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This paper studies the unsteady behaviour and linear stability of the flow in a
collapsible channel using a fluid–beam model. The solid mechanics is analysed in a
plane strain configuration, in which the principal stretch is defined with a zero initial
strain. Two approaches are employed: unsteady numerical simulations solving the
nonlinear fully coupled fluid–structure interaction problem; and the corresponding
linearized eigenvalue approach solving the Orr–Sommerfeld equations modified by
the beam. The two approaches give good agreement with each other in predicting the
frequencies and growth rates of the perturbation modes, close to the neutral curves.
For a given Reynolds number in the range of 200–600, a cascade of instabilities
is discovered as the wall stiffness (or effective tension) is reduced. Under small
perturbation to steady solutions for the same Reynolds number, the system loses
stability by passing through a succession of unstable zones, with mode number
increasing as the wall stiffness is decreased. It is found that this cascade structure
can, in principle, be extended to many modes, depending on the parameters. A
puzzling ‘tongue’ shaped stable zone in the wall stiffness–Re space turns out to be
the zone sandwiched by the mode-2 and mode-3 instabilities. Self-excited oscillations
dominated by modes 2–4 are found near their corresponding neutral curves. These
modes can also interact and form period-doubling oscillations. Extensive comparisons
of the results with existing analytical models are made, and a physical explanation
for the cascade structure is proposed.

1. Introduction
Flow in collapsible tubes has been extensively studied in the last few decades.

It is of interest in the fields of biomedical engineering and applied mathematics,
both for its relevance to physiological applications and because of the dynamic
behaviour of the system (Shapiro 1977; Jensen & Pedley 1989; Kamm & Pedley
1989; Luo & Pedley 1995, 1996, 1998, 2000; Matsuzaki & Fujimura 1995; Heil
1997; Paidoussis 1998, 2004; de Langre et al. 2007). Of particular interest are the
mechanisms for the self-excited oscillations which are frequently observed in the
laboratory in a ‘Starling resistor’, consisting of a length of elastic tube, mounted on
two rigid tubes, contained in a pressurized chamber, and with a fluid flowing through
the tube (e.g. Bertram 1982; Bertram, Raymond & Pedley 1990). Earlier works studied
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such oscillations using one-dimensional models (e.g. Cancelli & Pedley 1985; Jensen
1990, 1992). In a one-dimensional model with constant longitudinal tension, Jensen
(1990) showed that as downstream transmural pressure (internal minus external) is
decreased for a given flow rate, the system first loses its stability to either mode-2
or mode-3 oscillations depending on the flow rate, and then to higher modes for
decreased transmural pressure. (The mode number i, i = 1, 2.3 . . . , here means that
the perturbation to the flexible segment contains i half-wavelengths.) In addition,
he predicted mode interactions in which the system goes through a co-dimension 2,
double-Hopf bifurcation.

Recent advances in numerical methods have made it possible to solve the nonlinear
fluid–structure interactions fully, either in two dimensions (Luo & Pedley 1996, 1998,
2000; Pedley & Luo 1998; Cai & Luo 2003; Jensen & Heil 2003; Heil & Waters
2006), or in three dimensions (Hazel & Heil 2003; Jensen & Heil 2003; Marzo, Luo &
Bertram 2005). Three-dimensional simulations will be required to provide direct
comparisons with many of the dynamic phenomena observed in experiments (Bertram
et al. 1990; Bertram & Elliott 2001). However, because of the huge computational
resources they require, all the three-dimensional simulations so far have been limited
to steady flows and have not yet succeeded in predicting the dynamical behaviour of
the system. Two-dimensional approaches, on the other hand, can provide interesting
flow details and maintain some key features of the three-dimensional systems, and
are, in principle, realizable in the laboratory. Various self-excited oscillations have
been revealed in a simple two-dimensional fluid–membrane model, in which a finite
segment of one wall of a parallel-sided channel is replaced by a membrane under
tension (Luo & Pedley 1996, 1998, 2000). The key feature of these studies is that
the self-excited oscillations occur as a result of steady solutions becoming unstable
to small-amplitude mode-2 perturbations, which then evolve via period-doubling and
chaotic-like bifurcations to complex large-amplitude oscillations. Jensen & Heil (2003),
using an asymptotic analysis and numerical simulations to study the system at large
tension and high Reynolds number, were able to explain one physical mechanism
for high-frequency self-excited oscillations. They showed that such oscillations grow
by extracting kinetic energy from the mean Poiseuille flow faster than it is lost to
viscous dissipation. However, this mechanism led only to mode-1 oscillations, and
then only if the rigid channel downstream of the elastic segment was longer than
the upstream channel. It is not clear whether the same mechanism can explain the
mode-2 oscillations that frequently occur in the system with larger deformation (e.g.
in the quoted papers by Luo & Pedley).

Stability of a plane channel flow between compliant walls has also been studied
previously from a variety of points of view (Green & Ellen 1972; Webster et al. 1985;
Carpenter & Garrad 1986; Grotberg & Gavriely 1989; Ehrenstein & Rossi 1993;
Davies & Carpenter 1997a, b). Most of these studies considered the instability of flow
in a long parallel-sided channel, so, in the basic state, the steady flow is unidirectional
and the elastic walls are planar. Although these studies reveal various modes of
instability (Tollmien–Schlichting waves, travelling-wave flutter, static divergence, and
their interactions), they are difficult to apply to our finite-length non-parallel flow
system. The steady flow in our problem, from which the oscillations grow, involves
a large deformation of the wall and, usually, separation of the flow. Such a steady
solution would be required as the basic state for a linear stability analysis.

In almost all of the two-dimensional models mentioned above, several ad hoc
approximations are used to describe the elasticity of the solid wall. In particular,
tangential displacement of the wall has usually been ignored, and the tension assumed
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to be constant. Cai & Luo (2003) employed a new model in which the membrane
is replaced by a plane-strained elastic beam with large deflection, and identified
parameter regimes in which the constant tension assumption is valid, at least for
steady flow. It is found that the steady behaviour of the beam model agrees well
with the membrane (constant tension) model as long as the additional stretch-induced
tension is small compared to the initial constant tension.

In this paper, the fluid–beam model is extended to study unsteady flows of the
system. The stability of the system is studied systematically for zero initial tension.
Two approaches are used. One is to solve the fully coupled unsteady Navier–Stokes
equations and the nonlinear large displacement structural equations. In this approach,
the ALE (arbitrary Lagrangian Eulerian) method combined with rotational spines is
employed. The other is to solve the linear eigenvalue system of the Orr–Sommerfeld
equation, modified by the beam, for perturbations to the nonlinear-large deformation
steady solutions.

The eigenvalue approach has not been used in this context before, and the novel
features of the full computations are the use of the rotational spine method for
unsteady simulations, with zero initial tension, so that the solid mechanics of the wall
is entirely rational, and a much enhanced mesh refinement. The eigenvalue approach
enables us to identify precisely the linear onset of the self-excited oscillations, while
the full computations allow us to follow the oscillations from their linear onset to the
nonlinear large-amplitude stage. Using these approaches, we find that an intriguing
‘tongue’ appears in the neutral stability curve plotted on the effective tension–Reynolds
number plane (the definition of the effective tension is given below). The presence
of this ‘tongue’ means that, for a given Reynolds number, as the tension is lowered
to a critical value, the system becomes unstable, which is to be expected. However,
a further decrease of the tension re-stabilizes the system before it becomes unstable
again (see figure 16 below).

In an effort to explain the physical mechanism underlying the ‘tongue’ phenomenon,
we are able to demonstrate that the onset of the large-amplitude self-excited
oscillations is indeed initiated by the linear instability of the system, and that the self-
excited oscillations that develop when the system loses stability can consist of different
modes. More importantly, we found that the ‘tongue’ is associated with a ‘cascade’
structure involving mode switching. In addition to mode-2, which has been reported
in membrane papers, higher modes (modes 3 to 4) are also discovered. Based on this
discovery, we offer a plausible physical explanation for the cascade structure in § 4.9.

2. The fluid–beam model
2.1. Model description

The model consists of a steady flow in a channel in which part of the upper wall
is replaced by an elastic beam in the plane strain configuration (figure 1). The rigid
channel has width D, a part of the upper wall of length L is replaced by a pre-
stressed elastic beam subjected to an external pressure pe. Lu and Ld are the lengths
of the upstream and downstream rigid parts of the channel. Steady Poiseuille flow
with average velocity U0 is assumed at the entrance. The flow is incompressible and
laminar, the fluid having density ρ and viscosity μ. The extensional and bending
stiffnesses of the beam are EA and EJ, respectively, where E is the Young’s modulus,
A is the cross-sectional area of the beam (i.e. the beam’s thickness, h, as the beam
has unit width in the z-direction), and J is the moment of inertia of the beam
cross-section. (As we consider a plane strain problem here, E is equivalent to the
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Figure 1. The flow-beam configuration (not to scale). In section B, part of the wall is
replaced by an elastic beam.

conventional Young’s modulus divided by (1-ν2), where ν is the Poisson’s ratio.) The
pre-tension in the beam (caused by its initial stretch) is T and the density of the beam
is ρm. Damping and rotational inertia of the beam are both neglected.

2.2. The governing equations

For convenience, the flow velocity components ui, fluid stresses σij , pressure p, time
t , the Cartesian coordinates x, y (with origin at the left bottom of the channel), and
length l are non-dimensionlized as follows:

u∗
i =

ui

U0

, σ ∗
ij =

σij

ρU 2
0

, p∗ = p

ρU 2
0
, t∗ = tU0

D
, l∗ = l

D
, x∗ = x

D
,

y∗ =
y

D
(i, j = 1, 2),

⎫⎬
⎭ (1a)

and the non-dimensional parameters, such as the initial tension T , the curvature κ ,
the density of the beam ρm, the wall stiffnesses EA, EJ, and the Reynolds number are
defined by

T ∗ =
T

ρU 2
0 D

, κ∗ = κD, ρ∗
m =

ρmh

ρD
, cλ =

EA

ρU 2
0 D

, cκ =
EJ

ρU 2
0 D3

, Re =
U0Dρ

μ
.

(1b)
The starred variables are non-dimensional, a convention which will be used
throughout this paper. In the following, however, the stars are dropped for simplicity.

The governing equations for the fluid flow are the Navier–Stokes equations

∂ui

∂t
+ ujui,j = −p,i +

1

Re
ui,jj (i, j = 1, 2), (2)

ui,i = 0 (i, j = 1, 2). (3)

By employing the Kirchhoff constitutive laws for the elastic beam, we can write the
following dimensionless governing equations for the beam (for derivation of these
equations see Cai & Luo 2003):

ρm

λ

(
x ′ d

2x

dt2
+ y ′ d

2y

dt2

)
= cκκκ ′ + cλλ

′ + λτn, (4)

ρm

λ

(
y ′ d

2x

dt2
− x ′ d

2y

dt2

)
= cκ

(
1

λ
κ ′

)′

− λκT − cλλκ(λ − 1) − λσn + λpe, (5)

x ′ = λ cos θ, y ′ = λ sin θ, θ ′ = λκ, (6)

where the superscript prime represents a derivative with respect to the longitudinal

coordinate in the beam in the horizontal position, l. Also λ=
√

x ′2 + y ′2 is the
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principal stretch of the beam, θ is the rotation angle of the beam relative to the x-axis
as shown in figure 1, and σn and τn are the normal and shear stresses exerted by the
fluid on the beam:

σn = p − 2

Re

∂un

∂n
, τn = − 1

Re

(
∂us

∂n
+

∂un

∂s

)
, (7)

where s and n indicate the tangential and the normal direction of the beam. Note
that as both cκ and cλ → 0, we recover the fluid–membrane model. Throughout this
study, we choose cκ/cλ = (h2/12D2) ≈ 10−5 (for a beam thickness of about 1% of the
channel height). Effects of different wall thickness on the steady flows have been
studied elsewhere (Marzo et al. 2005; Luo et al. 2007).

Boundary conditions for the flow field are chosen such that there is a steady
parabolic velocity profile at the upstream inlet, the stress-free condition is used for
the downstream outlet, and the no-slip condition is used along the walls including
the elastic section. Clamped conditions are used for the two ends of the beam. A
constant external pressure pe is applied outside the elastic wall. In this paper, the
non-dimensional external pressure is taken to be pe = 1.95.

3. Methods
3.1. Fully coupled finite-element equations

A finite-element code for unsteady flow is used to solve the coupled nonlinear fluid–
structure interactive equations simultaneously, and an adaptive mesh with rotating
spines is used to allow for the movable boundary. The mesh is divided into three
subdomains, A, B and C (figure 1). The subdomain B is the section with the elastic
wall, and is covered with many spines originating from the bottom rigid wall to
material points in the movable beam.

These spines are straight lines, which can rotate around the fixed nodes at the
bottom. All finite-element nodes in subdomain B are associated with their specific
spines. Thus all the nodes on the spines can be stretched or compressed depending
on the beam deformation.

A Petrov–Galerkin method is used to discretize the system equations (2)–(6). The
element type for flow is six-node triangular with second-order shape function Ni for
u and v, and linear shape function Li for p. Three-node beam elements with second-
order shape function are used for x, y, θ , λ and κ . The discretized finite-element
equations can be written in a matrix form as

M(U)
dU
dt

+ K(U)U − F ≡ R = 0, (8)

where U = (uj , vj , pj , xj , yj , θj , λj , κj ) is the global vector of unknowns, and
j =1, . . . , n, is the nodal number. R is the overall residual vector which is denoted
by

R = (Rx, Ry,Rc, Rex ,Rey , Reθ , Reλ, Reκ ), (9)

where the subscripts x, y, c indicate the corresponding residuals of the x−
and y-momentum and continuity equations in the fluid (equations (2)–(3)), and
ex, ey, eθ , eλ, eκ indicate the corresponding residuals of equations (4)–(6).

3.2. The unsteady solutions and initial conditions

An implicit finite-difference second-order predictor–corrector scheme with a variable
time step is used to solve the time-dependent problem. At each time step, the frontal
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method and a Newton–Raphson scheme are employed to obtain the converged
solution for the whole system simultaneously. For details, see Luo & Pedley (1996).

Before we study the unsteady behaviour of the system, a steady solution is obtained.
This is done by solving (8) with dU/dt = 0 for a given set of parameters, as was done
by Cai & Luo (2003). Then, in order to test the solution stability, a small perturbation
is applied to the steady solution and the time evolution is computed. This is done by
using a slightly different steady solution as the initial guess, which has a parameter
value of cλ, say, that is 1% away from that of the steady solution in question. If the
unsteady solution converges to the corresponding steady solution, then the solution
is considered to be stable. If, as time progresses, the unsteady solution diverges away
from the steady solution or oscillates with time, then it is deemed to be unstable.
The critical point at which the system becomes unstable is called the neutrally stable
point.

3.3. The eigensolver

As our numerical perturbations to the steady solutions are not strictly infinitesimal,
it is not evident that the small-amplitude oscillations definitely correspond to linear
instability of the system. To investigate this, we solve the eigenvalue problem of the
linearized finite-element equations, which is essentially the discretized Orr–Sommerfeld
eigenvalue system, modified by the elastic beam.

We denote the infinitesimal perturbation to a steady solution Ū by 	U , so that
U = Ū + 	U is a solution to the system. Here, Ū is obtained from a full numerical
simulation as described in § 3.1. If the system is stable, then U approaches Ū as time
increases. Writing 	U in the form of eωt Ũ , where ω (= ωr + iωi), Ũ are the complex
eigenvalue and eigenvector, respectively, and substituting into (8), we obtain a matrix
eigenvalue equation:

(ωM̄ + K̄)Ũ ≡ R̃ = 0, (10)

where the matrices M̄, K̄ are determined by the steady solution Ū . The matrix equation
(10) is solved by using a QZ algorithm (Garbow 1978), which solves for the complete
set of eigensolutions of the system.

The QZ algorithm is extremely inefficient for solving the large-matrix complex-
eigenvalue problem as it solves for the complete set of eigensolutions of the discretized
system. When the grid is fine, this means over ten thousand eigensolutions are solved
for, which is not the most efficient way of obtaining the leading few solutions. In
this work, we also used a Muller solver (Barrodale & Wilson 1978), which is much
faster and solves for one particular set of eigensolutions, and its results agree well
with those of the QZ solver. However, this solver requires a close initial guess of the
eigenfrequency, and therefore cannot be used from the start as we need to scan the
parameter space for neutral stabilities.

3.4. Numerical grids and accuracy

Validations for the fully coupled Navier–Stokes solver have been performed
extensively before for the steady case (Cai & Luo 2003), and the smallest viscous
boundary-layer width is estimated to be about 0.014 for the parameters investigated.
As the computations are extremely time-consuming, especially the complex QZ solver
for the eigenvalue problem, a set of different grids is tested to achieve the required
accuracy while ensuring that the computational cost is affordable. A grid that satisfies
these criteria is one with 16 × (30 + 60 + 60) elements with a stretch ratio of 1:10
towards the corners: this is used for the eigenvalue computations and steady-flow
simulations. Full numerical results using this grid have been compared with those



Cascade structure of collapsible channel flows 51

obtained with a much finer mesh of 22 × (70 + 120 + 200) elements, and the elastic
wall deformations between the two are graphically indistinguishable. Most of the
computations are performed on Euclid2, a twin Pentium 4 processors (3.4 GHz)
Linux machine with 8GB memory at the University of Glasgow. The eigensolver
requires about 14 CPU hours for each solution. For the full unsteady numerical
simulations, since variable time steps are used, the temporal convergence of the time-
dependent solutions is checked by using a different error tolerance ε between ε = 10−3

and 10−6. It was found that ε = 10−5 is accurate enough for most of the oscillations
(i.e. the time histories of the variables are almost graphically indistinguishable when
ε = 10−6 is used compared with ε = 10−5). On Euclid2, the computations take about
0.1–1 CPU min for a typical steady solution or one time step of the unsteady solution.

4. Results
4.1. Parameters and the definition of effective tension

We choose the dimensional parameters to be: μ = 10−3 Pa s−1, ρ = 103 kg m−3, D =
10−2 m, the dimensionless parameters as defined in § 2.2 are thus Lu = 5, L =5, Ld = 30.

In this particular study, we also focus on the parameter range with (dimensionless)
T =0, ρm =0, pe =1.95, Re =1−600 and cλ =1−2500. The values are chosen to be
in the range of parameters that have been used extensively in previous studies with
the membrane model (Luo & Pedley 1996, 2000) and the steady fluid–beam model
(Cai & Luo 2003). In particular, T is chosen to be zero to ensure that the initial
configuration is stress-free, and the values of ρm, pe and cλ are chosen because these
were used when the strange ‘tongue’ was first identified for a non-zero tensioned beam
(Luo & Cai 2004).

In order to compare our results with those of existing one- or two-dimensional
models, we introduce the concept of the effective tension, which is the sum of the
initial tension and the stretch-induced tension (assuming the contribution from the
fluid shear stress is negligible):

Te = T + cλ(λ − 1). (11)

Since the principal stretch λ varies along the beam, we can estimate the effective
tension by calculating λ at a fixed station along the beam, e.g. the downstream end.
This enables us to compare our results (T = 0) with earlier work (Luo & Cai 2004)
where the initial tension was not zero, as well as with earlier models (Jensen 1990;
Davies & Carpenter 1997b; Jensen & Heil, 2003) where the tension used was also the
effective tension as the wall stretching was neglected.

In §§ 4.2–4.5, we first present results obtained using the eigensolver.

4.2. The eigensolutions

The eigensolutions, in terms of the maximum growth rate ωr and the corresponding
angular frequency ωi , are plotted against Re for some fixed values of cλ, as shown in
Figure 2. It is seen that with the exception of cλ =310, all curves show some similar
features. Both ωr and ωi increase with Re initially, and become flatter as Re increases.
ωr increases monotonically with Re for smaller values of cλ (= 500, 1000) and, as
Re is increased, ωr crosses the x-axis to become positive. For these values of cλ, the
system is stable for smaller Re and unstable for higher Re. This is similar to what
was observed for the membrane model (Luo & Pedley 1996). However, for greater
values of cλ (cλ = 1800, 2400) the growth curve presents a peak: ωr increases with Re
at first, but decreases later on. The curve for cλ = 1800 is particularly interesting, as
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Figure 2. (a) The maximum growth rate ωr and (b) the corresponding frequency ωi , versus
Re for cλ = 310, 500, 1000, 1800 and 2400.

it crosses the x-axis twice. In this case, the system becomes unstable only for a small
range of Re and is stable otherwise. For even greater values of cλ (>2400), although
the peak still exists, the curve is positioned entirely below the x-axis, so the system is
stable for all Re.

The frequency (ωi) variations with Re are more straightforward: they all increase as
Re increases, and they are higher for greater value of cλ (again, with the exception of
cλ = 310). This is as we might expect, as a stiffer wall oscillates at a higher frequency.
The increase of frequency with Re is more rapid at the beginning; however, for Re
greater than 300, the curves become flatter. This is qualitatively similar to the findings
by Jensen & Heil (2003, figure 9), where they found that for high Re(> 300), the
frequency is more or less independent of Re.

Note that the results for cλ = 310 are markedly different from the rest of the curves:
ωr has a much larger peak and is positive for all Re > 280. Further analysis (in § 4.5)
shows that all curves in figure 2, in fact, correspond to mode-2 disturbances, except
the one with cλ = 310, which corresponds to mode-3 disturbances.

4.3. The neutral stability curve – a cascade structure

The neutral stability curve consists of the set of all neutral points in the (cλ, Re)-plane
separating stable from unstable operating points, i.e. at which ωr = 0. This curve is
obtained by solving for the eigensolution iteratively and scanning across a range of
values of cλ for each fixed value of Re. A bisection method is used to locate the
neutral point. The neutral stability curve in the (cλ, Re)-space is shown in figure 3.
This figure reveals an interesting structure, with three distinct branches, marked as
M-2, M-3 and M-4 (this notation is used because the different branches correspond
to mode-2, mode-3 and mode-4 oscillations, as we shall see below). The system is
stable on the left of the branches and above M-2, and is unstable on the right of the
branches below M-2.

Initially, for a large value of cλ(> 2270), the system is stable for all Re investigated.
As cλ is reduced, the system first loses its stability by crossing the upper branch M-2.
However, as cλ is further reduced (to the lower branch M-2), the system become
re-stabilized before it becomes unstable again as a slightly lower value of cλ (to
the upper branch M-3). Further reduction of cλ shows that the system can again
be re-stabilized as the operating point crosses the small zone between the branches
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Figure 3. Neutral stability curve in the (cλ,Re)-space. Branch M-2 goes through points n5 to
n11, branch M-3 goes through n2 to n4, and branch M-4 goes through n1. The system is stable
on the left of the branches and the top of M-2, and on the right of branches (below M-2), it
is unstable. Information of all the control points marked on the graph is given in table 1.

M-3 and M-4. These features are different from what was previously found for the
membrane system, where the system is stable at higher values of the tension, and
unstable when the tension falls below a critical value (Luo & Pedley 1996). We devote
the rest of the paper to exploring and trying to explain these new features.

Figure 3 can be compared with the curves shown in figure 2. The point on the
neutral curve of figure 3 at a particular value of cλ is where the curve for that value
of cλ crosses the abscissa in figure 2(a). However, it is clearer in figure 3 that for only
a small range of cλ (between 1600 and 2270), are there two intersections. In other
words, at these cλ values, the system is unstable for only a small range of Re, but is
stable otherwise. For values of cλ between 10 and 1600, there is only one intersection.
This means that there is one critical Reynolds number, above which the system is
stable, and for cλ > 2270, there is no intersection: the system is stable for all values
of Re investigated.

To understand these results fully, we examine more closely a few selected operating
points in the parameter space. These points are named ni, si, ui , where i = 1, 2, 3, . . . ,
and n, s, u indicate that they are neutral, stable and unstable points, respectively
(figure 3). Detailed information for these points is given in table 1.

4.4. The neutral frequencies

We now look at the corresponding neutral frequency, ωi plotted against Re in
figure 4. There are again three distinct branches, with branch M-2 having the lowest
frequencies, and branch M-4 the highest, although there are some overlaps between
branches M-3 and M-4. It is seen that the frequency on branches M-2 and M-3 is
largely independent of Re for higher Reynolds numbers. However, it changes rapidly
with Re for Re < 300. Branches M-3 and M-4 appear to be incomplete here. This
is because we seek only the first neutral point encountered in the (Re, cλ)-space (as
Re is increased for fixed cλ). Branch M-2 is the curve encountered first for most of
the parameter range studied here, while branches M-3 and M-4 arise only when cλ is
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Zone Point Re cλ ωr ωi ωr (Levenberg– ωi (Levenberg– ωi (Fourier Unstable
eigensolver eigensolver Marquardt) Marquardt) transform) mode

Stable s1 210 310.94 −2.1087 × 10−2 2.7117 −2.0987 × 10−2 2.5821 0.9764, Stable
2.6734

s2 210 500 −2.0539 × 10−2 1.0419 −1.9789 × 10−2 1.0321 1.0354 Stable
s3 210 1000 −7.5000 × 10−3 1.1709 −7.3621 × 10−3 1.1563 1.1654 Stable
s4 210 1800 −4.0757 × 10−3 1.2987 −3.8765 × 10−3 1.2816 1.2973 Stable
s5 210 2400 −4.3699 × 10−3 1.3690 −3.8650 × 10−3 1.3136 1.3469 Stable
s6 300 2400 −1.4052 × 10−2 2.1559 −3.1258 × 10−3 1.9568 1.9971 Stable
s7 400 2400 −1.8677 × 10−2 2.4390 −9.1167 × 10−3 2.2683 2.3428 Stable
s8 300 1800 −1.0787 × 10−3 1.9936 −1.8210 × 10−3 1.940 1.9918 Stable
s9 400 1800 −4.5784 × 10−3 2.2382 −3.5098 × 10−3 2.172 2.1845 Stable
s10 400 380 −9.1718 × 10−3 1.2159 −9.7854 × 10−3 1.1807 1.1848 Stable

Neutral n1 250 56.88 −2.3899 × 10−5 4.0593 −9.8754 × 10−4 3.8765 3.8985 Mode-4
curve n2 230 139.84 −7.6221 × 10−7 2.5336 −5.465 × 10−6 2.4211 2.4236 Mode-3

n3 284.91 310.94 −8.1041 × 10−4 3.9059 −6.7893 × 10−4 3.8654 3.8876 Mode-3
n4 485 360.24 −9.2627 × 10−4 4.5421 −6.7543 × 10−4 4.3458 1.1943, Mode-3

4.4626
n5 485 383.79 −2.5951 × 10−4 1.2277 −4.3454 × 10−4 1.1976 1.1991 Mode-2

2.4321
3.6532

n6 279.62 500 1.7793 × 10−4 1.2989 1.5682 × 10−4 1.2654 1.2753 Mode-2
n7 217 1800 −7.7874 × 10−4 1.4029 6.3487 × 10−4 1.3695 1.3754 Mode-2
n8 220 2250.0 9.7981 × 10−6 1.5109 6.7854 × 10−6 1.4783 1.4865 Mode-2
n9 273.74 1800 1.8821 × 10−6 1.9211 5.4459 × 10−5 1.8321 1.8943 Mode-2
n10 400 1668.75 −5.8248 × 10−5 2.1865 −8.9831 × 10−4 2.0421 2.0546 Mode-2
n11 600 1653.13 −8.5403 × 10−5 2.3659 −7.5673 × 10−5 2.3342 2.3565 Mode-2

Unstable u1 400 310.94 7.3598 × 10−2 4.2654 5.4321 × 10−2 3.9858 4.0923 Mode-2
u2 400 500 1.8767 × 10−2 1.4009 1.8653 × 10−2 1.3875 1.3921 Mode-3
u3 400 1000 2.9612 × 10−2 1.8510 2.8783 × 10−2 1.8401 1.8420 Mode-2
u4 300 1000 1.8925 × 10−2 1.6839 1.9356 × 10−2 1.6689 1.7013 Mode-2
u5 240 1800 2.9177 × 10−3 1.6547 2.1234 × 10−3 1.5766 1.61321 Mode-2
u6 540 379.69 4.3258 × 10−3, 1.2190 2.9458 × 10−3 1.2004 1.2119 Mode-2

−2.7337 × 10−2 4.6844 4.5844

Table 1. Information of the selected control points. As the Fourier transform picks up more than one mode, the modes that match with the
eigensolutions are in bold.
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Figure 4. As in figure 3, but plotted in (ωi,Re)-space. The dotted branches are the
predictions by Davies & Carpenter (1997b), to be discussed later.

sufficiently small, i.e. the structure is very compliant. The frequencies of points n4 and
n5 are quite different even though they are very close in the (cλ, Re)-space. Again, this
is because n4 and n5 represent different disturbance modes (see below).

4.5. The eigenmodes at the neutral points

Mode information for the neutral points can be obtained using the eigensolver.
Some selected neutral points are shown in figure 5. It is immediately clear that
neutral points on branch M-2 (n5, n8 and n11) exhibit mode-2 disturbances, with two
half-wavelengths along the elastic wall; the amplitude of these disturbances remains
constant while that of other modes decays (figure 5b) (note, as the results are from
the eigensolver, amplitudes shown are arbitrary, chosen to make the plots clearer).
Mode-2 disturbances were those identified in earlier work (Jensen 1990, 1992; Luo &
Pedley 1996). Branches M-3 (points n2, n3, and n4) and M-4 (point n1) are associated
with the mode-3 and mode-4 disturbances, respectively. Although it is possible to
excite all modes at any of these points, only one mode remains of constant amplitude.
Even for point n4 (on branch M-3) which is close to n5, the mode-2 disturbance
has decaying amplitude, and the mode-3 disturbance is the one that survives. For
point n5, it is the other way round since this point is located on branch M-2. This
explains the marked difference in the neutral frequencies between n4 and n5: though
their wall shapes are almost the same (see § 4.6) and the mode shapes are almost the
same (figure 5), in fact, they lose stability to different modes. Note that for point n2,
mode-3 clearly dominates, while mode-2 decays rapidly. For point n1, as it is located
on branch M-4, the neutral mode is mode-4, while all other modes decay.

As two neutral branches start to merge (close to points n4 and n5, for example),
eigenmodes from these two branches start to become similar to each other. Just
before the intersection, say, at n4, although mode-3 is the neutrally stable one, the
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Figure 5. For caption see facing page.

decay rate of mode-2 becomes much slower compared to points far away from the
intersection (e.g. n3). Mode-2 then gradually takes over from mode-3 as the intersection
is approached (see n5). It is clear that when the crossing actually occurs (to locate
this point exactly using our bisection approach would be excessively time-consuming
and we have not done it), the two modes will both be neutrally stable, and the system
will experience a double Hopf bifurcation, similar to that derived from Jensen’s one-
dimensional analytical model (Jensen 1990). After the intersection, operating points
may lose stability to both mode-2 and mode-3 disturbances simultaneously (see the
unsteady solution at point u6, discussed below).

To understand the mode cascade further, we proceed to analyse the corresponding
steady and unsteady solutions in the neighbourhood of the neutral curves, using the
full numerical coupled solver.
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y, and (b) the time histories of the y displacement of a point on the beam initially at x = 7.5.

4.6. The steady solutions at the neutral curves

The steady solutions (which form the basis of the aforementioned instability analyses)
are obtained using the fully coupled solver. The steady-state elastic wall shapes for
some selected neutral points are shown in figure 6(a); these neutral points are marked
on figure 3. Along the upper branch M-2, the maximum wall deformation decreases
from n11 to n8, while its location moves slightly downstream. Along the lower branch
M-2, from n7 to n5, the maximum wall deformation increases, and the location hardly
changes. Along branch M-3, the elastic wall has relatively large deformation and from
n4 to n2, the wall starts to bulge out at the upstream end, the maximum deformation
decreases and the maximum deformation point shifts more and more towards the
downstream end of the beam. Note also that the wall shapes for n4 and n5 are
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Figure 6. The elastic wall shapes (a) and the corresponding pressure (b) of the selected
neutral points on the curve branches M-2 to M-4.

very similar. On branch M-4, the features appearing on branch M-3 are much more
obvious; with upstream bulging and the maximum deformation shifting downstream
(point n1). The maximum deformation at n1 is further downstream than at all other
points and the wall slope is greater.

The corresponding steady-state pressures along the wall are plotted in figure 6(b).
The pressure distributions are closely related to the wall shapes. Of particular interest
is the difference between n4 and n5: though the shapes are largely similar, the pressure
for n4 is higher than n5 at the upstream part, and lower at the downstream part.
This is consistent with the slight difference between the wall shapes for these two
points. Larger wall deformation is associated with a greater drop in the pressure
from upstream to downstream. In addition, there are some qualitative changes in the
shape of the pressure distributions. Along the upper branch M-2, the shape of the
pressure distribution is markedly different from those on other branches: it is much
more uniform along the elastic wall. This is not surprising as points on upper branch
M-2 have much less wall deformation, therefore the pressure drop is largely caused
by the friction losses associated with relatively undisturbed Poiseuille flow. However,
along other branches, from n6 to n1, the pressure distribution has a sharp drop, with
the maximum drop moving more and more downstream. This is consistent with the
movement of the maximum wall displacement.

4.7. The steady solutions at Re = 400

As the results presented here are all for non-dimensional variables, care should
be taken when drawing physical interpretations from these graphs. This is because
both cλ and pe are scaled in such a way that they are proportional to Re−2, see
equation (1b). To eliminate this effect, here we will look at a set of operating points
at a fixed Reynolds number, Re = 400.

The steady solutions at these points are shown for the wall shape (figure 7a),
transmural pressure (figure 7b), wall curvature (figure 7c), the effective tension Te

(figure 7d), and the wall shear stress (figure 7e). Figure 7 shows clearly how, as we
decrease the value of cλ the wall deformation increases, the maximum displacement
moves downstream, and the upstream end tends to bulge upwards, as indicated by
the curvature changes in figure 7(c) (see s10 and u1). In correspondence to this, the
pressure drop from upstream to downstream becomes increasingly steep with an
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increasing pressure recovery downstream of the narrowest point. On the other hand,
despite the increased wall deformation, the effective tension decreases as cλ, is reduced,
and it is more or less constant along the elastic wall, except towards the ends when
there is a sudden drop due to the clamped boundary condition, a phenomenon which
was discussed by Cai & Luo (2003). This means that the viscous shear stress is small
compared to the stretch-induced tension, as is confirmed in figure 7(e), where the
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Figure 8. The streamlines (thin lines) and vorticity contours (thick lines) for the steady flows
at selected operating points at Re= 400 and n1 (see also figure 3).

order of magnitude of the wall shear stress is only about 1% of that of the tension.
Although s10 has a more deformed wall shape and a greater pressure drop than u3, it
is a stable point whereas u3 is not.

Steady streamline and vorticity contours for the same operating points are shown
in figure 8. From these plots, it is clear that flow separation is present in all the steady
solutions (though the separated flow zone is much smaller and weaker for s7, s9, n10

(not visible) and, to a lesser extent, u3); note especially that a large recirculation
occurs for s10. We also note that there is almost no visible flow recirculation for n8,
but a much stronger one in n11 (not shown). In other words, the neutral curve is not
the boundary between flows with and without flow separation. This suggests that the
instability mechanism is different from that proposed for a one-dimensional model by
Cancelli & Pedley (1985) and Jensen (1990), that the energy loss associated with flow
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Figure 9. The time history of the middle point (x = 7.5 initially) of the beam for some
operating points at Re= 400 (u2, u3, s10, u1), followed by a selection of others (n4, n5, u6, n1).
The solid line is the y position and the dotted line is the x position. More detailed information
for u1, u2 and u3 at the selected time instants (solid circles) are shown in figures 10 to 15.

separation plays an essential role in the instability of the system. As shown by Luo &
Pedley (1996, 1998), Hayashi, Hayase & Kawamura (1998), and Jensen & Heil (2003),
as well as this paper, it is clear that flow separation is not a prerequisite for self-excited
oscillations. The mechanism by which the system loses stability requires some energy
dissipation, but this may arise in various ways, such as viscous dissipation in the
boundary layer on the upstream-facing slope of the indentation, viscous dissipation
on the opposite wall, flow separation, or structural damping (Hayashi et al. 1998),
though the last is absent in the present model.

4.8. The unsteady solutions and self-excited oscillations

The unsteady solutions at selected operating points in the (Re, cλ) parameter space
are obtained using the fully coupled numerical solver. Oscillations are shown in
figure 9 for some operating points at Re = 400 (u3, u2, s10, u1), followed by a selection
of others (n4, n5, u6, n1). The curves shown are the x- and y-displacements of the
material point initially at the mid-point of the elastic beam (x =7.5). The solid curve
is the displacement in the y-direction, and the dotted curve is the displacement in the
x-direction. The results of figure 9 are plotted over a variety of time intervals, chosen
to reveal the development of oscillations, before highly nonlinear behaviour arose (in
the unstable cases). It will be noted that the oscillations in case s10 are decaying, as
expected for a stable point. We see again that the oscillation patterns at points n4

and n5 have subtle differences here even though their corresponding steady solutions
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Figure 10. (a) The elastic wall shape at time instants 1–9 as indicated in figure 9, for point
u3, and (b) the corresponding transmural pressure distributions. The dotted curve is the
corresponding steady solution.

are very similar. Although the mode-2 frequencies of these two points are similar (see
table 1), it is mode-3, with a frequency almost four times higher than mode-2, that is
neutrally stable for n4.

As one goes from the neutral branch M-2 to the interior of the unstable zone (see
figure 3), the oscillations tends to become more complicated with higher-frequency
components being added to the neutral frequency, e.g. from u2 to u3. The oscillations
at u6 are especially interesting, as this is a point which is located at a region where
both mode-2 and mode-3 are likely to be unstable (see figure 3). The disturbances
have a frequency of about 4.6, modulated by the lower frequency of about 1.2, i.e.
mode-3 modulated by mode-2 (see table 1, and discussions below).

It is also worth mentioning that the oscillations for these points are not entirely in
the y-direction, which is vertical. The amplitude of oscillations in the x-direction is
smaller than that in the y-direction, but is not negligible: it varies from about 10% of
the y-amplitude for u1, to 20% for n4 and n5, 40% for u2, and over 50% for u3, n1 and
u6 in a typical period. This demonstrates that, when the deformations are large, the
assumption of vertical wall movement as made in earlier studies (e.g. Luo & Pedley
1996) should be used with caution. We may also note the phase difference between
the x- and y-oscillations. For some points, these appear to be more or less in phase
(u1 and n1), for others, there is a significant phase lag (e.g. n4, n5 and u3). This is also
observed in the computed eigenmodes (not plotted).

The unsteady wall shapes and the transmural pressure distributions for operating
points u1, u2, and u3 at nine different time instants (as specified in figure 9) are
shown in figures 10, 12 and 14. The instantaneous streamlines and the corresponding
vortex contours are also shown in figures 11, 13 and 15. These figures show that when
the system is unstable to mode-2 perturbations, the upstream and downstream end
of the elastic wall is moving up and down alternately, generating a vorticity wave
downstream, similar to those obtained with the membrane model (Luo & Pedley
1996). As vorticity is closely related to energy dissipation in the system, these results
also show that most energy is dissipated from boundary layers on the walls, sometimes
on the upstream slope of the indentation, sometimes on the downstream slope, and
sometimes on the opposite wall.

The unsteady simulations from the fully coupled solver seem to support the results
from the eigensolver. In order to make quantitative comparisons between the unsteady
results with those of the eigensolver, we must estimate the growth rate and the
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Figure 11. The instantaneous streamlines (thin lines) and vorticity contours (thick lines) at
different time instants as indicated in figure 9, for operating point u3. These contours are
plotted equal-spaced between −0.03 to 1.03 for streamlines, and −50 to 50 for the vorticity
contours.

corresponding frequency from the unsteady oscillations. Here both the Levenberg–
Marquardt algorithm (Press et al. 2002) and the Fourier transform are used for this
purpose. The Levenberg–Marquardt algorithm can estimate the growth rate as well
as the frequency from the full simulations; it is only suitable for a perfectly periodic
waveform (i.e. consisting of one mode only). The Fourier transform is able to extract
frequencies for unsteady oscillations consisting of different modes, but is not able to
estimate the growth/decay rates of these modes. Using both methods, we can estimate
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the frequency and growth rate of the unsteady oscillations in the y-direction, and
these are compared with those from the eigensolver in table 1. When there is more
than one mode from the Fourier transform, the mode which matches that of the
eigensolver is shown in bold. The agreement is very good for all operating points
selected, with the maximum difference in frequency predicted by the eigensolver and
the unsteady simulations to be around 5%. In fact, results from the Fourier transform
are also slightly different to those from Levenberg–Marquardt. They both estimate
the frequency from the unsteady simulations, but the Fourier transform should be
more accurate in this case as the oscillations are not perfectly periodic in a single
mode. The difference in growth rates is somewhat greater. This is partly because of
the limitation of the Levenberg–Marquardt scheme, which is only good for single
mode oscillations, but partly because the growth rate from the eigensolver is for the
whole beam structure oscillating in the dominating mode, which may not be precisely
the same as the oscillations in the y-direction (or the x-direction) alone used for
Levenberg–Marquardt estimation. Indeed, the self-excited oscillations in the x- and
y-directions can be quite different, as shown in figure 9.

4.9. Physical explanation for the cascade structure of stabilities

We now offer a physical interpretation of our findings. First, consider (5) for zero
wall inertia. The normal component of external force on the beam (σ − pe, essentially
the transmural pressure p −pe) is balanced by (a) bending (the first r.h.s. term in (5)),
and (b) the tension due to stretching (the third r.h.s. term). The second r.h.s. term in
(5) is zero since T = 0. The tension component is the main force in the main section
of the beam, while the bending component contributes significantly at the two ends.

Equation (4) shows that the viscous shear stress τn is responsible for longitudinal
variation in stretch, λ′, plus a negligible contribution from bending (first r.h.s. term).
However, as we have seen (figure 7e), the variation in λ with x is very small compared
with the average stretch (i.e. the magnitude of τn is much smaller than the average
value of Te), in the steady cases. This remains true in all the unsteady cases considered.

Thus the dominant force balance of the beam (in (5)) can be expressed as:

κ =
p − pe

Te

, (12)

which essentially is a membrane equation with the variable effective tension
(proportional to the unknown wall stretch λ − 1) replacing the constant tension
commonly used for membrane models. As the effective tension is almost constant
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Figure 13. As figure 11, but for operating point u2.

along x (see figure 7d), (12) tells us that the transmural pressure is the main force
responsible for the wall curvature. In other words, although the transmural pressure
in steady flows is in equilibrium with elastic forces, it can affect the stability of the
system through its interaction with the wall configuration (curvature) and the flow
configuration, especially flow separation. In the following, therefore, we will discuss
the cascade structure in terms mainly of the transmural pressure, p − pe, at various
operating points around the neutral curve in figure 3, and of the occurrence of flow
separation.
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Figure 14. As figure 10, but for point u1.

It is found that the system is stable for all values of wall stiffness when Re
is less than 200 for the parameters investigated (figure 3). For the given external
pressure (= 1.95), the deformation is then small, the transmural pressure is more or
less uniform along the elastic wall and viscosity is strong enough to damp out all
disturbances.

For Re> 200, when inertial effects become more important, the system exhibits a
cascade of linear instabilities as the wall stiffness is reduced for a fixed Reynolds
number. For a very stiff wall, the beam is almost rigid and the transmural pressure
is almost constant along the wall. For a given external pressure, the most likely dis-
turbance to make it unstable is the mode-1 type, in which the whole wall would move
in and out in phase. This is what Jensen & Heil (2003) predicted in their asymptotic
analysis.

As cλ is reduced, the wall deformation increases, which causes the distribution of
the transmural pressure to change, with lower transmural pressure at the downstream
end and greater transmural pressure at the upstream end: see operating points s7 and
s9 in figures 3 and 7. As the effective tension is more or less uniform, this pressure
distribution causes the curvature of the wall to change, see (12) and figure 7(b, c).
This configuration militates against mode-1 wall perturbations; in other words, such
a change in the configuration raises the critical load for mode-1, in the same way as
introducing a deflection in the middle of a column supported at the two ends and
subject to lateral forces delays buckling (Timoshenko & Gere 1963). So even if such
instabilities had developed, they would tend to be stabilized as cλ is reduced and
the mode-1 neutral curve would come back on itself like the mode-2 and mode-3
neutral branches (a feature which is not predicted by Jensen & Heil’s model as they
considered only the limit of high tension).

However, as the wall becomes less stiff, this type of configuration is vulnerable
to mode-2 disturbances, because the mode-2 pressure distribution tends to push the
upstream half of the beam out and the downstream half in, relative to the steady state,
see operating points n10 and u3 in figure 7. The standard explanation for collapsible
tube oscillations is the following (Pedley 1980, chap. 6). The wall displacement is
enhanced by the Bernoulli effect: As the channel becomes more constricted at the
downstream end, so the flow accelerates, by conservation of mass, and the pressure
decreases further, enhancing the constriction. However, as the constriction becomes
narrower, viscous resistance will rise in its vicinity, either through viscous dissipation
in attached boundary layers, or through flow separation, requiring a bigger pressure
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Figure 15. As figure 11, but for operating point u1.

drop to maintain the flow rate. Thus upstream pressure will rise, tending to make the
upstream half of the elastic section bulge out further, and eventually forcing open
the constriction again. This has been recognized for many years as one of the main
mechanisms for collapsible tube oscillations, and it is clearly associated with mode-2
disturbances. Thus, the system becomes unstable to mode-2 perturbations as cλ is
reduced (and crosses the upper branch M-2).

Let us consider the sequence of events in more detail for operating point u3, with
reference to figures 9, 10 and 11. This operating point is one for which the (unstable)
steady state is almost unseparated, i.e. there is no visible flow separation, but a
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nearly zero yet negative streamfunction value is detected at the downstream corner
(figure 8). So we may start the oscillatory sequence by considering time point 8 in
figure 9 (u3), where the flow (near the beam) is similar to the steady flow (though
the indentation is smaller), essentially inviscid apart from the boundary layer on the
upstream slope of the indentation, with little pressure loss downstream. Then the
peak indentation moves downstream, and the flow separation points moves back
towards the narrowest point, with considerable pressure drop (time 9). Bernoulli’s
theorem operates upstream and the indentation moves rapidly inwards (times 2, 3, 4)
as outlined in the preceding paragraph. However, the flow responds immediately by
bending round the indentation, abolishing the separation there, with high dissipation
both on the downstream slope and on the opposite wall, although separation begins
there too. The attached flow on the downstream slope is associated with high-pressure
recovery but, perhaps surprisingly, no immediate reseparation at the corner (time 5).
The motion of the wall and the displacement of the inviscid but rotational core
flow are closely coupled – as is to be expected since this is the site of generation
of the downstream vorticity wave (Pedley & Stephanoff 1985). The alternation of
downstream high-pressure recovery while the flow is attached and high pressure drop
when it is separated, coupled with the Bernoulli effect upstream, is consistent with
the observed mode-2 oscillation.

For even lower wall stiffness (operating points u2, s10 and u1) the wall is softer,
the steady wall deformation increases, and the maximum deformation moves further
downstream. There is a large separated-flow region in the steady flow, which is
associated with some pressure recovery (figures 7 and 8). During the oscillation
at point u2, the separated flow region is elongated and split into two, this vortex
shedding temporally weakens the recirculation and the flow remains attached for
a long distance round the indentation (figures 9, 12 and 13, times 6, 7, 8); as
for point u3, this appears to dominate, leading to a mode-2 oscillation. However,
for lower wall stiffness, and a larger indentation, the separation zone adjacent to the
wall is more persistent which damps down the mode-2 oscillation and, at point s10,
it disappears altogether. It is replaced, at point u1, by a mode-3 oscillation which is
of smaller amplitude (figures 9, 14 and 15), and the wall motion is predominantly in
the y-direction. Thus, the flow separation of the maximum indentation can act as a
source either of instability at higher effective tension (e.g. point n10), or of stability at
lower tension (point s10); we believe that the latter has not been noted previously. We
also note that the steady configuration at point u1 is the first in this sequence to show
a negative curvature (‘bulging’) in the upstream part of the beam. The corresponding
pressure distribution makes the system more vulnerable to mode-3 perturbations in
which the middle part is out of phase with the two ends. The system becomes unstable
again, and crosses the upper part of branch M-3, in figure 3.

Similarly, the mode-4 instability can be explained by the pressure curve for n1

in figure 6(b), in addition to the bulging down and up at the downstream end as
for mode-3 points, the pressure for n1 is first down at the upstream corner, but is
immediately pushed upwards by the flow owing to the highly compliant nature of the
wall, giving the pressure distribution an extra bend. This type of distribution favours
mode-4 perturbations. However, this instability is seen only for a small range of
Reynolds numbers, and the flow and wall interactions soon become very complicated
with competing modes as Re is increased.

We may speculate that this structure could continue in an indefinite cascade, with
higher modes appearing as the beam wall stiffness is further reduced (to a material
and geometric limit).
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(2003).

5. Discussion
5.1. Further remarks on numerical accuracy

It is indeed very difficult to perform the eigenvalue computation, as mentioned in
§ 3.3, especially for the higher modes, because the higher the modes, the harder it is to
achieve converged results using our numerical methods. We have chosen to present
results only for mode number up to mode-4 even though higher modes were captured,
because we could not trust the numerical accuracy even with the finest mesh available
on our computers. The best we could do was to refine the mesh at several stages,
and repeatedly compare the results. We are satisfied that, at least for the results we
have presented, there is no significant change in their magnitude with the grid size,
and certainly no surprises in their nature (e.g. as to which mode they represent). In
addition, we have run unsteady simulations, which solve a different set of equations,
and the results between the two approaches agree well, thus adding further credibility
to the eigenvalue results.

5.2. Further remarks on effective tension

The neutral curve in figure 3 can also be shown in the effective tension–Re space, see
figure 16. In fact, in this space the neutral curve is very similar to that predicted by
Luo & Cai (2004) using a non-zero initial tension (and a constant cλ), even though the
original neutral curves were obtained in different parameter spaces: the (Re, T )-space
(Luo & Cai 2004), and (Re, cλ)-space (figure 3). This suggests that the effective tension
is a robust measure to compare results of different models of membranes and beams,
with or without initial tension. More importantly, the stability tongue in the (Re,
Te)-space is almost the same as that found by Luo & Cai (2004) with a non-zero
initial tension (Luo et al. 2007).

However, what is revealed in this study is that we now know that the tongue zone
is simply the space between branches M-2 and M-3, i.e. between mode-2 and mode-3
disturbances. There is another smaller ‘tongue’ between the mode-3 and mode-4
branches, M-3 and M-4. Luo & Cai (2004) reported only mode-2 instabilities in their
tongue zone. The reasons for this are partly due to the small differences in basic flow
using the non-zero initial tension (see Luo et al. 2007), and partly due to a finer mesh
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being used here for the eigensolver. Any inaccuracies in the original approach by
Luo & Cai (2004) could make it difficult to distinguish mode-3 from mode-2 neutral
instabilities, especially near branch M-3 where the absolute growth/decay rates for
the two modes can be very small (see figure 5 and table 1). For the same reason, it is
difficult to use the full simulations alone (for which a finer mesh was used) to identify
the exact growth rates near these points, since an infinite time would be required
to determine the growth rate at the neutral points. Needless to say, at large times,
nonlinear effects may also come into play and the full simulations may not serve as
a reliable way to identify the linear instabilities at their onset.

5.3. Comparison with experiments

It is found that when Re is less than 200, the system is stable. This is similar to what has
been found in experimental studies of collapsible tube flows (e.g. Re< 260 was found
to be stable by Bertram & Elliott 2001). Although there are some essential geometric
differences between two-dimensional channels and three-dimensional tubes, the basic
physical explanation of the instabilities may be similar for both. It is important here
to realize that the mechanical properties of the elastic wall (i.e. different values of cλ),
play a significant role in the stability of the system. However, as is shown here, for
a relatively thin wall (i.e. small cκ ), the role of cλ can essentially be replaced by the
effective tension. If we accept that varying the tension is equivalent to varying the
length of the elastic segment (as predicted by one-dimensional theories, see Jensen
1990; Luo & Pedley 1995), then all the features discovered here could, in principle, be
identified in experiments with tubes of different lengths, while keeping cλ the same,
which is much easier than changing cλ, the mechanical property of the wall. In fact,
Bertram et al. (1990) mapped instabilities for flow through tubes of differing length,
and discovered coexistence of many modes of oscillations in the system. They also
found that the frequencies increase systematically with flow rate, and the predominant
effect of tube length is to predispose the system to a particular mode of oscillation.
The minimum recorded frequencies are found to be higher in a shorter tube than
in a longer one. Qualitatively, all these are in agreement with our observations (see
figures 4 and 16) – as long as we can say that a longer tube can be compared to our
case for lower tension, and a shorter one for higher tension (though this comparison
is a strict one only in the one-dimensional model, see Luo & Pedley 1995). For lower
tension, our cascade structure shows that more modes will become unstable, whereas
for higher tension, only mode-2 is found to be unstable. However, more detailed
comparison is not possible as the parameter range, and the three-dimensional nature
of the experiments, are different from our case.

5.4. Comparison with Jensen’s one-dimensional model

The mode-2 unstable behaviour predicted here agrees with the earlier observations
on membrane models with large wall deformation (Jensen 1990, 1992; Luo & Pedley
1996, 1998, 2000). In fact, Jensen (1990) predicted all three modes, mode-2 to mode-4,
in his one-dimensional model. It is thus interesting to compare our results qualitatively
with his findings, which are very similar to ours, although Jensen’s model is over-
simplified in many respects. Like us, he did not find any unstable mode-1. Quantitative
comparison with Jensen’s results is not possible, since they are given in the flow-
rate and downstream- transmural-pressure space, whereas in our model, the closest
comparison we can make is the neutral curve in the (Re, EA)-space (see figure 17).
However, note that Re is equivalent to Q (for fixed viscosity, diameter and fluid
density), and EA is proportional to cλ(EA= ρDU 2

0 cλ =10−7Re2cλ). Note too that,
from (5) for steady flows or when ρm = 0 (as is the case here), an increase in the
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Figure 17. The neutral curves in the (Re, EA)-space, to be compared with Jensen’s neutral
curves in his one-dimensional model (Jensen 1990, figure 5).

transmural pressure at the downstream end can be provided by increasing cλ given
that T = 0, and cκ is very small). Thus, it is reasonable to expect that the effect of
increasing EA in our model is similar to that of increasing the downstream transmural
pressure in Jensen’s model. (Jensen’s transmural pressure was scaled with the bending
stiffness of the tube. As this bending is in the third dimension, we may treat this as
independent of cλ, at least for lower mode disturbances.) In fact, the mode-2 neutral
branch in figure 17 is strikingly similar to Jensen’s mode-2 neutral curve (Jensen 1990,
figure 5). Although the mode-3 and 4 neutral branches in our case are different from
his predictions, this may be partly because his one-dimensional model is less accurate
for higher modes, but more probably because, in the higher modes, the essential
differences between a three-dimensional tube and a two-dimensional channel become
more significant. What is interesting in Jensen’s results is that he too found that
mode-2 and mode-3 neutral curves can intersect to form a double Hopf bifurcation.
In addition, he predicted the ratio of the frequencies of the mode-3 and mode-2
oscillations to be just under 4, which is similar to the value found here (see table 1).
Moreover, the steady solution at the mode intersection is the same, as we have found
here.

5.5. Comparison with Davies & Carpenter’s linear model

It may be informative to compare our results with earlier work addressing the
relative effects of bending stiffness and membrane tension in flow-induced instability
of a compliant channel with walls that are initially planar, not deformed as in our
case. The work of Davies & Carpenter (1997b) suggests that the important structural
properties which determine the system stability are tension and bending stiffness (the
spring element in their model is absent here) for a massless wall. Using our non-
dimensional variables, their theory (see (34) in Davies & Carpenter 1997b) predicted
that oscillations will occur with neutral frequency

f =
n(T + 9k2cκ − 3/5)

Lr
, (13)

where r =
√

2T + 18k2cκ − 1/5, T is the initial tension, k is the wavenumber (hence
n= kπ/L is the mode number), L is the length of the elastic wall, and cκ is as defined
here. Note that cλ does not appear since the membrane tension is supposed to be
large enough not to change during small-amplitude oscillations. To compare our
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results with theirs we must again employ the effective tension concept, and compute
the frequencies from (13) using the effective tension (11), and other parameters. These
are shown as dotted curves in figure 4. Their model predicts neutral curves with
similar qualitative features to ours – with a double mode-2 neutral curve, and mode-3
above it, although quantitatively the frequencies they calculated are much higher than
predicted here.

The qualitative similarity between the frequency curves predicted by Davies &
Carpenter (1997b) and ours is not surprising, because the frequency in their model
(13) is related to the (effective) tension and we calculated the effective tension using
(11) from the steady solutions at points already predicted to lie on the neutral stability
curve. Nevertheless, the good agreement implies that the mechanism of the instability
may be similar in the two models and that the effective tension is a good indicator of
the system behaviour.

5.6. Comparison with Jensen & Heil’s two-dimensional model

Jensen & Heil (2003) predicted how the period and growth rate of their mode-1 self-
excited oscillations change with the Reynolds number. The frequency in their paper
is almost constant as Re increases, but it increases with tension. On the other hand,
the growth rate increases with Re, though only for lower tensions does it become
positive for Re as low as 400 (see Jensen & Heil 2003, figure 9). These findings can
be compared with ours in figure 2. We also find that the growth rate and frequency
increase only slightly with Re for Re > 300, as Jensen & Heil (2003) predicted (apart
from the mode-3 (cλ =310) curve, which demonstrated a much greater dependency
on Re). Also the frequency increases with effective tension. However, the self-excited
oscillations discussed in this paper differ significantly from those reported by Jensen &
Heil (2003). The most important difference is that all the instabilities of this paper
are excited in modes 2–4 (i.e. the fundamental mode has two to four half-wavelength
disturbances along the elastic beam), whereas they found only mode-1 disturbances.
We may further note that Jensen & Heil (2003), using an energy scaling argument,
predicted that the oscillation frequency should be proportional to T 1/2. This is different
from the prediction (13), by Davies & Carpenter (1997b). However, the two models
start to agree with each other when T is large enough to overcome the bending
stiffness and the constant terms in (13).

Using Jensen & Heil’s theory, the mode-1 neutral curve in the (Re, Te)-space can
be estimated using

Re ≈ r2
c0T

1/2
e , (14)

where rc0 is the critical scaled Reynolds number from which the neutral stable
oscillation bifurcates subcritically. This is plotted as a dotted curve in figure 16
(where rc0 is estimated to be about 4 for our parameters). Clearly, around this curve,
our model is stable for all modes, including mode-1. Note that Jensen & Heil (2003)
predicted mode-1 instability in this regime, but the oscillations were reproduced
numerically only when the upstream pressure was fixed, not the upstream flow rate
as here. This is because their model predicts instability only when the downstream
rigid segment is longer than the upstream one; thus prescribing the upstream flow
rate (equivalent to a very large upstream length) is the stablest possible state for
this mode (Jensen & Heil 2003). The other reason that we have not found mode-1
oscillations here could be that our external pressure, pe =1.95, is lower than the
external pressure assumed in their model (order one), which is approximately pe = 5
using our scaling. This is because we scale the pressure with channel height, and



Cascade structure of collapsible channel flows 73

they scale it with the (elastic) channel length which is 5 times the channel height
here.

5.7. Further remarks on the cascade structure

The cascade structure discovered here is highly sensitive to changes in the Reynolds
number, and seems to exist only for low values of critical Reynolds numbers. The
structure changes when Re is higher than 540 because there the mode-2 and mode-3
branches intersect. After this point, the system can become unstable owing to at least
two different instability modes, which will be coupled nonlinearly when the amplitude
is not infinitesimal and the whole system becomes more complex. The self-excited
oscillation at point u6 clearly shows the influence of two competing modes, mode-2
and mode-3.

A further parallel can be drawn with the work of Guneratne & Pedley (2006).
They performed a large-Reynolds-number asymptotic analysis of the steady two-
dimensional problem for cases in which the transmural pressure was small enough, or
the (constant) wall tension large enough, for the wall displacement to remain small.
For very small pe, they found an infinite sequence of solution branches in (pe, T )-space
which intersect the pe-axis at eigenvalues Tn, say, where T1 > T2 >T3 > · · · > 0. The
nth corresponding steady eigenfunction consists of n half-wavelengths, like mode-n
disturbances in this paper. Most of the eigensolutions are no doubt unstable (this has
not yet been analysed), giving rise to mode-n oscillations as T is reduced below Tn,
in a manner not unlike figure 16.

In earlier one-dimensional models (Luo & Pedley 1995; Jensen & Heil 2003), the
length of the elastic wall was scaled to be inversely proportional to the square root
of tension; it would therefore be expected that the cascade structure could exist for
a beam with given stiffness but different lengths. In fact, traces of such a cascade
structure have already been seen in Jensen’s one-dimensional model for mode-2 and
higher modes (Jensen, personal communication), as well as in a study on flow over
compliant walls by Davies et al. (2006). The latter discovered that, by fixing the
tension and changing the length of the compliant surface and Re, the compliant wall
loses stability to mode-1 perturbations for a range of lengths only. The implication
of this finding is that a longer elastic segment can re-stabilize the system, whereas
intuitively it might be thought that a longer length of elastic section would tend to
destabilize it. Davies et al. (2006) explained this in terms of interactions of a wall
instability with the fluid instability due to Tollmien–Schlichting (TS) waves which
only becomes significant at a specific length scale. This is a different mechanism from
the one presented here, based on changes to the pressure distribution. The TS wave
explanation may well be valid in some circumstances, but the consistency of our
results with those of Jensen’s (1990) one-dimensional analysis, in which TS waves
could not play a role, suggested that TS waves are not the only mechanism underlying
the cascade structure.

In solid mechanics, it is accepted that thin structures may lose stability to different
modes of perturbations as external load is increased to its critical value or the length
of the structure increased. For the buckling of cylindrical shells supported at the two
ends and subject to external pressure, there is a mode switching when the aspect ratio
(length/radius) is changed (Timoshenko & Gere 1963; Yamaki 1984; Zhu, Luo &
Ogden 2007). A ‘closed loop’ stability behaviour, where the unstable zone is enclosed
by stable zones as deformation is increased, was also found by Haughton (1980) for
the post-bifurcation behaviour of an elastic membrane.
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In fact, a similar cascade structure seems to appear in a variety of related systems,
often described in terms of the critical velocity (rather than wall stiffness), i.e. a system
can re-stabilize for a higher velocity after losing stability at a critical velocity. This is
found, for example, for a cantilevered cylinder in axial flow both in experiments and
in analytical models (Paidoussis et al. 2002; Lopes, Paidoussis & Semler 2002; Semler
et al. 2002, Hemon, de Langre & Schmid 2006; de Langre et al. 2007). These authors
found that, as the flow velocity increases, the cylinder first loses stability by divergence
in its first mode, which is gradually transformed to divergence of the second-mode
before the system is re-stabilized. And then at a slightly higher flow velocity, the
system loses stability to second-mode flutter; this is followed by third-mode flutter
at a still higher velocity. A similar finding is discovered in a one-dimensional soft-
palate model of snoring (Lucey & Pitman 2006; Tetlow, Lucey & Balint 2006), and
for a tensioned-riser in the sea (Bearman & Huarte 2006), although in the latter,
mode switching in vortex-induced vibration is related to a Strouhal frequency in
the excitation, and the mechanism may be very different from what is discussed
here.

Furthermore, a generic instability tongue has long been recognized as being
associated with a parametric system (e.g. Grimshaw 1990; Nayfeh 1973). In theoretical
work by Wu & Luo (2006) on the stability of plane Poiseuille flow, it was shown
that a small imperfection (such as a wavy wall) could open up an instability tongue
in the frequency and Reynolds number space. Further investigation on this system
using the commercial finite-element package ADINA 8.3 also confirms the existence
of a cascade structure when the wall stiffness is reduced from a critical value at a
given Reynolds number (Liu, Luo & Cai 2007). All these suggest that the cascade
structure presented here is a physical phenomenon. Although we have attempted to
explain its physical meaning using the transmural pressure and wall configuration,
it is clear that a more rigorous mathematical explanation of such a structure is
desirable.

6. Conclusion
The instability of flow in a collapsible channel is studied using both the full

numerical solver and the eigenvalue solver for the Navier–Stokes equations coupled
to the large-deformation plane-strain elastic beam equations. It is found that the
neutral stability of this system appears in a cascade structure consisting of different
disturbance modes. This cascade structure shows that in the (Re, cλ)-space, depending
on the inlet boundary condition and the Reynolds number, the system may first lose
stability to mode-2 perturbations as wall stiffness is lowered to a critical value. As
the wall stiffness is further reduced, the system is re-stabilized before going through a
sequence of higher-mode unstable zones, forming a stable ‘tongue’ as the result of a
gap between mode-2 and mode-3 neutral branches. Extensive comparisons are made
with earlier models, and differences are discussed. A physical interpretation of the
cascade structure is proposed. Although this study applies only to a two-dimensional
collapsible channel flow, it is expected that similar cascade structures exist in three-
dimensional collapsible tube flow, and possibly other slender-body fluid–structure
interaction problems.
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