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Although self-excited oscillations in collapsible channel flows have been extensively
studied, our understanding of their origins and mechanisms is still far from complete.
In the present paper, we focus on the stability and energy budget of collapsible
channel flows using a fluid–beam model with the pressure-driven (inlet pressure
specified) condition, and highlight its differences to the flow-driven (i.e. inlet flow
specified) system. The numerical finite element scheme used is a spine-based arbitrary
Lagrangian–Eulerian method, which is shown to satisfy the geometric conservation
law exactly. We find that the stability structure for the pressure-driven system is
not a cascade as in the flow-driven case, and the mode-2 instability is no longer
the primary onset of the self-excited oscillations. Instead, mode-1 instability becomes
the dominating unstable mode. The mode-2 neutral curve is found to be completely
enclosed by the mode-1 neutral curve in the pressure drop and wall stiffness space;
hence no purely mode-2 unstable solutions exist in the parameter space investigated.
By analysing the energy budgets at the neutrally stable points, we can confirm that
in the high-wall-tension region (on the upper branch of the mode-1 neutral curve),
the stability mechanism is the same as proposed by Jensen & Heil. Namely, self-
excited oscillations can grow by extracting kinetic energy from the mean flow, with
exactly two-thirds of the net kinetic energy flux dissipated by the oscillations and
the remainder balanced by increased dissipation in the mean flow. However, this
mechanism cannot explain the energy budget for solutions along the lower branch of
the mode-1 neutral curve where greater wall deformation occurs. Nor can it explain
the energy budget for the mode-2 neutral oscillations, where the unsteady pressure
drop is strongly influenced by the severely collapsed wall, with stronger Bernoulli
effects and flow separations. It is clear that more work is required to understand the
physical mechanisms operating in different regions of the parameter space, and for
different boundary conditions.
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1. Introduction
Flow in collapsible tubes has aroused considerable interest in the last 20 years due

to its potential applications in various biomedical problems. However, recent studies
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are driven more by the rich dynamic behaviour revealed in the Starling resistor type
of experiments (Bertram 1982; Bertram, Raymond & Pedley 1990; Bertram & Elliott
2003). Early research focused on simplified ‘lumped-parameter’ and one-dimensional
models (Conrad 1969; Katz, Chen & Moreno 1969; Ishizaka 1972; Shapiro 1977;
Kamm & Shapiro 1979; Bertram & Pedley 1982; Cancelli & Pedley 1985; Jensen
1990). This was extended to two-dimensional models in which a segment of upper
wall of the flow channel was replaced by an elastic membrane or a thin beam with
both extensional and bending forces (Luo & Pedley 1995, 1996, 1998; Pedley &
Luo 1998; Luo & Pedley 2000; Jensen & Heil 2003; Stewart et al. 2010). Recent
progress has been made on three-dimensional models (Hazel & Heil 2003; Marzo, Luo
& Bertram 2005; Heil & Waters 2008; Zhu, Luo & Ogden 2008, 2010; Whittaker
et al. 2010a,b,c,d). However, due to the complexity of three-dimensional models and
high computational resources, two-dimensional models are still used to understand the
mechanisms of the rich dynamic behaviour of the system observed.

Jensen & Heil (2003) analysed a two-dimensional membrane model with the
pressure-driven boundary condition (referred to as the pressure-driven system
henceforth) for large tension and high Reynolds number, Re. They showed that the
neutrally stable small-amplitude high-frequency self-excited oscillations in the limit
of large membrane tension can grow by extracting kinetic energy from the mean
Poiseuille flow faster than it is lost to viscous dissipation, with exactly two-thirds
of the net kinetic energy flux dissipated by the (oscillatory) dissipations and the
remainder balanced by increased dissipation in the mean flow. Using a fluid–beam
two-dimensional model, Luo et al. (2008) discovered a ‘cascade’ stability structure
for the flow-driven boundary condition (i.e. in a flow-driven system), and showed
that as the wall stiffness is reduced to a critical level, the system loses its stability
to various modes of oscillations in a cascade fashion. Interestingly, they found that
re-stabilization of an unstable mode is possible below the critical wall stiffness for
certain values of Reynolds number. However, the lowest unstable mode in this system
was found to be mode-2, whereas only mode-1 instability was identified by Jensen
& Heil (2003) for the pressure-driven system in the high-tension and high-Re region.
(The mode number i, i = 1, 2, 3 . . . here means that the perturbation to the flexible
segment contains i half-wavelengths.)

The cascade phenomenon for a flow-driven system was reproduced by Liu et al.
(2009) using the commercial package ADINA. Liu et al. (2009) also confirmed that
the occurrence of the lowest unstable mode number is primarily determined by the
nature of the inlet boundary conditions; it is mode-1 if the system is pressure-driven,
and mode-2 if it is flow-driven. However, they did not show whether the cascade
structure still exists if the system is switched from being flow-driven to pressure-
driven. Recently, Stewart, Waters & Jensen (2009) analysed the energy budget for
high-Reynolds-number and pressure-driven systems, using a one-dimensional analytical
model. They showed that the energy budget behaves differently in mode-1 and mode-2
oscillations. For mode-1 oscillations about the uniform base state, the time-averaged
net kinetic energy flux into the system is positive, showing that kinetic energy is
extracted from the mean flow and is dissipated by the oscillations. However, for
mode-2 neutral oscillations, the time-averaged net kinetic energy flux into the system
is negative, suggesting a different physical mechanism. This is interesting, although it
is not clear if this observation applies to general two-dimensional systems with lower
values of tension and Reynolds number (but see discussions in Stewart et al. 2010).

The aim of the present study is to address the issues raised above. First, we
investigate whether a similar cascade structure exists in the pressure-driven system.
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FIGURE 1. The flow–beam configuration (not to scale). Part B has part of the wall replaced
by an elastic beam.

We then carry out an energy budget analysis for the neutrally stable modes, and
compare our results with those of Stewart et al. (2009), in order to assess the energy
differences in mode-1 and mode-2 oscillations. Furthermore, we study the differences
in the energy budgets between the pressure- and flow-driven systems.

2. Model and method
The model of the collapsible system is composed of flow in a channel in which

a part of its rigid upper wall is replaced with an elastic beam in the plane strain
configuration (figure 1). The channel has a width of D, a part of the upper wall of
length L is replaced by a pre-stressed elastic beam subject to an external pressure of
pe. The upstream and downstream parts of the channel have lengths of Lu and Ld,
respectively. The flow is assumed to be incompressible and laminar with the fluid
density ρ and viscosity µ and the averaged velocity of U0. The extensional and
bending stiffnesses of the beam are denoted as EA and EI, respectively, where E is
Young’s modulus applicable for plain strain problems, A is the cross-sectional area of
the beam (given that the beam has unit width in the z-direction, A is effectively the
beam’s thickness h), and I is the second moment of area of the beam cross-section.
The mass, damping and rotational inertia of the beam are neglected.

2.1. The fluid–beam model
2.1.1. Governing equations

For convenience, all variables are non-dimensionalised as follows:

ui = u∗i
U0
, σij =

σ ∗ij
ρU2

0

, pi = p∗i
ρU2

0

, t = t∗U0

D
, l= l∗

D
, x= x∗

D
,

y= y∗

D
(i, j= 1, 2),

 (2.1a)

where non-dimensional flow velocity components are denoted by ui, fluid stresses σij,
pressure p, time t, length l, Cartesian coordinates x, y, and dimensional quantities are
denoted with a star.

The non-dimensional parameters are defined as

T = T∗

ρU2
0D
, cλ = EA

ρU2
0D
, cκ = EI

ρU2
0D3

, Re= U0Dρ

µ
(2.1b)

where T is the tension of the beam, cλ is the extensional stiffness, cκ is the flexural
rigidity, and Re is the Reynolds number.
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The governing equations for the fluid flow are the Navier–Stokes equations

∂ui

∂t
+ ujui,j = σij,j, (2.2)

ui,i = 0, i, j= 1, 2, (2.3)

where σij = −pδij + (1/Re)ui,j. Here δij is the Kronecker delta. By employing the
Kirchhoff constitutive laws for the (massless) elastic beam, we can write the following
dimensionless governing equations for the beam (for derivation of these equations, see
Cai & Luo 2003):

cκκκ
′ + cλλ

′ + λτn = 0, (2.4)

cκ

(
1
λ
κ ′
)′
− λκT − cλλκ (λ− 1)= λ (σn − pe) , (2.5)

x′ = λ cos θ, y′ = λ sin θ, θ ′ = λκ, (2.6)

where κ is the non-dimensional curvature (κ = κ∗D), the superscript prime stands for
a derivative with respect to the initial beam position l, the arc-length of the beam is
denoted as s (s= λl, 0< s< s0), and λ is the principal stretch of the beam, defined as

λ=
√

x′2 + y′2. (2.7)

In (2.4)–(2.6), θ stands for the rotation angle of the beam from the x-axis; σn, τn

are fluid stresses applied on the beam in the normal and tangential directions, (n, s),
respectively:

σn = p− 2
Re

∂un

∂n
, τn =− 1

Re

(
∂us

∂n
+ ∂un

∂s

)
. (2.8)

2.1.2. Boundary conditions
The boundary conditions are set up in the following fashion: at the outlet, a stress

free condition is used (pd ≈ 0); along the walls, a no-slip boundary condition is
applied, and at the two ends of the beam, a clamped support is employed.

In addition, for a pressure-driven system, a constant upstream pressure is imposed,
whereas for the flow-driven system a parabolic velocity profile is specified at the
upstream inlet.

2.2. Numerical schemes
Two approaches are used to solve the fluid–beam model. One is the fully coupled
fluid–structure interaction (FSI) solver for the unsteady flows, and the other is the
eigenvalue solver for the linear stability analysis. These are described in detail in
Cai & Luo (2003) and Luo et al. (2008) but will be briefly mentioned here for
completeness.

Fully coupled FSI solver
The fully coupled unsteady nonlinear FSI equations are discretized using the spine

method, in which the moving grids are parameterized with the positions of a set
of spines. One end of these spines is fixed at the lower boundary of the channel,
and the other end is attached to the material point on the elastic beam (Cai &
Luo 2003). The Petrov–Galerkin weighted residual method is then used in the finite
element approach. The method can be categorized as an arbitrary Lagrangian–Eulerian
(ALE) finite element formulation. The fluid grid uses triangular 6-node elements with
a second-order shape function for u, v and a linear function for p, while the solid grid
uses 3-node beam elements with a second-order shape function for x, y, θ , λ, κ . The
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discretized finite element matrix equation is

M(U)
dU
dt
+ K (U)U − F= R= 0, (2.9)

where U = (uj, vj, pj, xj, yj, θj, λj, κj) is the global vector of unknowns, with j =
1, 2, . . . n denoting the nodal number, R is the overall residual vector, and F is the
external force vector. Equation (2.9) is solved with an implicit finite difference second-
order predictor–corrector scheme with variable time steps (Cai & Luo 2003). Note that
in general ALE methods may fail to satisfy the geometric conservation law, which
tends to lose the order of temporal convergence on a moving grid (Étienne, Garon &
Pelletier 2009). However, we can prove that this problem disappears completely in the
particular spine-based ALE approach used (see Appendix). As the result, the accuracy
of the numerical scheme used (second-order) is not compromised due to the moving
grid. However, in practice, due to a possible restart in the course of time, and the
irregular boundary conditions, the effective order of temporal convergence could drop
slightly below two. This occurs for simulations of fixed grids too.
The eigenvalue solver

The linear stability is studied by applying an infinitesimal perturbation, 1U = eωtŨ ,
to the nonlinear steady solution Ū , where ω(=ωr + iωi) and Ũ are the complex
eigenvalue and eigenvector, respectively. Upon substituting the perturbed solution
into (2.9), and dropping the higher-order terms, we derive the eigenvalue equation
in the form

(ωM̄ + K̄ )Ũ = 0, (2.10)

where the matrices M̄, K̄ are functions of Ū . Equation (2.10) is solved with a QZ
algorithm for the complete set of eigensolutions of the system, which can be extremely
laborious (Garbow 1978). Note that the definition of the eigenvalue problem used here
means that the imaginary part of the eigenvalue indicates the frequency, and the real
part denotes the growth. This is different to the conventional notation.

To locate a neutral point (corresponding to ωr = 0), we scan the parameter space
in question by sweeping in the x-direction and bisecting in the y-direction. Due to
the expensive nature in terms of RAM of the QZ solver, a grid with the maximum
2944 nodes is employed for the eigensolver. However, all results of the eigensolver are
further checked with the full unsteady solver on a much refined grid of 22 000 nodes,
to ensure the reliability of the eigensolver. Computation time is ∼0.1–1 CPU min for
each single time step. However, typical time for locating a neutral point can take from
a few hours to 2–3 days (including manual adjustments and bisections).

2.3. The energy budget analysis
The energy budget of the system can be derived from the momentum equation of the
fluid (2.2). Multiplying both sides of (2.2) with velocity ui and integrating over the
whole domain, Ω , we have∫

Ω

ui
∂ui

∂t
dΩ +

∫
Ω

uiui,juj dΩ =
∫
Ω

uiσij,j dΩ. (2.11)

This leads to

1
2

∫
Ω

(
∂q2

∂t

)
dΩ + 1

2

∫
Γ

q2ujnj dΓ =
∫
Γ

σijnjui dΓ −
∫
Ω

σijui,j dΩ, (2.12)

where q2 =∑ uiui, and Γ denotes the boundary of the domain.
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P1, P̄1 The rate of work of upstream pressure

dE, dĒ The rate of change of kinetic energy, as defined in (2.17)
F, F̄ The rate of net kinetic energy flux into the system
D, D̄ The rate of viscous dissipation
D̄s The rate of viscous dissipation due to oscillatory motion
D̄p The rate of viscous dissipation due to steady motion
P2, P̄2 The rate of change of energy stored in the beam
dUλ, dŪλ The rate of stretching strain energy in the beam
dUκ , dŪκ The rate of bending strain energy in the beam
P3, P̄3 The rate of work done by the external pressure to the beam

TABLE 1. Definition of the energy budgets; the overbar indicates the averaged quantity of
a neutral cycle.

Using the notations introduced in table 1, (2.12) can be expressed as

P= dE − F + D, (2.13)

where

F =−1
2

∫
Γ

q2ujnj dΓ

= 1
2

∫ 1

0
q2u

∣∣∣∣
inlet

dy− 1
2

∫ 1

0
q2u

∣∣∣∣
outlet

dy− 1
2

∫ S0

0
q2un ds, (2.14)

P=
∫
Γ

σijnjui dΓ =
∫ 1

0
puu dy−

∫ S0

0
(τnus + σnun) ds= P1 − P2, (2.15)

with

P1 =
∫ 1

0
puu dy, P2 =

∫ S0

0
(τnus + σnun) ds. (2.16)

Special attention should be paid to the computation of dE using the ALE formulation,
since

dE = 1
2

∫
Ω

(
∂q2

∂t

)
dΩ = 1

2

∫
Ω

(
δq2

δt
− ẋjq

2
,j

)
dΩ, (2.17)

where δ/δt is the time derivative following a moving node of velocity ẋj, which is
different to ∂/∂t used in (2.12), in the Eulerian frame of reference.

We can further associate P2 with the rate of energy stored in the beam.
Substituting (2.4) and (2.5) into (2.16), we have

P2 = (P3 + dUλ + dUκ), (2.18)

P3 =
∫ s0

0
peun ds, (2.19a)

dUλ =
∫ L

0

[
cλ(λ− 1)

∂λ

∂t
− λκTun

]
dl, (2.19b)

dUκ =
∫ L

0
cκκ

∂(κλ)

∂t
dl. (2.19c)
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FIGURE 2. (Colour online available at journals.cambridge.org/flm) Wall displacement y(t) at
x(t = 0)= 7.5 for the test case, where the solid curve indicates the fluid–beam model and the
dashed one denotes the fluid–membrane model.

Therefore, the rate of work done by all forces for the system can be written as

P1 = dE − F + D+ P3 + dUλ + dUκ . (2.20)

Equation (2.20) states that the rate of work done by the upstream pressure (P1) is
balanced by the rate of change of: the kinetic energy (dE), net kinetic energy flux
into the system (F), viscous dissipation (D), work done by the beam to overcome the
external pressure (P3), and strain energies inside the beam (dUλ, dUκ).

3. Results
3.1. Validation

The numerical code has been tested extensively for the flow-driven system (Cai & Luo
2003; Luo et al. 2008). Here we will focus on validation of the pressure-driven system,
which has thinner boundary layers near the upstream entrance, especially for higher
tension and Reynolds numbers. Extensive grid independence and temporal accuracy
tests were carried out before choosing the final grid of 23 000 nodes and the residual
tolerance of 10−6.

The validation case is chosen to have: D= 1,Lu = 5, L= 10, Ld = 30, and Re= 450,
T = 100, pe = 0.966 77, following Jensen & Heil (2003) see figure 2. In order to
compare our results with Jensen & Heil (2003)’s analysis, which is applicable for a
membrane with a constant longitudinal tension, we use two different elastic models
here: the fluid–beam and the fluid–membrane models. For validation purposes, we
choose the wall stiffness cλ to be small in the fluid–beam model to reduce the effects
of deformation-induced tension and bending. Grid independence tests indicate that in
order to capture the effects of the thin Stokes layer for this case, a non-uniform grid
with over 23 000 nodes is required for both models. This is much finer than the grids
used for the flow-driven system (Cai & Luo 2003).

The steady equilibrium state is achieved in the same manner as Jensen & Heil
(2003): with the non-dimensional inlet pressure adjusted to an initial position where
the mid-point of the elastic section is in alignment with the upper rigid channel wall
(initial position) and the rest bulges out upstream and deflects inward downstream. The

http://journals.cambridge.org/flm
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initial condition, to which the perturbation is applied, is reached when the external
pressure is such that the mid-point displacement is lowered to within −0.03 of the
undeformed configuration.

The steady results obtained with the fluid–beam, and the fluid–membrane models
are almost identical to those of Jensen & Heil (2003) for the two cases tested. The
unsteady results, however, are slightly different between the beam and membrane
models. Figure 2 shows the unsteady wall history plotted at the centre of the elastic
wall. The fluid–membrane model agrees quite well with that of Jensen & Heil (2003):
the amplitude of y (x = 10) varies between 0.331 and 1.77, and the frequency is
∼0.06. In other words, the difference in amplitude is within 5 % of the peak deflection
(Jensen & Heil 2003) (their figure 10), and the difference in frequency is virtually
zero. The amplitude predicted by the fluid–beam model is slightly smaller, although
the frequency is similar (∼0.06). This is because the fluid–beam model has bending
and stretch-induced tension; although we set these to be small, they are significant
through the two clamped ends. As reported by Liu et al. (2009), small differences
in model assumptions could lead to noticeable differences in the unsteady behaviour.
We should bear this in mind when comparing the stability of the fluid–beam model
with the membrane model used by Jensen & Heil (2003). Indeed, good quantitative
agreement is obtained if we also use the fluid–membrane model. In addition, we
can reproduce the neutral stability curve, including the turning point, of the group’s
more recent work (Stewart et al. 2010), where they used the method of matched
eigenfunction expansions and plotted the critical Reynolds number versus tension in
the pressure-driven system (see figure 3 therein).

In §§ 3.2–3.3 below, we investigate the stability of the system using the eigensolver.

3.2. The stability structure in the cλ–Re space

To investigate changes of the stability structure in the pressure-driven system, in the
following, we will use the channel geometry with D = 1, Lu = 5, L = 5 and Ld = 30,
pe = 1.95 and T = 0, as in Luo et al. (2008).

As stated earlier, locating a neutral point in the cλ–Re space using the QZ solver
is extremely time-consuming. Simulating flow in the pressure-driven system poses
additional challenges; we need to use much refined grids to resolve the thin boundary
layers at the upstream end, and to adjust the driving pressure manually so that the
Reynolds number (which is computed) remains unchanged in the (cλ,Re) space. For
this reason, here we will compute the change of the stability structure for Re = 300
only.

The neutral points of the pressure-driven system are shown in table 2. In particular,
the mode-2 neutral curve has an upper branch (from stable to unstable as cλ is
reduced), and a lower branch (from unstable to stable as cλ is reduced). One could
speculate that there exist similar upper and lower branches in the mode-1 neutral
curve; if so we should locate two mode-1 points with Re fixed at 300. Indeed, we
have found the mode-1 neutral point on the upper branch, albeit at a very large value
of cλ (∼108). However, on the ‘lower branch’, the oscillatory mode-1 becomes static
divergent, i.e. the oscillatory frequency approaches zero as the growth rate vanishes. In
other words, we see a mode switch at the lower branch.

It is possible that a more complete mode-1 curve (i.e. with a proper lower branch)
exists elsewhere in the (cλ,Re) space but we only looked at Re = 300 (see § 3.3
below).
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FIGURE 3. (Colour online) (a) The mode-1 and mode-2 neutral curves of the pressure-driven
system in the (pud, cλ) space. The (dimensional) external transmural pressure is kept constant
at 1.755 Pa. The computed Re values are between 104.4 and 219. The lowest Re value
occurred at a position between N1-4 and N1-5, and the highest value is at N1-1 (see table 2
for more information). (b) The corresponding steady elastic wall shapes at selected mode-1
neutral operating points (filled circles in (a)).

3.3. The stability structure in the (pud, cλ) space

Since the driving pressure is the control parameter, it is much easier to identify the
stability structure in the (pud, cλ) space. Note that unlike Luo et al. (2008) where
the non-dimensional external pressure value is kept constant (pe = 1.95), here the
dimensional external pressure is kept constant (i.e. p∗e = 1.755 Pa, which corresponds
to pe = 1.95 at Re = 300), since we can no longer use Re to non-dimensionalise the
pressure.
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Figure 3(a) shows the stability structure of the pressure-driven system in the
(pud, cλ) space. Here, we have a more complete mode-1 neutral curve. The mode-
2 curve seems to be wrapped inside the mode-1 neutral curve for the range of
parameters investigated. This is very different to the cascade structure found in the
flow-driven system, and suggests that the dominant unstable mode is mode-1 for
the pressure-driven system. The flow-driven system reported by Luo et al. (2008) is
primarily unstable to mode-2 perturbations. Clearly, the underlying mechanisms for
these two systems are different. In the following, we explore the system further using
an energy budget analysis based on the full unsteady solver.

3.4. Energy budget analysis
The full unsteady numerical solver is used to compute the energy budget during the
neutral oscillations. The energy budget for a selection of points along the mode-1
neutral curve was computed; the corresponding steady wall shapes for these points are
shown in figure 3(b). To compare the results with those of Stewart et al. (2009), we
estimated the following quantities from the energy budgets of the neutral points. When
averaged over a oscillating period, (2.20) reduces to

F̄ + P̄1 = D̄= D̄p + D̄s, (3.1)

where D̄p is the viscous dissipation due to the mean flow, and D̄s is the oscillatory
dissipation. The dissipation of energy in mean flow can be obtained by calculating
the energy dissipation with the time-averaged velocity vector ūi and the time-averaged
position vector x̄i over one period. D̄s is then be obtained by simply subtracting D̄p

from D̄.
For convenience, the energy budget definitions are summarized in table 1. The

averaged values are estimated numerically during the post-processing, and are listed in
table 3, together with the averaged rate of change of kinetic energy and the neutral
frequency. Note that at the exact location of the neutral points, dĒ ≡ 0. However,
as we used a numerical scheme to estimate the neutral position, as well as the
energy budget terms, the values of dĒ are only approximately zero. Therefore when
dĒ is sufficiently small (i.e. it is at least an order of magnitude smaller than other
energy budget terms at the same point), the averaged quantities computed are reliable;
otherwise these are only qualitatively indicative.

Table 3 shows that F̄ is positive for all the mode-1 neutral points selected (it is
definitely positive for N1-1, N1-2 and N1-3, but too small to be judged for N1-4
and N1-5), i.e. the influx upstream provides energy into the system to maintain the
oscillation.

Table 3 shows that the ratio D̄s/F̄ is 0.711 for N1-1 on the upper branch of
the mode-1 neutral curve. The D̄s/F̄ ratio is predicted to be 2/3 in an asymptotic
predication for large-membrane tension by Jensen & Heil (2003), which states that
for the almost undeformed configuration, the self-excited mode-1 oscillations grow
by extracting kinetic energy, with exactly two-thirds of the net kinetic energy flux
dissipated by the oscillations, and the remainder balanced by increased dissipation in
the mean flow. Table 3 seems to suggest that oscillations of N1-1 may be controlled by
the same mechanism. The small numerical discrepancy (∼6 %) between the estimated
values and 2/3 may be attributed to numerical errors, such as the problem of locating
the neutral position exactly and the numerical error in estimating the energy quantities.

However, as we follow the mode-1 neutral curve downwards, the wall deformation
increases as wall stiffness decreases, and the whole energy balance changes; D̄s
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FIGURE 4. (Colour online) Phase plots of the mode-1 F and P1 against D of the
pressure-driven system.

becomes relatively larger than F̄ and the ratio D̄s/F̄ exceeds 5 as we pass the turning
point, N1-3 (table 3).

On the lower branch, D̄s is an order of magnitude greater than F̄. This means that
the sloshing motion along the channel no longer dominates and the influx alone is
insufficient to sustain the transversal motion of the mode-1 oscillation. Instead, the
driving pressure is doing more work to overcome the increased viscous dissipation
due to a more collapsed channel wall. In other words, the mechanism predicted by
the asymptotic analysis is no longer valid for the lower branch of the mode-1 neutral
curve. This agrees with the recent work by Stewart et al. (2010).

Plots of F and P1 against D over one period along with their temporal evolutions for
the operating points are shown in figures 4 and 5. Since F and P1 are almost in phase,
in the following, we will focus on the phase difference between F and D only.
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Remarkably, the phase diagrams of the points along the upper branch (figure 4)
qualitatively resemble the phase plots by Stewart et al. (2009 figure 11). The loops are
in a clockwise direction. However, Stewart et al. (2009) also observed a longer and
rounder trough of F which leads to a long narrow anticlockwise region below the large
loop, which is absent here. This may be due to the one-dimensional approximations
introduced by Stewart et al. but it is also possible that the upper branch control
parameters (tension and Re) used here are still lower than in their parameter region. It
is interesting to see that for N1-1, there are two local minima of D over one period,



Stability and energy budget of pressure-driven collapsible channel flows 15

and the global minimum of D occurs when F is close to zero. This suggests that the
rate of net kinetic energy influx drives the oscillation, which in turn increases the rate
of viscous dissipation.

The solutions on the lower branch of the mode-1 curve show a different picture: the
F–D relation is now anticlockwise. This is confirmed by the corresponding temporal
evolution of F and D on the right; the anti/clockwise F–D relation indicates a phase
lag/lead between F and D. The change of the phase direction occurs at the turning
point; and the phase plot collapses to a very narrow figure-eight shape, with an
anticlockwise direction on the top and clockwise on the bottom. In other words, F and
D are almost in phase. The observation that F and D are in phase at the turning point
is of physical significance for separating the mechanisms responsible for the system
behaviour in the high-tension and high-Re region from those of the lower-tension and
lower-Re region.

We also observe that as the wall stiffness is reduced (for a fixed pud), the system
first becomes unstable to a mode-1 perturbation when the net rate of kinetic energy
influx F leads the rate of dissipation D, while a further reduction of cλ stabilized
mode-1, and D leads F in phase. The further along the curve the solution is from the
turning point, the greater the phase difference between F and D. Note that the global
minimum of D still seems to correlate with F ≈ 0 for some points on the lower branch
(N1-5), but this is no longer true for the points around the conjunction point, N1-4, see
figure 4.

The temporal evolutions of the complete energy budgets for the operating points are
shown in figure 5. On the upper branch of the mode-1 curve, P1(F) leads in phase,
and is closely followed by dĒ and P3. The dissipation rate D follows slightly later,
since the strength of the thin boundary layer only reaches its peak after the flow is
sloshed forward. These are opposed by dUλ and dUκ , the rate of strain energies of the
beam. On the lower branch, the wall deforms more significantly during the oscillations
(see figure 5, N1-5). D now leads the phase, and is followed by P3 and P1, with
dE slightly behind. The flow structure becomes more complex with flow separations
and eddies downstream (see figure 6 below). It is interesting to note that around the
turning point (N1-3), all rates of energies are in phase, and the magnitudes (oscillation
strength) are much smaller than those of other neutral points. This is presumably
because the system is subdued by competing driving mechanisms.

The corresponding pressure, streamline and vorticity contours are shown in figure 6
for points N1-3 and N1-5 on the upper and lower branches. Figure 6 shows that
the upper branch solution has smaller wall deformation; therefore a thinner boundary
layer. Closer to the turning point N1-3, the boundary layer becomes thicker. The
vorticity, which is closely linked to energy dissipation, is not only concentrated near
the walls, but also around the narrowest part of the channel. On the lower branch, the
viscous boundary layer continues to increase around the narrowest point, and extends
to the vicinities of both walls downstream of the collapsible wall. At N1-5, vorticity
is almost four times as great compared to N1-3, enhanced by flow separation which
increases the energy dissipation further. This indicates that the energy is re-distributed
across the channel. The energy change from the upper to lower neutral branches is
clearly associated with the deformation of the wall, and the Bernoulli mechanism
observed by Luo et al. (2008) could well be involved in the self-excited oscillations in
the lower-tension region.
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FIGURE 6. (Colour online) Contour plots for N1-3 and N1-5. The streamline contours
(thinner) are plotted from 0.02 to 0.36 for N1-3, and 0 to 0.417 for N1-5. The vorticity
contours (thicker) are plotted between −4 to 4 for N1-3, and −16 to 14 for N1-5. The
pressure contours are indicated by grey scales, which are plotted from 0.05 to 0.65 for N1-3,
and 0.05 to 0.95 for N1-5. The time instants 1–9 are marked on figure 5.

4. Discussion
4.1. Fluid–beam versus fluid–membrane models

As all simulations are carried out using the fluid–beam model, we now compare the
differences of the energy budgets between the fluid–beam and fluid–membrane models
when cλ is very small (=1), cκ ≡ 0. Very similar energy budgets are observed for the
two models. There are only two differences observed. Firstly, the fluid–beam model
predicts a slightly greater growth rate than that of the fluid–membrane one. This is
understandable as the fluid–beam model includes wall extension as well as bending
stiffness (even though cλ is small). Secondly, there is very small shape difference in
the F–D phase plot. However, the phase direction and all other qualitative features are
essentially the same.
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While these results may suggest that the fluid–membrane model may be effectively
used to model a thin-walled collapsible channel, the major impact of using a
fluid–beam model will be for thick-walled channel flows, where the bending effects
are greater. However, this aspect is not addressed in the present work.

4.2. Sign of F̄

Table 2 shows that F̄ is definitely positive for three of the mode-1 neutral points
selected (N1-1–N1-3), i.e. the influx upstream provides energy into the system to
maintain the oscillation. This agrees with the prediction by Jensen & Heil (2003).
However, due to limited numerical accuracy, dĒ is not sufficiently small for N1-4
and N1-5; therefore we cannot be certain that F̄ for N1-4 and N1-5 is also definitely
positive.

In other words, the mechanism predicted by the asymptotic analysis is no longer
valid for the lower branch of the mode-1 neutral curve. This agrees with the recent
work by Stewart et al. (2010).

4.3. Energy budget in the flow-driven system
As we have seen, in the pressure-driven system, the mode-2 neutral curve was
completely wrapped by that of mode-1, so mode-2-only states does not occur (and
could not be analysed), and the budget analysis concerned mode-1. This suggests that
the pressure-driven system is much more unstable compared to the flow-driven system,
and offers a much richer dynamic behaviour. A similar observation has been made
by previous researchers (Stewart et al. 2010). Unlike the flow-driven system, it loses
stability to a mode-1 perturbation first when wall stiffness is reduced.

We now compare the energy budget at the threshold of instability with that of the
flow-driven system that our group studied previously. In the latter, mode-1 is stable, so
the budgets concerns mode-2. Two operating points are chosen on the mode-2 neutral
curve by Luo et al. (2008), see figure 7. The time-averaged energy quantities for the
operating points are listed in table 4.

It is clear that values of |Ds/F̄| computed for these points are no longer two-thirds,
even for the upper branch of the neutral curve. In fact, F̄ seems to be negative (though
closer to zero for N2-lower), showing that the oscillatory energy is extracted by the
mean flow from the structure. The inlet pressure is the only driving force to maintain
the vibration.

The phase plots of F, P1 and D in figure 8 show that in the mode-2 neutral
oscillation, the phase of F is always ahead of that of D, that is, the F–D relation
is clockwise. In addition, no direction change is observed between the F–D phase
plots of the upper and lower branches of the mode-2 neutral curve, unlike for the
mode-1 curve. Most interestingly, there is a greater phase difference between P1 and F,
especially on the lower branch. This may be due to the absence of the sloshing pattern
commonly taking place in mode-1 oscillations, and thus a stronger correlation between
P1 and F. In addition, the constant inlet flow rate also has a significant effect since the
phase of F is now only determined by the kinetic energy outflux at the channel outlet.

Comparing with the energy budgets of mode-1 oscillations in the pressure-driven
system, one of the significant features of the mode-2 oscillation in the flow-driven
system is that the strain energies of the beam have much smaller oscillating
amplitudes. The dominant oscillating energy is now dE, which is always in phase with
the driving rate of work P1. If we look at the corresponding flow fields in figure 9, we
can see that there is no significant difference in the flow field for the points (N2-upper)
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FIGURE 7. (Colour online) The mode-2 neutral curve computed in a similar manner for the
flow-driven system (taken from Luo et al. 2008), with two operating points. Note that the
elastic wall deflection is greater at N2-lower and that the elastic wall deformation is greater at
N2-lower than at N2-upper.
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on the upper branch to that of the lower branch (N2-lower), except that for the lower
branch, the elastic wall is more severely deformed.
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4.4. Limitations

Although an interesting stability structure has been identified in this paper, this has
only been investigated for limited parameter regimes. One particular limitation is that
throughout the computations, we only studied the case L = 5. Therefore, it is not
clear how robust the findings are for a system with different length ratios. There
are two reasons for this choice. The first one is the computational costs. For each
neutral point, we need to perform a sequence of unsteady numerical simulations using
bisection methods and scan through the whole (cλ,Re) space, which is an extremely
lengthy process. The second reason for fixing the length is that we believe that the
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effective impact of changing the length of the channel is similar to varying the tension
(hence cλ), since one-dimensional models show that length can be scaled out as being
proportional to the square of tension (Luo & Pedley 1995). Having said this, the one-
and two-dimensional systems may not be analogous in terms of stability structure.
There are also other important parameters that could affect the stability structure, such
as the external pressure and wall thickness. However, given the expensive nature of the
numerical approaches used here, such parameter studies must await alternative models,
which are faster and more efficient.

5. Conclusion
In this study, we examine the linear stability and the energy budget of collapsible

channel flows with particular focus on the difference between the pressure-driven (inlet
pressure specified) and flow-driven (inlet flow specified) systems. It is found that these
two systems can produce significantly different stability behaviour. The most notable
difference is the existence of the mode-1 oscillation in the pressure-driven system
which is absent in the flow-driven system. In addition, the stability structure in the
pressure-driven system is no longer a cascade as in the flow-driven case. Instead,
mode-1 is the dominant unstable mode in the pressure-driven system, and the mode-2
neutral curve is embraced by the mode-1 neutral curve. In other words, it is not
possible for the system to have purely mode-2 oscillations in the parameter space
studied.

Detailed energy budget analysis at the neutral points reveals that the mechanism
responsible for the small deformation oscillation in the pressure-driven system may
be the same as suggested by Jensen & Heil (2003). Namely, on the upper branch
of mode-1 when the wall stiffness (or tension) is high, there appears to be a ratio
close to 2/3 between the averaged flow influx and the energy dissipation associated
with the oscillations. However, on the lower branch of the mode-1 neutral curve,
greater wall deformation induces stronger energy dissipation towards the centre of the
tube, especially around the narrowest section. This changes the energy balance, and
the two-thirds ratio between the influx and oscillatory dissipation no longer holds.
The same conclusion was reached independently by Stewart et al. (2010). There is
a distinct change in the phase plot of the work done by upstream pressure (or the
net kinetic energy influx) and the rate of viscous dissipation: on the upper branch of
the mode-1 neutral curve, the direction of the phase plot is clockwise; on the lower
branch, it is anticlockwise. However, at the turning point, they are virtually in phase.
It is possible that the Bernoulli effects may be operating together with the Stokes
layer mechanism on the lower branch. For comparison, we also present the energy
budget for the mode-2 neutral curve of the flow-driven system. One important finding
is that the averaged flow influx is likely to be positive for mode-1 neutral points of
the pressure-driven system (though a couple of the influx values we computed are too
small to be clearly positive), which again agrees with the one-dimensional asymptotic
predication by Stewart et al. (2009). However, it is negative for all the mode-2 neutral
points of the flow-driven system.
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Appendix. Proof of the geometrical conservation law (GCL) of the numerical
scheme

We now show that our numerical scheme satisfies the GCL condition. For a movable
mesh, GCL requires that:

∂

∂t

∫
V

dV =
∫

S
D · v dS, (A 1)

where D is the velocity of the mesh. In our finite element scheme, we use 6-node
triangle elements with straight sides (1-4-2, 2-5-3, and 5-6-1). For each element, we
have

∂

∂t

∫
V

dV = ∂

∂t
[(x1 − x3)(y2 − y3)− (x2 − x3)(y1 − y3)]/2

= [(u1 − u3)(y2 − y3)+ (x1 − x3)(v2 − v3)

− (u2 − u3)(y1 − y3)− (x2 − x3)(v1 − v3)]/2. (A 2)

We then use the spine method and always define the node 4 to be at the centre of the
side (1-4-2), the velocity of this side is then a linear function of l, namely it can be
written as

D= D1(1− l/L)+ D2l/L, (A 3)

where L is the length of side 1-4-2, Di = uiex + viey is the mesh velocity at node i. The
normal of side (1-4-2) can be written as

v = [(y2 − y1)ex − (x2 − x1)ey]/L. (A 4)

Similarly for the other two sides. Substituting (A 3) and (A 4) into the right-hand side
of (A 1) we have∫

S
D · v dS = [(u1 + u2)(y2 − y1)− (v1 + v2)(x2 − x1)]/2

+ [(u2 + u3)(y3 − y2)− (v2 + v3)(x3 − x2)]/2
+ [(u3 + u1)(y1 − y3)− (v3 + v1)(x1 − x3)]/2. (A 5)

By comparing (A 2) and (A 5), and note that xi, yi, ui, vi are all nodal unknowns
(no errors induced by the discretization), it is easy to confirm that (A 1) is exactly
satisfied.
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