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ABSTRACT 

Unsteady behaviour of a new fluid-beam model for flow in 
collapsible channels is studied in this paper.   A finite element 
code is developed to solve the fully fluid-structure interaction 
unsteady problem with method of rotating spines. The self-
excited oscillations for different parameters are calculated and 
compared with these of the earlier  fluid-membrane model by 
Luo & Pedley (1996).  A stability line in the tension – wall 
stiffness space is identified which seems to associate with the 
small amplitude oscillations which are found only in the new 
model.  As tension is reduced from the stability line, the 
oscillations undergo a change in amplitude and through to 
period doubling, highly irregular oscillations with chaotic-like 
behaviour, and finally divergent.   The transition of these 
different types of oscillations, however, depends on the value of 
the wall stiffness which is new in this model.  

 
INTRODUCTION 
     Flow in collapsible tubes has been extensively studied in the 
recent decades not only due to its relevance to  physiological 
applications, but also because of the interesting fluid-structure 
interactions that occur.  Self-excited oscillations are frequently 
observed in a Starling resistor made from such a system in the 
laboratory (Bertram, 1982).   Such oscillations have also been 
obtained from some one-dimensional models, as well as in a 
two-dimensional fluid-membrane model (Luo & Pedley, 1996) 
which may,  in principle, be realized a laboratory.  
 
  The fluid-membrane model, however, suffers from several ad 
hoc approximations: the wall stiffness was ignored, and the 
elastic wall was assumed to move either in the vertical or in the 
normal direction.  Although these may be adequate for steady 
flow simulations, their influence on the unsteady flows, 
especially on the self-excited oscillations, needs to be carefully 
evaluated.    A steady flow study of a new fluid-beam model 
which employs a plane strained  elastic beam with large 
deflection has been put forward by the authors (Cai & Luo, 
2002).  In this model the two-dimensional solid mechanics of 
the wall is taken into account, thus avoiding the above ad hoc 
assumptions.    It was found that the steady behaviour of the 
beam model agrees very well with the membrane model for 
small values of the wall stiffness.   
 

This paper continues to study on the unsteady flow in the 
new fluid-beam model, with an aim to identify the possible 
differences in the self-excited oscillations of the new model and 
these from the fluid-membrane model by Luo & Pedley (1996).  

 

  NOMENCLATURE         
 A − the cross-sectional area of the beam 
 cλ − the dimensionless extensional stiffness of the beam 
 cκ − the dimensionless bending stiffness of the beam   
 D − the undeformed channel height  
 E − the Young’s modulus 
 F  − the force vector in FEM 
 l −  the initial beam position 
 L − the length of the undeformed beam  
 L u− the length of the upstream rigid channel 
 L d− the length of the downstream rigid channel 
 J − bending moment of the beam 
 K  − the nonlinear matrix in FEM 
 M − the mass matrix in FEM 
 p − the internal pressure  
 pe − the external pressure  
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 Re −  the Reynolds number 
 t − time 
 T − the longitudinal pre-tension along the beam 
 ui  (i=1,2) , or u, v− the velocity components 
 U − the global vector of unknowns in FEM 
 R − the residual vector in FEM 
 U0− the velocity at the inlet 
 (x,y)  - the coordinates 
β − the scaling parameter (> 0) 
ω − the dimensionless frequency of oscillations 

       θ− the slope of the deformed beam 
 λ− the principal stretch of the beam 
 κ − the curvature of the beam 
 τn − the shear stress of the fluid on the beam 
 σ − the stress of the fluid  
 σn − the normal stress of the fluid on the beam 
 ρ  − the density of the fluid 
 ρm  − the density of the beam 
 µ −  the viscosity of the fluid 
 
 

  A FLUID-BEAM MODEL 
    The model consists of a flow in a channel in which a part of 
the upper wall is replaced by an elastic beam,  as shown in 
figure 1.  

Figure 1:  The flow-beam configuration (not to scale).  Part B 
has part of the wall being replaced by an elastic beam.  
 
 For convenience, we introduce non-dimensionlized variables 
as follows: 
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where variables with star are non-dimensional ones which will 
be used throughout this paper.  In the following, however, the 
stars are dropped for simplicity.  
 
The dimensionless governing equations for the system are 
thus:  

 
   for the beam: 
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   where the superscript  ‘ denotes differentiation with respect to 
l.   
   And for the fluid: 
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where the superscript prime represents derivative with respect 
to the initial beam position l.    Notice that as both cκ and 
cλ →0,  we recover the fluid-membrane model (Luo & 
Pedley, 1995).  
 
Boundary conditions for the flow field are chosen such that  

   steady parabolic velocity profile is used for the inlet flow,  
the stress free condition for the downstream outlet, and the 
no-slip condition is used along the walls including the elastic 
section.  Clamped conditions are used for the beam ends.  

                                         
 

 
METHOD  
      A finite element code for unsteady flow is developed to 
solve the coupled nonlinear fluid-structure interactive equations 
simultaneously, and an adaptive mesh with rotating spines is 
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used to allow for a movable boundary.  The mesh is divided 
into three subdomains, one of which is placed with many spines 
originating from the bottom rigid wall to the movable beam, see 
figure 1.   
    These spines are straight lines, which can rotate around the 
fixed nodes at the bottom.  Thus all the nodes on the spines can 
be stretched or compressed depending on the beam 
deformation. A numerical code is developed to solve the fluid 
and the beam equations simultaneously using weighted residual 
methods  
    A Petro-Galerkin method is used to discretise the system 
equations (2)-(8). The element type for flow is six-node 
triangular with second order shape function Ni for u and v, and 
linear shape function Li for p.    Three-node beam elements with 
second order shape function are used for x, y, θ, λ and κ.   The 
discretized finite element equations can be written in a matrix 
form as  
 

            ( ) ( ) 0dUM U K U U F R
dt

+ − = =           (9) 

 
where U =(uj, vj, pj, xj, yj, θj, λj, κj) is the global vector of 
unknowns, and j=1,…n, is the nodal number.  R is the overall 
residual vector.   
   An implicit finite difference second order predictor-correct 
scheme with a variable time step is used to solve the time 
dependent problem. At each time step, the frontal method and a 
Newton-Raphson scheme are employed to obtain the converged 
solution for the whole system simultaneously.  In addition, the 
code is modified to solve the corresponding eigenvalue 
equations so that the linear stability of the system can be also 
investigated.  
  
 
COMPUTATIONAL ACCURACY 
 
The code has been tested for steady flow extensively in terms of 
grid independence check, as well as comparisons with the 
analytical solution obtained at the corners of the elastic and 
rigid walls (Cai & Luo, 2002). In carrying out the numerical 
calculations, the mesh is chosen such that the boundary layer of 

a scale 2
c

L c
κ

λ

 can be resolved (Cai & Luo, 2002). 

 
As the time dependent computations are very time consuming, 
so rather than employing just one (dense) mesh, which can 
resolve the boundary layers of all the parameters investigated, 
we choose two different grids.  Grid A, a more refined one, 
which can solve for the smallest value of  cλ  (=1) is used for all 
the simulations with   cλ  < 800.  In this case, the smallest 
boundary layer width is estimated to be about 0.0141, and the 
grid is chosen to be 40 x (60+120+240) with a stretch ratio of 
1:10 towards the two corners where the beam joins the rigid 
 

wall in both directions.  Grid B, the coarser one, where only 18 
x (30+60+60) elements are used with the same stretch ratio 
towards the corners, is used for all the simulations with 
cλ  >800.  In addition, if the amplitude of the oscillations is 
found to be large, then grid A is always used. 
 
Since variable time steps are used, the temporal accuracy of the 
solutions are checked by using a different error tolerance ε 
between  ε=10-5 and 10-7.  It was found that  ε=10-5 is accurate 
enough for most of the oscillations, see figure 2, with exception 
for the most violent (chaotic like) ones where small phase 
difference may occur at the longer time. Since we are not 
interested in the involutions of the chaotic like oscillations in 
this paper,   ε=10-5  is used throughout the simulations. 
 
 

 
 
Figure 2. The time dependent position of the wall initially at the 
beam centre in  the y direction for  β=30, cλ=1, Re=300.   The 
solid line indicates the result obtained for e=10-7 and the 
dashed line is for e= 10-7.    
 
The computations are performed on a Dec Alpha Unix machine, 
and take about 0.1-5 CPU minutes for an unsteady solution at 
any one time step. 
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RESULTS  
 
Steady solutions:  
   
   Steady solutions of the new model have been studied by Cai 
& Luo (2002); here we only summarize the main results below.  
All the results are obtained for the following dimensionless 
parameters:           
          Lu=5,  L=5,  Ld=30,  D=1, 
         Re=300, pe= 1.95, T=178.8/β, 
         cκ=10-5 -105,  cκ /cλ=10-5,   

 

where β is a positive scaling factor for the tension.  The ratio 
of the wall stiffness is chosen  to be cκ / cλ = 10-5 , which is 
equivalent to choosing the thickness of the wall to be 1% of 
the channel width. 
 
When  cλ  is  large,  the beam behaves like a rigid wall. The 
deformation of the elastic wall increases as cλ decreases. The 
upstream bulging phenomenon observed in the fluid-
membrane model when the tension is below a certain value 
(Luo & Pedley, 1995) also occurs here when cλ falls below 
100. For cλ of order unity, this model behaves almost 
identically to the fluid-membrane model.  In other words, the 
fluid-membrane model seems to be valid for steady flow if cλ 
is order 1, see figure 3.  

    
   

 
Figure 3: The shapes of the beam for different values of cλ.  

Note as  cλ  −>  1 ,  the result agrees closely with  the membrane 
model.  
 
One important difference between the beam and the membrane 
models is that in the latter, when the tension falls below a 
critical value (β=181), the numerical scheme breaks down and a 
steady solution is not attainable (Luo & Pedley, 1995). We 
found this is only true in the beam model for very small values 
of cλ . For cλ > 1, however, there always exists a finite solution, 
 

and the elastic wall approaches to a limiting shape as T →0. 
This limiting shape is found to change with the value of cλ. 
 
Unsteady solutions: 
     Small perturbations are applied on the steady solutions of the 
system and the time evolution of the unsteady solutions are 
subsequently computed.   If the perturbations die away as time 
progresses, then we consider the solutions to be stable. 
 
     To check if the unsteady behaviour is similar to that of the 
membrane model, we start with small wall stiffness, cλ = 1, 
where the steady solutions of the two models agree closely with 
each other.  As β is small (tension is big), the solutions in the 
beam model are found to be stable, see figure 4, below.  
 
    

Figure 4. Steady solution obtained for cλ=1, T=To/β,  β=14,  is 
stable to the numerical perturbation.  Plotted is the 
displacement of the initially center point of the beam in y 
direction , Y,  versus time, t.  
 
    
 
 However, as β is increased (tension is reduced) slightly from 
14 to 15, the solution becomes unstable, leading to small 
amplitude regular waveform oscillations as shown in figure 5.  
The dimensionless frequency of these kind oscillations is found 
to be about 1.82. The amplitude of the oscillations for x and y is 
about 0.00003. 
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Figure 5. Steady solution obtained for cλ=1, T=To/β,  β=15,   is 
unstable to the numerical perturbation. Plotted is the 
displacement of the initially center point of the beam in y 
direction , Y,  versus time, t.  Small regular sinusoidal 
amplitude oscillations around their corresponding steady 
solution (dotted) are developed in time.  
 
 
   Further increase in β, from 15 to 28, gives rise to two 
remarkable qualitative changes in the oscillations, see figure 6.   
First, these oscillations become large amplitude with a much 
lower frequency, of about 0.75 in this case.    Secondly,  they 
tend to shift away from the corresponding steady solution.  This 
is different to the small amplitude oscillations.   
 
 

 
Figure 6. Steady solution obtained for cλ=1, T=To/β,  β=28,   is 
unstable to the numerical perturbation. Large amplitude 
oscillations are developed in time, they also shifted away from 
their corresponding steady solution (dotted). 
 

 

 
 To increase β yet further from 28 to 30, then another distinct 
phenomenon occurs–period doubling oscillations, see figure 7. 
 

 
Figure 7. Steady solution obtained for cλ=1, T=To/β,  β=30,   is 
unstable to the numerical perturbation.   Large amplitude 
oscillations are developed in time; the corresponding steady 
solution is plotted as dotted line.  Period doubling is present. 
  
    We then increase β still further, from 30 to 35, the period-
doubling oscillations are replaced by totally irregular chaotic-
like behaviour as shown in figure 8.  After this point, any 
further increase in β  will lead to oscillations either too violent 
for the numerical scheme to cope, or the unsteady solution 
clearly becomes divergent.    
 
   It is noted that the sequence of the unsteady behaviour from 
figure 4, to figures 6, 7, 8, are qualitatively similar to the 
unsteady behaviour of the membrane model, in the sense that 
steady solutions are followed by regular oscillations, then by the 
period doubling, and finally the chaotic-like oscillations.   The 
differences between the two models for small stiffness (cλ=1) 
are that:  (a) very few small amplitude oscillations were 
observed in the membrane model for the parameters studied 
(Luo & Pedley, 1996), and (b) the values of β for transitions 
from steady to oscillations, and then period doublings, are 
slightly different to these of the membrane model (Luo & 
Pedley, 1996).  The latter is understandable, as the tension is a 
variable in the new model, thus any contributions from the wall 
stiffness, however small, would alter the real tension in the 
beam.  For the same reason, the frequencies of these large 
amplitude oscillations (before the period doubling occurs) are 
also slightly higher than the membrane model for a comparable 
value of tension (in the new model: ω =0.75, while for the 
membrane model:  ω =0.628).   
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Figure 8. Steady solution obtained for cλ=1, T=To/β,  β=35,   is 
unstable to the numerical perturbation.     Large amplitude 
oscillations are developed in time,  the corresponding steady 
solution  is plotted as dotted line.  The oscillation is chaotic-
like. 

 

These results demonstrated the unsteady behaviour of the beam 
model for a small value of cλ.   However, it is worth noting that 
for biological tissues, the values of cλ  ranges between 103-105 
in our dimensionless scale.    Therefore, it is important to 
explore the unsteady behaviour of the beam model for large 
values of cλ.   For β=33,  and cλ =900, we found that rather than 
going through the period doubling as shown in figure 6, the 
oscillation of the system resumes to the small amplitude regular 
waveform, see figure 9, with almost the same frequency as the 
one in figure 5 (ω =1.82) !  
 

  It is of interests to see if there is a instability pattern in the T- 
cλ  parameter space.  To investigate this, we carried out some 
considerable computations for the unsteady cases.  The 
preliminary instability pattern is shown in figure 10.  It seems 
that the unsteady solutions are all located under a stability curve 
in the T- cλλλλ space.   Small amplitude oscillations are found to 
locate on (or just below) the stability curve.   The amplitude of 
these oscillations seems to increase as the solutions move away 
from the stability curve; the further they are,  the more irregular 
they become.  
 

 

 
Figure 9. Unsteady solution obtained for cλ=900, 
T=To/β,  β=33.  Small amplitude oscillations are developed in 
time,  the corresponding steady solution  is plotted as dotted 
line.    
 

Figure 10 The instability pattern for the beam model as 
cλ varies between 1 and 1700.  It is seen that the solutions are 
steady for large values of T and/or cλ.   
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DISCUSSION 
     The results of the new fluid beam model are computed and 
compared with the fluid-membrane models.  There are several 
interesting discoveries.  First, the self-excited oscillations in the 
new model are qualitatively similar to those from the previous 
fluid-membrane model if the wall stiffness is very small.  This 
implies that the fluid-membrane model is a good approximation 
for a very thin wall material (which is usually too thin for 
biological materials, however).  Secondly, small amplitude 
oscillations are only found so far in the new model with the wall 
stiffness included.    
 
  There seems to exist a stability curve on which the small 
amplitude oscillations are allocated. It is striking to see that the 
frequencies of these oscillations are very similar, all within the 
range of 1.82.  These oscillations can then change into the large 
amplitude irregular non-linear ones via the period doublings as 
the tension/wall stiffness is further decreased from the stability 
curve.  One finding of interest is that these large amplitude non-
linear oscillations tend not to oscillate around their 
corresponding steady solution when perturbed, but they 
oscillate around an entirely different operating point.  This is a 
discovery very similar to what has been observed in 
experiments by Bertram et al. (1990), where they found the 
self-excited oscillations could shift from one steady solution to 
another one.  

 
  It should be mentioned that the parameter study in identifying 
the stability curve is by no means exhaustive, and the stability 
curve may or may not be the division of the linear stability of 
the system.  To answer this question stringently, a linear 
stability study of the eigenvalue problem for the system is 
required.  This is currently being undertaken.  
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