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Abstract A central problem in biomechanical studies of personalized human left ventricular (LV) modelling is to
estimate material properties from in vivo clinical measurements. In this work we evaluate the passive myocardial
mechanical properties inversely from the in vivo LV chamber pressure–volume and strain data. The LV myocardium
is described using a structure-based orthotropic Holzapfel–Ogden constitutive law with eight parameters. In the
first part of the paper we demonstrate how to use a multi-step non-linear least-squares optimization procedure to
inversely estimate the parameters from the pressure–volume and strain data obtained from a synthetic LV model
in diastole. In the second part, we show that to apply this procedure to clinical situations with limited in vivo
data, additional constraints are required in the optimization procedure. Our study, based on three different healthy
volunteers, demonstrates that the parameters of the Holzapfel–Ogden law could be extracted from pressure–volume
and strain data with a suitable multi-step optimization procedure. Although the uniqueness of the solution cannot
be addressed using our approaches, the material response is shown to be robustly determined.

Keywords Holzapfel–Ogden law · Inverse problem · Left ventricular · Parameter estimation ·
Passive myocardial properties

1 Introduction

Computational modelling of left ventricular (LV) mechanics provides unique insights into LV functions in both
diseased and healthy states. Such modelling relies essentially on the knowledge of constitutive laws and the corre-
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sponding myocardial material properties [1]. These material properties also provide invaluable diagnostic informa-
tion for patient risk stratification [2]. For example, the passive mechanical stiffness of the myocardium can affect
the diastolic filling of LV, which further affects the systolic pump function. Estimating the constitutive parameters
non-invasively, however, remains a great challenge for the LV modelling community.

Applications of the finite-element method (FEM) in biomechanical LV modelling date back to the 1970s with
homogeneous isotropic linear material [3–5] in diastole, then followed by three-dimensional stress analysis in the
myocardial wall of human LV reconstructed from clinical data [6–8]. By considering the left ventricle of a beating
dog heart as a thick-walled, fibre-reinforced structure and using non-linear finite-element analysis, Guccione et
al. [9] simulated LV dynamics at end of diastole (ED) and end of systole (ES) with a transversely isotropic
constitutive law [10]. Recently, the FEM has been applied to patient-specific modelling of heart diseases, and the
models may consist of anatomic reconstruction, electrical activity, biomechanics and haemodynamics with non-
linear hyper-elastic constitutive laws [11,12]. Note that in those investigations, one solves either the static or the
dynamic problems with the given material properties.

Traditionally, the mechanical properties of the LV myocardium are determined by a series of uni-axial [13] or
biaxial sample tests [14] or simple shear deformations [15] on specimens harvested from a specific heart. These
experiments provide insights into not only formulating a constitutive law of the myocardium as well as determining
the parameters [16]. However, these methods involve invasive operations and the destruction of tissues and are not
suitable for in vivo or clinical applications.

An alternative method of determining passive LV mechanical behaviour is the inverse estimation. For example,
parameters of a forward problem can be tuned to match the pressure–volume and motion fields provided by clinical
imaging. This approach was first used in [17,18]. The inverse estimation is typically formulated as a non-linear
optimization problem to minimize the difference in the measurements with respect to the unknown parameters.
Because of the highly non-linear nature of the optimization problem, and because that the constitutive parameters
are often correlated, it is non-trivial to inversely estimate those parameters accurately and uniquely from the noised
measurements [19], especially when complicated constitutive laws are used [20].

Earlier studies mainly used homogeneous isotropic linear elastic material models for the myocardium, which are
inappropriate in modelling myocardial mechanical behaviour since it is a hyper-elastic, fibre-reinforced material;
for summary on the myocardial material models, the interested reader is referred to [1]. Guccione et al. [10]
inversely estimated the parameters of a non-linear, transversely isotropic, four-parameter strain energy function
(known as Guccione’s law) using a three-dimensional (3D) model reconstructed at the beginning of the diastole.
The inverse method was later extended to include passive 3D LV aneurysm properties [21–24]. Augenstein et
al. [25,26] described an ex vivo experimental method and apparatus for myocardial parameter estimation using
cardiac magnetic resonance (CMR) imaging and Guccione’s law. The sequential quadratic programming (SQP)
method was used to optimize parameters by matching the experimentally measured geometry, deformation fields
and applied boundary conditions. The method was also validated against a deformable silicon gel phantom with
known material properties. Their results suggested that it is feasible to extract meaningful biophysical parameters
from CMR data. Nair et al. [27] used a genetic algorithm to estimate the four parameters of Guccione’s law with a
rabbit LV model by matching the strains.

Using in vivo CMR images combined with ex vivo diffusion tensor CMR, Wang et al. [28] sequentially estimated
the four parameters of Guccione’s law on a canine model using motion data from two states of the left ventricle:
unloaded reference state and ED. SQP was used for the optimization procedure, too. Later the researchers applied
the method to estimate the in vivo myocardial tissue properties on heart failure patients [29]. Because of a lack of
motion data, only one parameter from Guccione’s law was optimized by matching the LV dynamics; the remaining
three parameters were taken from canine studies. Xi et al. [30] used a reduced-order unscented Kalman filter to
optimize Guccione’s law from an in vivo CMR study for a human heart. They also estimated relaxation parameters in
diseased LV models [2] by combining cine and tagged CMRs along with invasively measured ventricular pressure.

The aforementioned studies all used Guccione’s law, which assumes that the myocardium is transversely isotropic.
Recent studies have demonstrated that myofibres have a highly laminar structure forming local orthotropic material
axes inside the myocardium [31]. It has been pointed out by Schmid et al. [32] that a transversely isotropic law
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is not suitable for modelling the passive myocardial response in simple shear tests. Therefore, to account for the
layered micro-structure, orthotropic constitutive laws have been proposed, such as the Fung-type law [33], pole-
zero law [34] and strain-invariant-based law [1]. Generally, there are more parameters in orthotropic constitutive
laws compared to transversely isotropic laws, which makes the inverse estimation harder to do. Using a synthetic
LV model, Remme et al. [20] inversely estimated parameters for the pole-zero law. However, because of the high
intercorrelations among the parameters, only 3 out of 18 parameters were estimated.

Although a number of studies have demonstrated the feasibility of inversely estimating constitutive parameters
from in vivo clinical measurements using simpler constitutive relations [10], fewer attempts have been made to
estimate parameters from in vivo data using orthotropic laws [20]. The orthotropic constitutive law proposed in [1]
(known as the Holzapfel–Ogden law) has strong ellipticity with respect to material stability and fewer parameters
than the pole-zero law. Most importantly, the advantage of the Holzapfel–Ogden law is that it can account for
a layered myofibre architecture. The Holzapfel–Ogden law is also relatively easy to implement using the FEM.
However, to the authors’ best knowledge, the feasibility of identifying the parameters of the Holzapfel–Ogden law
from non-invasive clinical measurements has not yet been investigated.

In this paper, we carry out such a study for the first time using a previously published LV model with known
parameters to provide a set of synthetic strain data and pressure–volume relationships [35]. Once verified, the
optimization method is then extended and applied to in vivo models with limited clinical measurements.

2 Methodology

2.1 Constitutive law for passive myocardium

The Holzapfel–Ogden constitutive law [1] assumes that the strain energy function ψ for the myocardium is

ψ = a

2b
eb(I1−3) +

∑

i=f,s

ai

2bi
[ebi (I4i−1)2 − 1] + afs

2bfs
[ebfs I8fs − 1], (1)

where a, b are the parameters for the matrix response; af, bf are the parameters for the myocardial fibres; as and bs

account for the fibre sheet contribution; and afs, bfs represent the shear effects in the sheet-plane. I1 = tr(C), C =
FTF is the right Cauchy–Green tensor, and F is the deformation gradient. I4f = f0 · (Cf0) and I4s = s0 · (Cs0)

are the stretch-related invariants along the myocyte and sheet directions, f0 and s0 respectively, in the reference
configuration. I8fs = f0 · (Cs0) reflects the coupling between the fibre and sheet stretches. For a more detailed
description of the Holzapfel–Ogden law, please refer to [1] and, for its applications in LV modelling, to [35–39].

2.2 Study 1: Feasibility study

2.2.1 Synthetic model

To check the feasibility of the inverse estimation of parameters in the Holzapfel–Ogden law from strain and pressure–
volume data, a previously published passive LV model [35] with known material parameters (i.e. the so-called true
parameters) is simulated using ABAQUS FEA. The myofibre structure and boundary conditions of the LV model
are kept the same as in [35]. This produces a set of synthetic data (i.e. the so-called experimental data) when the
endocardial pressure is increased from 0 to 8 mmHg. From these data we extract the LV cavity volume, as well as the
first, second and third principal strains from randomly distributed observation points inside the LV wall (excluding
the basal plane where the boundary conditions are applied) throughout the LV diastolic loading phase.
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Table 1 Changes in objective function for each parameter varied by ±10% from original values, defined as ΔO = (O+ + O−)/2;
O+ is the change from a +10% increase in one parameter, and O− is the change from a −10% decrease in one parameter

a (kPa) b af (kPa) bf as (kPa) bs afs (kPa) bfs

Δ fobj 0.006 0.004 0.014 0.0008 0.0004 0.0004 0.003 0.0008

Δ fvol 8.7 × 10−6 6.9 × 10−6 0.0009 2.1 × 10−5 3.6 × 10−7 3.6 × 10−7 2.2 × 10−6 7.1 × 10−7

Δ fε 0.006 0.004 0.013 0.0007 0.0004 0.0004 0.003 0.0008

2.2.2 Optimization procedure

We define three objective functions for matching the experimental data:

fobj = fvol + fε,

fvol =
T N

exp∑
i=1

(
1 − Vi

V ∗
i

)2
,

fε =
T N

exp∑
i=1

Npoint∑
j=1

∑
k=1st, 2nd, 3rd

(εk
j,i − εk*

j,i )
2,

(2)

where T N
exp = 25 is the number of timesteps from the beginning to the end of pressure loading; Npoint = 20 is the

number of observation points randomly distributed within the LV wall; V *
i and εk*

j,i are the LV chamber volume and

principal strains at timestep i from the forward modelling; Vi and εk
j,i are the corresponding data from the inverse

procedure; and k indicates the first, second and third principal strains.
A sensitivity analysis of parameters is performed by varying each of the eight parameters in a range of ±10%

around their so-called true values, while the seven remaining parameters are chosen to be the true values. A study
of the sensitivity of the objective functions to the variation of a parameter is then performed and summarized in
Table 1. Notice that because the total number of data points for the volume (25) is much less than the total number
of the strains (1,500), the change Δ fε and, hence, Δ fobj is much greater than Δ fvol. In addition, fobj, fvol and
fε are most sensitive to changes in af, followed by a, b, afs, but are less sensitive to changes in as and bs. This
suggests that as and bs may not be accurately estimated. However, a greater change in fvol due to the variation in
bf is observed; thus, using fvol in addition to fε allows one to extract extra information.

Based on the sensitivity analysis, we propose a multi-step optimization procedure, as shown in Fig. 1. In each step,
a forward problem is solved to yield the updated data set Vi and εk

j,i . The MATLAB function lsqnonlin, together
with a trust-region-reflective algorithm, is used to update the material parameters by minimizing the least-squares
difference between the experimental data and the model responses from the forward simulations.

2.3 Study 2: Application to in vivo modelling

Having developed the multi-step optimization procedure, we proceed to estimate the parameters of the Holzapfel–
Ogden law using in vivo data. An in vivo LV geometry is first reconstructed from a CMR study of a healthy
male volunteer, age 28. The CMR study was performed on a Siemens MAGNETOM Avanto (Erlangen, Germany)
1.5 Tesla scanner with a 12-element phased array cardiac surface coil. The imaging protocol included cine sequence
with steady-state free precession. Custom MATLAB software was written to segment the endocardial and epicardial
boundaries at early diastole when the LV pressure is lowest (Fig. 2a). Following the manual segmentation, prolate
spheroidal coordinates and cubic B-splines are used to fit endocardial and epicardial surfaces, smoothness regular-
ization is imposed to minimize the geometric distortion, and constraints are imposed on the fitting parameters to
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Fig. 1 Flowchart of
proposed multi-step
optimization procedure for
the synthetic model. In
Step 1, all the parameters
are estimated using both the
volume and strain data,
followed by (Step 2) an
estimation of af and bf
using the volume data only.
Similarly in Step 3,
as, bs, afs, bfs are
estimated using the strain
data only. In Step 4, the
remaining parameters
a, b, af, bf from Step 3 are
optimized using both the
volume and strain data

start

Step 1: optimizing a, b, af,
bf, as, bs, afs, bfs with fobj

Step 2: optimizing af, bf with
f ol and fixed a, b, as, bs, afs, bfs

Step 3: optimizing as, bs, afs bfs,
with f and fixed a, b, af, bf

Step 4: optimizing a, b, af, bf
with fobj and fixed as, bs, afs, bfs

End

maintain C2 continuity at the apex. Figure 2b shows the unfitted reference LV geometry. Hexahedral elements are
generated using a linear interpolation from endocardial to epicardial surfaces, as shown in Fig. 2c. The interested
reader is referred to [40] for more details on the LV geometry reconstruction.

An in-house B-spline deformable registration method [41] is used to estimate the regional circumferential strain
from early to ED from four positions of short-axis cine images from basal to middle ventricles and six regions for
each short-axis position. The LV cavity volumes at ED are also calculated from the cine images. In summary, the
data from the in vivo measurements consist of 24 regional circumferential strains and LV cavity volume at ED.
Because the ventricular pressure recording is not available, a population-based ED pressure (8 mmHg) is assumed.

2.3.1 Sensitivity analysis

Generally, the in vivo measurements are more noisy and contain significantly fewer data compared to what can be
produced by the synthetic model (25 versus 1,525), so a more comprehensive sensitivity analysis is performed.

Consider a parameter set {κi , i = 1, . . . 8} := [a, b, af, bf, as, bs, afs, bfs], and define

{di , i = 1, . . . , N } = {ε1, . . . , εn, V }, (3)

where N = n + 1, εi is the strain data from the i th position (i = 1, . . . , n), and V is the LV volume. To measure
the model response sensitivity to parameter variations (10% as in Sect. 2.2.2), we introduce the matrix
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Fig. 2 Computational in vivo LV model. a Endocardial and epicardial boundaries segmentation. b Reference LV mesh described in
prolate spheroidal coordinates. c Fitted LV mesh

S =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δd1

Δκ1

Δd1

Δκ2
. . .

Δd1

Δκ8
Δd2

Δκ1

Δd2

Δκ2
. . .

Δd2

Δκ8
...

...
. . .

...
ΔdN

Δκ1

ΔdN

Δκ2
. . .

ΔdN

Δκ8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the relative changes in the strains and volume due to the parameter variations Δκm are denoted by Δdi =
εi − εi0, i ∈ N , 0 indicates the data from the baseline model. If the variations in any of the parameters produce
similar responses, then these parameters may be correlated. To quantify the correlations, we further calculate the
sensitivity coefficient matrix SCM from the normalized columns of S:

SCM = [S̄m]T [S̄m] and m = 1, . . . , 8, S̄m = Sm

|Sm | , Sm =
{
Δdi

Δκm
, i = 1, . . . N

}
. (4)
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Table 2 Correlation coefficient SCM with LV volume

a b af bf as bs afs bfs

a 1.0000 1.0000 0.9999 0.9998 0.9570 ≈ 0.0 0.9999 1.0000

b 1.0000 0.9999 0.9998 0.9571 ≈ 0.0 0.9999 1.0000

af 1.0000 1.0000 0.9572 ≈ 0.0 0.9997 0.9999

bf 1.0000 0.9572 ≈ 0.0 0.9997 0.9999

as 1.0000 0.1 0.9568 0.9570

bs 1.0000 ≈ 0.0 ≈ 0.0

afs 1.0000 0.9999

bfs 1.0000

Sensitivity values

50.6839 2.9955 8.7953 3.3863 0.0001 ≈ 0.0 6.9506 0.2714

Table 3 Correlation coefficient SCM with normalized LV volume

a b af bf as bs afs bfs

a 1.0000 0.9918 −0.0505 −0.1202 −0.01 0.02 0.9155 0.8590

b 1.0000 −0.0940 −0.1600 −0.002 0.02 0.8865 0.7985

af 1.0000 0.9952 0.06 −0.006 −0.2722 0.2759

bf 1.0000 0.04 ≈ 0.0 −0.3442 0.2026

as 1.0000 0.004 −0.02 −0.004

bs 1.0000 0.004 ≈ 0.0

afs 1.0000 0.8296

bfs 1.0000

Sensitivity values

0.5953 0.0367 0.0960 0.0389 ≈ 0.0 ≈ 0.0 0.1373 0.0028

If SCMi, j is close to ±1, then κi and κ j are closely correlated. The existence of correlated parameters poses non-
uniqueness in the inverse problem. A possible remedy is to estimate one parameter only while leaving the correlated
ones constant. In addition, the norm

|Sm | =
√√√√

N∑

i

(
Δdi

Δκm

)2

reflects the sensitivity of the objective function to the variation of each parameter. Low sensitivity to a parameter
makes it difficult to estimate.

Table 2 lists the average results of two sensitivity analyses: one is from a 10% increase in each parameter, the
other is from a 10% decrease in each parameter; the baseline parameters are from [36]. These results show that a
has the highest sensitivity, followed by af, afs, bf, b, bfs. as has a much lower sensitivity, and bs has virtually zero
sensitivity. High correlations can also be found among a, b, af, bf, as, afs, bfs. These observations suggest that it
is unlikely that the eight parameters can be estimated unambiguously.

Since the absolute LV volume is much greater than the strains, it can overdominate the optimization procedure.
Hence, we also perform the same sensitivity study using the normalized LV volume, (V − V0)/V0, and the results
are shown in Table 3. Now the correlation matrix SCM is different from that in Table 2. The four parameters
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a, b, afs, bfs are highly correlated, while af and bf are only correlated to each other, not to a, b, afs, bfs. Again,
as and bs have very low sensitivity to parameter variations.

To deal with the difficulties caused by the correlation of the parameters, we follow the approach by [2] and divide
the parameters into two groups, agroup = {a, af, as, afs}, bgroup = {b, bf, bs, bfs}. We set

agroup = Caagroup
0 , bgroup = Cbbgroup

0 , (5)

where agroup
0 and bgroup

0 are the experimentally estimated parameters from the previous study [35] (referred to as
the original parameters), and Ca, Cb are the scaling factors.

In the first optimization step, the optimal Ca and Cb are found by minimizing

fO1 =
∑

i=1,...,n

(εi − ε∗i )2 + (V − V0)
2, (6)

in which, ε∗i is the measured regional circumferential strain and V0 is the measured LV cavity volume from cine
images. The minimization problem is solved by sweeping the parameter space (Ca and Cb) as in [2]. The final
parameter set which minimizes fO1 is chosen. If multiple sets of Ca and Cb exist, the set with the minimized
|Ca − Cb| is selected.

Because fO1 is volume dominated, further steps are needed to match the strains. According to Table 3, af is only
highly related to bf, but not to a, b, afs and bfs; therefore, we could set a, b, afs and bfs at the same values from
the first step but optimize af, bf with the following objective function:

fO2 =
∑

i=1,...,n

(εi − ε*
i )

2 +
( V − V0

V0

)2
. (7)

However, since the sensitivities of as and bs are very low, the optimization procedure is still unable to update these
without further information.

In a healthy myocardium, we know that the stiffness in the sheet direction should be much smaller than that in
the myofibre direction; hence, we introduce the following constraints:

af ≥ 2as and bf ≥ 2bs, (8)

in the optimization procedure to allow as and bs to be updated. The SQP method in MATLAB is then employed to
minimize fO2 with the constraints (Eq. 8).

A further step is used to ensure that the volume matching is still satisfied by applying the objective function fO1

once more. Since Table 2 indicates that fO1 is highly sensitive to variations in a and afs, which are also correlated,
we may reduce one of these two parameters by introducing C3, so that

a = C3a and afs = C3afs. (9)

Now we only need to estimate C3 in the third step. The remaining parameters are kept the same from Step 2.
The overall optimization procedure for the in vivo model is illustrated in the flowchart in Fig. 3.

123



Holzapfel–Ogden law for healthy myocardium

Fig. 3 Flowchart of
proposed multi-step
optimization procedure for
in vivo LV model. In Step 1,
all parameters from the
Holzapfel–Ogden law are
updated through the two
scaling factors Ca and Cb
(Eq. 5) by minimizing fO1
(Eq. 6), followed by (Step 2)
the optimization of af and bf
by minimizing fO2 (Eq. 7).
Finally, in Step 3, a and afs
(only) are updated through
the scaling factor C3 (Eq. 9)
by minimizing fO1 again

start

Step 1: optimiz-
ing Ca , Cb with fO1

Step 2: optimizing af, bf with
fO2 using the constraints

(Eq. (8)), and fixed a, b, afs, bfs

Step 3: optimizing C3 with fO1

End

Table 4 Estimated parameters from proposed multi-step optimization procedure

Parameter True value Case 1 Case 2 Case 3 Case 4 Parameter range

a(kPa) 0.236 0.236 0.236 0.238 0.238 (0.1, 2)

b 10.81 10.75 10.74 10.61 10.67 (1, 30)

af(kPa) 20.03 19.96 19.54 19.97 18.97 (1, 30)

bf 14.15 14.38 15.97 15.29 18.45 (1, 25)

as(kPa) 3.72 3.91 3.83 4.27 4.08 (0.1, 10)

bs 5.16 5.87 6.51 6.99 3.31 (0.1, 10)

afs(kPa) 0.41 0.41 0.42 0.40 0.43 (0.1, 2)

bfs 11.3 11.52 11.09 12.05 10.28 (0, 20)

Case 1: estimation from the proposed optimization procedure
Case 2: estimation using only the strain data in objective function
Case 3: estimation using only the first principal strain and volume data
Case 4: estimation terminated after the first step

3 Results

3.1 Synthetic model

Table 4 shows the inversely estimated eight parameters from the proposed multi-step optimization procedure with
both fvol and fε (Case 1). These are fairly close to the so-called true parameters from [35], though some discrepancy
is seen in the values of as and bs. This is because the objective functions are insensitive to changes in as and bs.
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Fig. 4 Landscape of
objective function of fO1
related to Ca and Cb

Table 5 Estimated parameters for healthy volunteer

a (kPa) b af (kPa) bf as (kPa) bs afs (kPa) bfs

Initial 0.2362 10.81 20.0370 14.154 3.7245 5.1645 0.4109 11.3

Step 1 0.0472 3.243 4.0074 4.2462 0.7449 1.5494 0.0822 3.39

Step 2 0.0472 3.243 3.1762 4.7435 0.5426 1.5998 0.0822 3.39

Step 3 0.1348 3.243 3.1762 4.7435 0.5426 1.5998 0.2344 3.39

Volume and strain
comparisons

ED volume (mL) Strain difference Average strain
∼ ∑n

i (εi − ε
exp
i )2

∑n
i εi/n

Initial 90.57 0.31 0.06 ± 0.01

Step 1 145.44 0.07 0.14 ± 0.04

Step 2 150.76 0.06 0.16 ± 0.05

Step 3 142.99 0.04 0.18 ± 0.03

Measured 143 ∼ 0.17 ± 0.04

Table 4 also shows the results when using fε only for the multi-step optimization procedure (Case 2). Compared
to the proposed multi-step optimization (Case 1), the parameters optimized in Case 2 are less accurate, especially
for bf. This highlights the importance of using volume measurements.

Case 3 in Table 4 shows the estimated parameters when we use the proposed multi-step optimization procedure
but with only the first principal strains (k = 1st). In this case, the discrepancies in as, bs and bfs are greater, though
the remaining parameters are still close to the so-called true values. Case 4 arises when all the strains and volume
data are used but only the first step of the optimization is performed. The values of af, bf, as and bs are all less
accurate in this case. In summary, the proposed multi-step sequential optimization procedure is the best approach
of all cases considered.

3.2 In vivo estimation

The parameters for the in vivo human LV model are now estimated using the proposed optimization procedure
in Fig. 3 with 8 mmHg ED pressure. The mapping of the objective function fO1, with Ca and Cb varying in a
range of (0.1, 1), is shown in Fig. 4. From the centre of the valley, we select the point (Ca = 0.2, Cb = 0.3). The
final estimated parameters are summarized in Table 5, with the predicted strains compared with the measurements
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Fig. 5 Regional circumferential strain at end of diastole after each optimization step (strain is calculated related to early diastole: the
reference state)

Fig. 6 Distributions of myofibre stress at 8 mmHg endocardial pressure for in vivo LV model using a initial parameters and b optimized
parameters

following each step. Clearly, the original parameters used by [35] are over-stiff for the human subjects and result in
a much smaller ED LV cavity volume compared to the measured ED volume. This over-stiffness in the parameter
set is also noticed in [12].

Figure 5 plots the detailed regional circumferential strains at ED after each step. After Step 3, the simulated
regional circumferential strain is in good agreement with the measurements. Figure 6 shows the myofibre stress
distributions within the LV at ED using both the initial and optimized parameters. Clearly, the initial parameters
yield a very different stress pattern compared to the optimized ones.

Since we use a population-based end-diastolic pressure (EDP) in the parameter estimation, we check the change
of the parameters when the EDP is varied from 10 mmHg to 16 mmHg; this is summarized in Table 6. Changes in
the myofibre stress–strain relationships, when estimated with different EDPs, are plotted in Fig. 7. In general, with
increased EDP, the stiffness along the myofibres increases.

In Fig. 7, we further compare the myofibre stress–strain relationship with those from other studies which inversely
estimated human myocardial parameters based on different constitutive laws and EDPs. Xi et al. [42] used a healthy
subject and 13.6 mmHg EDP; Wang et al. [29] reported the averaged healthy myocardial stiffness from six subjects
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Table 6 Estimated parameters with different end-diastolic pressures (EDPs)

EDP (mmHg) a (kPa) b af (kPa) bf as (kPa) bs afs (kPa) bfs

8 0.1348 3.243 3.1762 4.7435 0.5426 1.5998 0.2344 3.39

10 0.0939 4.324 3.7644 5.5372 0.7482 2.0657 0.1634 4.5200

12 0.2658 2.1620 6.4472 2.5886 1.4780 1.0330 0.4625 2.2600

14 0.1211 4.3240 6.8811 3.4370 1.1747 1.7184 0.2107 4.5200

16 0.0509 6.4860 4.2654 8.7982 0.7449 3.0987 0.0885 6.7800

Volume and strain comparisons ED volume (mL) Strain difference Average strain

∼ ∑n
i (εi − ε

exp
i )2

∑n
i εi/n

Case with 8 mmHg EDP 142.99 0.04 0.18 ± 0.03

Case with 10 mmHg EDP 142.99 0.04 0.18 ± 0.03

Case with 12 mmHg EDP 143 0.04 0.18 ± 0.02

Case with 14 mmHg EDP 142.99 0.04 0.18 ± 0.03

Case with 16 mmHg EDP 142.99 0.04 0.17 ± 0.04

Measured 143 ∼ 0.17 ± 0.04

Fig. 7 Predicted myofibre stress–strain relationships under uni-axial tension and with parameters estimated from different values of
the end-diastolic pressure, compared with predictions from other studies

and 11 mmHg EDP; Krishnamurthy et al. [12] estimated the functional myocardial stiffness from one LV dysfunc-
tional patient with an EDP of 15 mmHg. Although there are necessary discrepancies due to the subject variety and
different constitutive laws used, the overall trend of the mechanical responses is similar.

As for most of the inverse problems, the uniqueness of inversely estimated coefficients cannot be guaranteed.
To test the robustness of the procedure, however, we look at seven more cases: (1) using different values of Ca and
Cb; (2) increasing aini

f by half; (3) increasing bini
f by half; (4) decreasing aini

f by half; (5) decreasing bini
f by half;

(6) adding Gaussian noise to the measured circumferential strains with a half standard deviation of the measured
values; and (7) as in (6) but using one standard deviation of the measured values. Table 7 summarizes the estimated
parameters from all seven cases, and the corresponding myofibre stress–strain relationships for a cubic myocardial
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Fig. 8 Predicted myofibre
stress–strain relationships
from different cases listed in
Table 7 under uni-axial
tension

Table 7 Estimated parameters for uncertainty analysis

Case a (kPa) b af (kPa) bf as (kPa) bs afs (kPa) bfs

Ca = 0.2,Cb = 0.3 0.134 3.243 3.176 4.744 0.543 1.599 0.234 3.39

Ca = 0.17,Cb = 0.4 0.073 4.324 3.072 5.426 0.645 2.007 0.127 4.52

1.5aini
f 0.190 2.378 4.018 2.782 0.658 1.132 0.331 2.49

1.5bini
f 0.101 4.108 2.236 7.505 0.522 1.962 0.175 4.29

0.5aini
f 0.054 4.324 3.182 5.786 1.118 2.065 0.093 4.52

0.5bini
f 0.031 5.405 3.718 4.455 0.744 1.797 0.054 5.65

0.5SD Noise 0.147 3.243 2.957 5.104 0.742 1.556 0.255 3.39

1.0SD Noise 0.094 3.243 3.621 4.471 0.772 1.463 0.164 3.39

tissue under uni-axial tension are shown in Fig. 8. We notice that although there are some differences in the estimated
parameters for the different cases, there seems to be reasonable agreement in the predicted myofibre stress–strain
relationships (Fig. 8). This is confirmed by applying the optimization procedure to two more healthy volunteers (see
the appendix for details). The myofibre stress distributions obtained using different sets of parameters in Table 7
are all found to be similar to the stress distribution in Fig. 6b (and hence not shown). Since the myofibre stress–
strain relationship largely determines the LV responses, and given the extreme difficulty in the in vivo parameter
estimation, the proposed optimization procedure is deemed to be sufficiently robust.

4 Discussion

Estimating the material parameters of myocardial constitutive laws from limited in vivo data remains a major chal-
lenge due to the non-linearity of the model responses and strong intercorrelations between the material parameters
[2]. Furthermore, different constitutive laws have different parameter sets and behaviours, and specific treatment in
the inverse problem is often required for a given constitutive law. Although the structure-based Holzapfel–Ogden
law is gaining popularity in heart modelling, to the best of our knowledge, no studies have been performed to
estimate the parameters of the Holzapfel–Ogden law from in vivo measurements.

In this study, inspired by the ideas from previous studies [20,27,30], we first developed an optimization procedure
for estimating the parameters of the Holzapfel–Ogden law using a synthetic model to produce the so-called true
values. The synthetic model allows us to investigate the estimation errors and verify the correctness of the solution.
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By performing the sensitivity analysis, we show that even with a large amount of strain and pressure–volume data,
it is difficult to accurately estimate the sheet parameters as and bs, which are usually very small [20]. We also find
that by using a multi-step and sequential optimization procedure we can achieve much higher accuracy compared
to a single-step optimization (Table 4).

When applying the approach to in vivo LV models, we have encountered difficulties since there are insufficient
data from clinical measurements. Various constraints must be introduced to reduce the complexity of the problem.
One constraint is to assume that the eight parameters can be grouped into two (one with exponential terms, and
one without) and scaled to the corresponding groups of the original parameters [35]. In this way, we only need
to estimate two scaling factors, Ca and Cb, in the first step. In addition, the set which minimizes |Ca − Cb| is
chosen when multiple sets of Ca and Cb are available from the sweeping procedure. This also avoids over-stiffness
responses. A similar approach is used by [12], though for a different constitutive law.

Furthermore, constraints (Eq. 8) must be introduced when estimating af and bf using normalized volume and
strain data. Because the measured circumferential strain from cine images is in the circumferential–longitudinal
axis plane, which aligns with the myofibre direction, this procedure can effectively update the myofibre stiffness
parameters, af and bf. However, we are unable to accurately estimate as and bs, which are related to myofibre sheet
strains. Measurements of sheet strains are extremely difficult in vivo. In addition, the synthetic model study shows
that even with all the principal strains, as and bs have very low sensitivities and cannot be estimated properly. Hence,
additional constraints are applied to as and bs in the second optimizing step.

The sensitivity analysis shows that the parameters in the Holzapfel–Ogden law are highly intercorrelated; for
example, an increase in a can be compensated by a decrease in b or other correlated parameters. This leads to
uncertainties in the parameter estimation. This is a common issue for all anisotropic constitutive laws. Xi et al. [2]
found that, with their synthetic LV models, a unique solution for estimating the seven parameters of Costa’s law [33]
cannot be achieved using a reduced-order unscented Kalman filter. Therefore, they used the transversely isotropic
Guccione’s law with a lower level of complexity.

Instead of changing the constitutive law, we reduce the complexity of the problem by estimating a total of five
parameters only, Ca, Cb, af, bf, C3. Even with the reduced set of parameters, it is not possible to establish the
global minimization or the uniqueness of the solution given the ill-posed nature of the inverse problem. However, we
have tested various cases to show that more or less the same mechanical responses in the physiological range could
be achieved even though the parameters are somewhat different. One possible explanation for the same stress–strain
relationship from different parameter values of the same constitutive law is that the law is based on coupled strain
attributes [43].

In this study, only cine CMR imaging is used to provide data for the in vivo LV model. Although dedicated strain
CMR imaging is able to provide 3D LV deformation, this requires complex image processing and additional scanning
time, which may not be possible for some patients. Cine CMR images are widely available from routine scans. Hence
the optimization procedure proposed based on cine CMR imaging can be readily used for clinical applications. The
downside of the approach is that accurately estimating LV motion/strain from cine CMR images is more difficult
because cine images are usually 2D images; therefore, the out-plane motion cannot be easily estimated. In addition,
due to the lack of patterns or features for motion tracking, large uncertainties exist when estimating the pixel-wise
strain. Our previous study [41] showed that regional circumferential strains estimated from cine images using
a deformable image registration method compared well with those from dedicated strain CMR imaging for both
healthy volunteers and patients with myocardial infarction, but greater discrepancies existed in the estimated regional
radial strains. Thus, in the in vivo LV model, only regional circumferential strains are used for the objective function.

The dilemma is that, while fewer data make the inverse problem more ill-posed, demanding more data means more
clinical measurements with longer acquisition times, which is not always possible. In a patient CMR study, only
necessary measurements are performed routinely. Furthermore, CMR image at late-diastole is difficult to achieve,
while the ED frame is always recorded with high quality; therefore, it is desirable to use information from the ED
frame for material parameter estimation. However, issues associated with inversely estimating material properties
from an ED frame have been reported in several studies [26]. Xi et al. [42] found that with an ED measurement, the
parameters cannot be uniquely constrained, although such a measurement can provide a potentially robust indicator
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Table 8 Estimated parameters from three healthy volunteers with 8 mmHg EDP

a (kPa) b af (kPa) bf as (kPa) bs afs (kPa) bfs

Volunteer 1 0.1348 3.243 3.1762 4.7435 0.5426 1.5998 0.2344 3.39

Volunteer 2 0.2096 3.243 3.0634 3.4595 0.7334 1.5473 0.3646 3.39

Volunteer 3 0.1034 3.243 3.2205 3.5845 0.7418 1.5470 0.1799 3.39

Table 9 ED regional
circumferential strain
comparison

Measured Inversely estimated

Volunteer 1 0.17 ± 0.04 0.18 ± 0.03

Volunteer 2 0.19 ± 0.06 0.19 ± 0.04

Volunteer 3 0.19 ± 0.05 0.20 ± 0.04

Fig. 9 Myofibre
stress–strain relationships
under uni-axial tension for
three healthy volunteers

of myocardial stiffness, which is similar to what we found. Augenstein et al. [25] showed that with five frames of
CMR data, the parameters from Guccione’s law could be inversely estimated within a 5% margin of error.

In our study, because of the lack of an in vivo EDP recording and strain CMR, we must rely on the limited ED
frames for the parameter estimation. Therefore, rather than aiming to obtain the unique parameters, which is not
possible, we try to extract the myocardial stiffness. It goes without saying that with more data available from routine
CMR measurements, the parameters could be estimated with higher accuracy. This has been demonstrated by the
synthetic model: the inversely estimated parameters are fairly close to the so-called true parameters.

In the in vivo LV model, an original set of parameters is required. We used a set obtained by fitting the simple shear
tests on healthy swine myocardial samples [15,35]. These original parameters might affect the accuracy of inverse
estimation. Parameters based on human myocardial samples may be a better candidate, but these are not yet available.

Validating the inversely estimated parameters in the in vivo LV model is difficult since it is impossible to perform
mechanical tests on in vivo hearts. Previous studies tried to compare results with those of other studies [2,28]. Our
estimated parameters are shown to be in the same range as in [12,29,42].

An important issue in LV modelling is the choice of a suitable constitutive law for the myocardium. In this paper,
we choose the well-established Holzapfel–Ogden model. We are aware that the Holzapfel–Ogden law makes no use
of the deformation invariants I5(= f0C2f0)) and I7(= s0C2s0), which has recently been shown to be incompatible
with linear elasticity [44,45]. However, it is well known that if you reduce the number of invariants, then you cannot
fully capture linearly elastic responses, but the consequences of this should be viewed with extreme caution since
experiments on soft tissue in the small-strain regime, by the very nature of the material, are not very accurate or
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reliable. Indeed, many of the current invariant-based laws do a very good job of fitting the data of a wide range of
soft tissues to a wide range of deformations – and the fact that they do not fully capture linear elasticity is, under
the present state of experimental knowledge of the mechanics of soft tissues, largely irrelevant. The Holzapfel–
Ogden law, in particular, is the model that can fit all the data of the simple shear experiments well [15], and the
computed LV dynamics based on the Holzapfel–Ogden law seem to predict the measured strains and volumes
well within the physiological range. In addition, including more invariants will greatly increase the complexity
of the inverse problem and make it extremely hard, if not impossible, to estimate all the parameters from in vivo
measurements.

Other limitations of the work in common with many published LV models are as follows: (1) the in vivo LV
geometry is reconstructed at ED, which is not stress-free, and residual stress is not considered [39]; (2) the hetero-
geneous distribution of material properties is not considered in the LV models; and (3) the proposed method can
be potentially extended to diseased heart tissue with some changes in the optimization procedure to account for a
remodelled micro-structure, such as myocardial infarction [46].

5 Conclusion

In this study, we have investigated, for the first time, the feasibility of inversely estimating parameters in the
orthotropic Holzapfel–Ogden constitutive law for passive myocardium by proposing a multi-step optimization pro-
cedure using both strain and pressure–volume data. When applied to a synthetic LV model, the estimated parameters
are very close to the known parameters, although some uncertainties exist in estimating parameters along the sheet
direction due to the low sensitivity. For parameter estimation of in vivo models, a more comprehensive sensitivity
study is performed due to the limited measurement data. The material parameters are scaled from the original para-
meters based on ex vivo experimental tests. A study of the sensitivity is also used to reduce the complexity of the
problem. By matching the regional circumferential strains and pressure–volume at the ED frame, we have demon-
strated that the parameters of the Holzapfel–Ogden law, and in particular the myofibre stress–strain relationship,
can be estimated successfully when suitable constraints are introduced for the in vivo model.
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6 Appendix

The proposed optimization procedure is further applied to two more healthy volunteers [volunteer 2 (male, age 22)
and volunteer 3 (male, age 31)]. The LV geometry is reconstructed from CMR studies similarly to the volunteer
study in the main text (volunteer 1, male, age 28), and 8 mmHg EDP is assumed. Table 8 contains the inversely
estimated parameters of the Holzapfel–Ogden law. Parameters are similar for all three volunteers, though minor
differences exist. Table 9 compares the ED regional circumferential strain in the three volunteers with strains from
cine images, which shows that with optimized parameters, the simulated strains agree well with the measurements.
Figure 9 in Appendix shows the corresponding myofibre stress–strain relationships for all three volunteers under
uni-axial tension. Again, the mechanical responses for these healthy volunteers are very similar, particularly at the
small strain (Fig. 9).
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