2; 3; 4 are relatively large. The mode 1 curve
has one point of intersection with each of the other higher mode curves. In the region of axial extension, as the
external pressure increases, bifurcation occurs first in mode 2, followed by modes 3, 4 and 1 successively. For
modes 3 and 4, the bifurcation values of ka (larger than 1) along the equal pressure curve P � ¼ 0 for L=B ¼ 5
are larger than those for L=B ¼ 1.
6.3.3. Bifurcation pressure

Since mode 2 is the most widely observed mode in tube collapse experiments (Bertram, 1987), we show the
mode 2 bifurcation pressure against L=B in Fig. 9 for both A=B ¼ 0:5 and A=B ¼ 0:85 for comparison, with
kz ¼ 1 in each case. It can be seen that the curves tend to flatten when L=B P 4. This suggests that, for longer
tubes, wall thickness rather than tube length is more important in determining the magnitude of the bifurca-
tion pressure. As a result, the value of the bifurcation pressure P � for A=B ¼ 0:85 is much smaller than that for



Fig. 9. Plot of P � ¼ P=l at bifurcation (mode m ¼ 2) against L=B for A=B ¼ 0:5 (continuous curve, left-hand scale) and A=B ¼ 0:85 (dash-
dot curve, right-hand scale) and kz ¼ 1.

3424 Y. Zhu et al. / International Journal of Solids and Structures 45 (2008) 3410–3429
A=B ¼ 0:5, and this will be discussed further later in this section. It should be noted that different vertical
scales are used for the two plots.

To see the change of the bifurcation pressure with wall thickness and to compare our results with those in
the literature (Bertram, 1987; Marzo et al., 2005; Weissman and Mockros, 1967) we use the reference wall
thickness H ¼ B� A and the parameters D, Q and P k, defined by
Fig. 10
(contin
D ¼ 2ðB� AÞ
lnðB=AÞ ; Q ¼ EH 3

12ð1� m2Þ ; ð67Þ
and
P k ¼
Q

ðD=2Þ3
¼ 2E

3ð1� m2Þ
H
D

� �3

; ð68Þ
where, in the context of classical elasticity, E is Young’s modulus and m is Poisson’s ratio. Here, D denotes the
logarithmic mean diameter and Q is the flexural rigidity of the tube wall. The pressure P is non-dimensional-
ized by dividing by P k.
. Mode 2 bifurcation pressure plotted in dimensionless form as P=P k against H=D for L=B ¼ 10 (dashed curve) and L=B ¼ 34
uous curve) and kz ¼ 1:005.
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Using the bifurcation criterion (60) combined with Eqs. (19), (67)1 and (68), we obtain the mode 2 bifur-
cation pressure shown in Fig. 10, plotted with P=P k against H=D. We see that the thinner tube begins to bifur-
cate at a pressure close to the theoretical value P=P k ¼ 3 in the thickness range of 0.05–0.4 in agreement with
von Mises’ prediction obtained from classical linear elasticity thin shell theory (von Mises, 1914). We empha-
size again that our results are obtained from the incremental equations based on the full 3D theory of non-
linear elasticity, which provide the exact linearized bifurcation theory of elasticity, and our calculations are
valid for underlying finite elastic deformations. To compare with Bertram’s experimental results (Bertram,
1987) and the numerical results of Marzo et al. (2005), the parameter L=B ¼ 34 was used here. In fact, our
results indicate that, for tubes with L=B ¼ 10 and L=B ¼ 34, when 0:05 < H=D < 0:4 the values of P=P k are
in the range 2.9–3.2. This explains why von Mises’ prediction is confirmed by many different experiments
and numerical simulations (Bertram, 1987; Marzo et al., 2005; Weissman and Mockros, 1967). In Bertram
(1987) and Marzo et al. (2005), only some limited values of P=P k were presented for a set of given values
of H=D. Likewise, in Weissman and Mockros (1967), results were only presented for 0 < H=D < 0:25. Here,
the bifurcation pressure is shown for a much wider range of H=D. It is interesting to note that the bifurcation
pressure does not change significantly for tubes with thickness ratio 0:05 < H=D < 0:4.

However, our results show that towards the two ends of the H=D axis, the values of the bifurcation pressure
for mode 2 differ from the classical prediction. For H=D < 0:05, the values of P=P k are larger than 3. The
shorter the tube, the greater the increase. For L=B ¼ 34, P=P k ¼ 3:24 at H=D ¼ 0:01 and for L=B ¼ 10, it
increases to 11.5 (see Fig. 10 and the B=H ¼ 50 curve in Fig. 12). This discrepancy may be because in classical
thin shell theory (Yamaki, 1984) the pre-buckling state was assumed to be a membrane stress state. When
H=D < 0:05 and L=B < 34, neglect of the curvature of the deflected surface caused by external pressure can
lead to serious error (von Mises, 1914). However, von Mises’ formula P collapse ¼ 3P k is sufficiently accurate
for shells with L=B > 34 (see page 73 in Yamaki (1984)). For H=D > 0:4, the curves for L=B ¼ 10 and
L=B ¼ 34 almost coincide. The bifurcation pressure P=P k drops below 3 as H=D increases, and decreases to
1 when H=D ¼ 0:8. Caution is required with the physical interpretation of this result, since P k is cubic
H=D, which increases much faster than P as H=D is increased from 0.4. This trend can also be seen clearly
in Fig. 13(a). In physical terms, a greater bifurcation pressure is still required to buckle the thicker tube, as
expected, even though the ratio P=P k is smaller.
6.3.4. Very short tubes

To illustrate further the dependence on tube length we now investigate briefly bifurcation of very short cyl-
inders under axial compression and tension. Fig. 11(a) presents bifurcation curves in ðkz; kaÞ space for tubes
with L=B ¼ 0:5 and A=B ¼ 0:5. Transition from low to high mode occurs in the range of axial compression at
an intersection point where kz � 0:62. When kz < 0:62, modes 1,2,3 occur first, while for kz > 0:62, the mode
Fig. 11. Asymmetric bifurcation curves for m ¼ 1; 2; 3; 4, L=B ¼ 0:5 and A=B ¼ 0:5. (a) In ðkz; kaÞ space; (b) in ðkz; P=P kÞ space.
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m ¼ 4 becomes the most unstable one. Referring back to Fig. 8(b) for L=B ¼ 5 we see that, by contrast, there is
no intersection point among curves for m ¼ 2; 3; 4 and the mode 2 curve is above the others in the whole range
of kz except in the short interval 0:90 < kz < 0:95 where the mode 2 curve is below that for mode 1. Axial
extension does not affect the order of the bifurcation modes for either of the tubes with L=B ¼ 1 and
L=B ¼ 5. The parameter L=B therefore plays a major role in the transition from high to low modes, which
is also found for tubes with A=B ¼ 0:85. The results represented in Fig. 11(a) are converted into the plots
of P=P k against kz in Fig. 11(b) by use of (67) and (68). Fig. 11(b) shows that the P=P k curve for mode 1
increases rapidly and monotonically, while for each mode 2, 3 and 4 there is a pressure maximum, occurring
at kz ¼ 1:05; 0:90; 0:80, respectively. Tubes subjected to sufficiently large axial compression or tension tend to
bifurcate easily, while for 0:8 < kz < 1:05 bifurcation requires a larger pressure. We can therefore conclude
that either a large axial compression or axial tension reduces the axial stiffness of the cylinders.

6.3.5. The most unstable mode

To find the most unstable modes for different lengths and wall thicknesses, similarly to the predictions of
classical thin shell theory (Yamaki, 1984), we plot the critical bifurcation curves in Fig. 12. It is seen that for a
thin shell, B=H ¼ 50, the results are in excellent quantitative agreement with those of Yamaki (1984)
(Fig. 2.12, for boundary condition S4). There exists only a small discrepancy due to the slightly different
boundary conditions used here. In other words, if the wall is thin, then higher modes are more unstable for
shorter tubes. However, as the wall thickness is increased, the critical higher modes become fewer, and mode
2 becomes more and more dominant. Eventually, for B=H < 2 and L=B > 1:2 it remains the only bifurcation
mode. For instance, in the range of 4 < L=B < 10, a thin tube with B=H ¼ 50, bifurcates into the m ¼ 2 mode,
whereas thick-walled tube with B=H ¼ 6:67, bifurcates into the m ¼ 3 mode. In the context of axial compres-
sion of steel cylinders undergoing plastic deformation a very similar distribution of bifurcation modes was
found by Bardi and Kyriakides (2006) experimentally and (Bardi et al., 2006) analytically. Apart from the type
of material behaviour, this differs from the present analysis since we are considering external pressure rather
than axial compression and we have fixed kz ¼ 1 in Fig. 12. Fig. 7(a) shows that for tubes with A=B ¼ 0:85
(equivalent to B=H ¼ 6:67) under external pressure and axial extension, the higher modes are more unstable.
Another interesting phenomenon is that the thicker the tube the smaller the value of L=B at which the curve
flattens. The curves for tubes with B=H ¼ 50; 6:67; 2 show that as L=B!1, P=P k approaches 3.0, which is in
agreement with the thin shell theory prediction. But for the very thick tube with B=H ¼ 1:58, P=P k approaches
2.43. The bifurcation pressure for thick tubes with H=D > 0:4 drops below 3.0 (see also Fig. 10).
Fig. 12. Bifurcation pressure plotted in dimensionless form as P=P k against L=B for B=H ¼ 50 (black curves), B=H ¼ 6:67 (red curves),
B=H ¼ 2 (dashed curves), B=H ¼ 1:58 (blue curves) with different mode numbers and kz ¼ 1. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)



Y. Zhu et al. / International Journal of Solids and Structures 45 (2008) 3410–3429 3427
6.4. Discussion

In this paper, we have investigated the non-linear buckling behaviour of thick-walled circular cylinder tubes
under external pressure combined with axial loading. Our study is particularly useful in determining the buck-
ling of thick-walled tubes, which is beyond the limit of validity of thin shell theory. This work has been con-
ducted with a background in mind of the bifurcation behaviour of collapsible tubes conveying internal flow,
although we note that the essential difference between this study and studies by the collapsible tube flow com-
munity (Heil, 1996; Heil and Pedley, 1996; Bertram et al., 1990) is that no fluid–structure interactions are con-
sidered. Here, the (external) pressure is acting as a (prescribed) static load, which contrasts with the strong
viscous pressure when an internal flow is present. However, in the context of critical buckling, it has been
found that these different mechanisms (static pressure load or flow-induced pressure load) lead to similar
results except that a substantially higher pressure drop is required to achieve the same level of collapse for
the static load case (Heil and Pedley, 1996).

The most interesting finding is that for wall thickness ratios A=B greater than about 0.5, mode 2 seems to be
the dominant critical buckling mode unless the tubes are extremely short (e.g., L=B K 1:2). This is different
from the predictions of classical thin shell theory (Yamaki, 1984), but agrees with the fact that in many
thick-walled tube experiments, in particular those of Bertram (1982, 1987) and Bertram et al. (1990), only
mode 2 buckling has been observed regardless of the tube length used. The fact that in experiments the pre-
vailing mode is mode 2 cannot be fully explained by thin shell theory. This is because when fluid–structure
interaction is involved, the effect of the fluid flow is to increase the viscous pressure drop, which induces an
additional compressive load at the downstream end of the tube. As a result, only the compressed downstream
part of the tube actually participates in the buckling, which is then similar to the buckling of a short tube (Heil
and Pedley, 1996). If the thin shell theory were to be valid, this would induce the buckling to occur in a higher
mode. The reason why this did not happen in the experiments is that, for thicker tubes, mode changes no
longer happen, and long thick tubes were used in experiments (Bertram, 1987; Bertram et al., 1990). As illus-
trated in Fig. 12, for long thick tubes, only mode 2 occurs. As indicated above, our study shows that if A=B is
greater than about 0.5, then the critical buckling mode will remain as mode 2 except for very short tubes.

Although the von Mises formula is derived for thin-walled tubes, experimental measurements have shown
that it also predicts the bifurcation pressure for thick-walled tubes reasonably well (Weissman and Mockros,
1967). Our results show that this is because the bifurcation pressure P=P k is insensitive to the change of wall
thickness H=D for the range of 0:05 < H=D < 0:4. If the tube is sufficiently thin or sufficiently thick, then the
von Mises formula is no longer accurate, and P=P k actually increases in the thin wall extreme, and decreases in
the thicker wall region.

In order to have a more direct comparison with the Weissman and Mockros experiments, we plot the bifur-
cation pressure in terms of P against H=D in Fig. 13. This is obtained using the bifurcation criterion (60) com-
bined with Eq. (19) and the equation
l ¼ E
2ð1þ mÞ ; ð69Þ
where (for an incompressible material) m ¼ 0:5. The value E ¼ 300psi ð¼ 2:07MPaÞ adopted by Weissman and
Mockros then gives l ¼ 0:69 MPa, which is used to calculate the bifurcation pressure.

It can be seen that for a very thin tube ð0 < H=D < 0:1Þ, bifurcation occurs at a small external pressure. For
tubes with larger wall thickness, when H=D > 0:1, the bifurcation pressure increases rapidly. For
0 < H=D < 0:4, our results are in accord with the experimental results of Weissman and Mockros (1967)
and von Mises’ formula. When H=D > 0:4, the latter curve increases more rapidly than for our results.

Although we have considered a tube of finite length, a limitation of the present study is that we have ini-
tiated the bifurcation analysis from a deformed circular cylindrical configuration and adopted rather special
incremental boundary conditions on the ends of the tube. These might prevent realistic post-buckling behav-
iour for which large deformations can occur in either the axial or azimuthal direction near the ends. Thus, our
results only apply for the initial bifurcation behaviour. Many interesting phenomena, such as self-exited oscil-
lations in collapsible tubes conveying fluid, occur in the post-buckling phase, where the cross-sectional area
typically takes on an elliptical or dumbbell shape. These are excluded in the present analysis.



Fig. 13. (a) Mode m ¼ 2 bifurcation pressures P vs. H=D for silicone rubber tubes for kz ¼ 1:005; the continuous curve is for L=B ¼ 10,
and dash-dot curve is for L=B ¼ 5. The dashed curve corresponds to von Mises’ theoretical result. (b) the enlarged area indicated in (a).
The symbols are from the Weissman and Mockros experimental results: r represents bifurcation points at 50% volume collapse and M at
70%.
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7. Conclusion

Axisymmetric and asymmetric bifurcations of circular cylinders under external pressure combined with axial
loading have been analyzed in detail using a particular model strain-energy function appropriate for non-linear
elastic deformations of rubberlike materials. Unlike the models used by von Mises (1914) and Yamaki (1984),
which are applicable only for thin-walled tubes, this study presents results for a wide range of tube wall thickness
on the basis of the exact 3D theory of finite elasticity. A more general description of the bifurcation behaviour of
thick-walled tubes subject to external pressure combined with axial loading, including axial compression and
extension, has been presented. Good agreement with previous studies has been found, and extensive comparisons
with results for thin-shell theory are made. Our results show that the critical bifurcation pressure deviates from
the thin shell prediction in both the very thin and thick-walled regimes. For very short and sufficiently thick tubes,
transition from lower to higher modes occurs in the range of axial compression. We have also shown that, con-
trary to thin-shell theory, for sufficiently thick tubes, transition from lower to higher modes does not occur for
sufficiently short tubes. Instead, mode 2 bifurcation becomes the sole dominant mode.

In the next phase of this work we shall investigate the post-buckling behaviour of elastic tubes under exter-
nal pressure and axial loading. In particular, the effect of wall thickness on compliance of the tubes between
buckling and self-contact will be studied in order to interpret the puzzling phenomenon that for tubes sub-
jected to external pressure, after a certain degree of collapse, thick tubes may be more compliant than thinner
ones (Bertram, 1987; Marzo et al., 2005).
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