

Spring Workshop on Nonlinear Mechanics, 4-7 April 2011, Xi'an, China

Plasticity of sandwich beam with metallic foam core

Tiejun Wang (王铁军)

Department of Engineering Mechanics School of Aerospace Engineering Xi'an Jiaotong University(西安交通大学) Xi'an 710049, China

Research Topics in My Group

Mechanics of inhomogeneous solids

- Damage and ductile fracture mechanics, 1988 --
- Deformation, fatigue and fracture of polymers, 1997 --
- Bending, buckling and thermal stress of functionally graded structures, 2001 --
- Waves in layered piezoelectric structures, 2001 -
- Mechanics of nanomaterials and structures, 2006--
- Plasticity of lightweight sandwich structures, 2006 --
- Strength theory and fracture in TBC system, 2007 --

Damage and ductile fracture mechanics, 1988 ---

- T.J. Wang and K. Kishimoto. Higher order fields for damaged nonlinear antiplane shear notch, crack and inclusion problems. *Euro. J. Mechanics*, A/Solids, 1999,18(6): 963-986
- T.J. Wang and Z.B. Kuang. Stress, deformation and damage fields near the tip of a crack in a damaged nonlinear material. *Int. J. Fracture*, 1996, 79(1):1-26.
- T.J. Wang. Unified CDM model and local criterion for ductile fracture -I. *Eng. Fracture Mech.*, 1992, 42(1): 177-183
- T.J. Wang. Unified CDM model and local criterion for ductile fracture -II. *Eng. Fracture Mech.*, 1992, 42(1): 185-192
- T.J. Wang and Z.W. Lou. A continuum damage model for weld heat affected zone under low cycle fatigue loading. *Eng. Fracture Mech.*, 1990, 37(4): 825-829

Deformation, fatigue and fracture of polymers, 1997 --

- Z.N. Yin and T.J. Wang, Deformation response and constitutive modeling of PC, ABS and PC/ABS alloys under impact tensile loading. *Materials Science and Engine*ering A, 2010, 527: 1461-1468
- Z.N. Yin and T.J. Wang, Deformation of PC/ABS alloys at elevated temperatures and high strain rates. *Materials Science and Engineering* A, 2008, 494: 304-313
- Q.Z. Fang, T.J. Wang, H.G. Beom, H.P. Zhao, Rate-dependent large deformation behavior of PC/ABS alloy. *Polymer*, 2009, 50: 296-304
- Y.J. Jin and T.J. Wang, Three-dimensional numerical modeling of the damage mechanism of amorphous polymer network. *Computational Materials Science*, 2009, 46: 632-638
- H.M. Li, G.F. Wang and T.J. Wang, Effect of crack-tip shape on the near tip field in glassy polymer. *Int. J. Solids & Structures*, 2008, 45: 1087-1100

Deformation, fatigue and fracture of polymers, 1997 --

- Q.Z. Fang, T.J. Wang and H.M. Li, Overload induced retardation of the fatigue crack propagation of polycarbonate. *Int. J. Fatigue*, 2008, 30: 1419-1429
- Q.Z. Fang, T.J. Wang and H.M. Li, 'Tail' phenomenon and fatigue crack propagation of PC/ABS alloy. *Polymer Degradation and Stability*, 2008, 93: 281-290
- Q.Z. Fang, T.J. Wang and H.M. Li, Overload effect on the fatigue crack propagation of PC/ABS alloy. *Polymer*, 2007, 48: 6691-6706
- Q.Z. Fang, T.J. Wang and H.M. Li, Large tensile deformation behavior of PC/ABS alloy. *Polymer*, 2006, 47: 5174-5181.
- T.J. Wang, Kishimoto K, Notomi M, Effect of triaxial stress constraint on the deformation and fracture of polymers. *Acta Mech Sin*, 2002, 18(5): 480-493

Bending, buckling and thermal stress of functionally graded structures, 2001 ----

- Z.S. Shao, T.J. Wang, Transient thermo-mechanical stresses in functionally graded cylindrical panels. *AIAA Journal*, 2007, 45:2487-2496
- Z.S. Shao and T.J. Wang, Three-dimensional solutions for the stress fields in functionally graded cylindrical panel with finite length. *Int. J. Solids & Structures*, 2006, 43: 3856-3874
- L.S. Ma and T.J. Wang. Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory. *Int. J. Solids Structures*, 2004, 41:85-101
- L.S. Ma and T.J. Wang. Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings. *Int. J. Solids Structures*, 2003, 40: 3311-3330

Waves in layered piezoelectric structures, 2001 --

- H. Liu, T.J. Wang, et al., Effect of a biasing electric field on the propagation of antisymmetric Lamb waves in piezoelectric plates. *Int. J. Solids & Structures*, 2002, 39 (7): 1777-1790
- H. Liu, T.J. Wang, et al., Effect of a biasing electric field on the propagation of symmetric Lamb waves in piezoelectric plates. *Int. J. Solids & Structures*, 2002, 39 (7): 2031-2049
- H. Liu, Z.K. Wang and T.J. Wang. Effect of initial stress on the propagation behavior of Love wave in a layered piezoelectric half-space. *Int. J. Solids & Structures*, 2001, 38: 37-51
- F. Jin, Z.K. Wang and T.J. Wang. The Bleustein-Gulyaev (B-G) wave in a piezoelectric layered half-space. *Int. J. Engineering Science*, 2001, 39:1271-1285

Mechanics of nanomaterials and structures, 2006-

- W.X. Zhang, T.J. Wang and X. Chen, Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites. *Int. J. Plasticity*, 2010, 26: 957–975
- W.X. Zhang and T.J. Wang, Effect of surface energy on the yield strength of nanoporous materials. *Appl Phys Lett*, 2007, 90: 063104
- Y. Ru, G.F. Wang and T.J. Wang, Diffractions of elastic waves near a cylindrical nano-inclusion incorporating surface effect. *J. Vib. Acoustics*, 2009, 131: 061011
- G.F. Wang, T.J. Wang and X.Q. Feng, Diffraction of plane P-wave by a nanosized circular hole with surface effect. *Appl Phys Lett*, 2006, 89: 231923.
- Z.Y. Ou, G.F. Wang and T.J. Wang, Elastic fields around a nanosized spheroidal cavity under arbitrary uniform remote loadings. *Euro. J. Mech.*, A/Solids, 2009, 28: 110-120
- G.F. Wang, X.Q. Feng, T.J. Wang and W. Gao, Surface effects on the stresses near a crack tip. *J. Appl. Mech.*, 2008, 75: 011001
- G.F. Wang and T.J. Wang, Deformation around a nanosized elliptical hole with surface effect. *Appl Phys Lett*, 2006, 89: 161901.

Plasticity of lightweight sandwich structures, 2006 -

- Q.H. Qin and T.J. Wang, Low-velocity heavy-mass impact response of slender metal foam core sandwich beam. *Composite Structures*, 2011, 93:1526-1537
- W.X. Zhang, Z.M. Xu, T.J. Wang and X. Chen, Effect of inner pressure on the elasto-plastic behavior of porous materials: Second-order moment micromechanics model. *Int. J. Plasticity*, 2009, 25: 1231-1252
- Q.H. Qin and T.J. Wang, An analytical solution for the large deflections of a slender sandwich beam with a metallic foam core under transverse loading by a flat punch. *Composite Structures*, 2009, 88: 509-518
- Q.H. Qin and T.J. Wang, Large deflections of metallic sandwich and monolithic beams under localized impulsive loading. *Int. J. Mechanical Sciences*, 2009, 51: 752-773
- Q.H. Qin and T.J. Wang, A theoretical analysis of dynamic response of metallic sandwich beam under impulsive loading. *European J. Mech*. A/Solids, 2009, 28: 1014-1-25

Plasticity of sandwich beam with metallic foam core *

- Background
- Plastic yield criterion of sandwich cross-section
- Static plastic behavior of sandwich beam
- Results and discussion
- Summary

* Q.H. Qin and T.J. Wang, *Composite Structures*, 2009, 88: 509-518

Challenges of Energy and Environment

- Energy security and environmental protection have been urgent tasks.
- Weight reduction and energy saving—lightweight and multifunctional structures, e.g. aircraft, spacecraft, speed train, automobile, ship, etc.
- Ultralight and high performance materials in offshore platform, wind power machine, etc.
- New materials and structures: multifunctionality.

Learn from nature: porous materials and structures

A section through human skull

A section through a bird's wing

2011-4-19

Ultra-lightweight porous materials – foams

Open-cell

Ultra-lightweight porous materials – Lattices

Hexagonal honeycomb core

Square honeycomb core

Pyramidal truss core

Kagome core

Characteristics of ultra-lightweight porous materials

- High porosity (>90%), ultra-lightweight
- High strength and ductility
- High crashworthiness
- High strength to weight ratio
- High stiffness to weight ratio
- Effective heat transfer

•••••

Ultra-lightweight multifunctional materials

Yield criterion for lightweight sandwich structures

Fleck and Deshpande, ASME, J. Appl. Mech., 2004, 71:386-401

Yield criterion for monolithic solid cross-section

Yield criterion for ideal sandwich cross-section Yield criterion for monolithic solid cross-section

Distributions of stress and strain

2011-4-19

Yield criterion for sandwich structure

Yield criterion for sandwich structure

XI'AN JIAOTONG UNI

Yield criterion for sandwich structure

Yield criterion for sandwich structure with dent

Yield criterion for sandwich structure with dent

$$\begin{cases} |\overline{m}| + \frac{(\overline{\sigma} + 2\overline{h})^2}{4\overline{\sigma}\overline{h}[1 + \overline{h}/(1 - \varepsilon_c)] + \overline{\sigma}^2} \overline{n}^2 = 1, & 0 \le |\overline{n}| \le \frac{\overline{\sigma}}{\overline{\sigma} + 2\overline{h}} \\ |\overline{m}| + \frac{(\overline{\sigma} + 2\overline{h})(|\overline{m}| - 1) \times [|\overline{n}|(\overline{\sigma} + 2\overline{h}) + 2\overline{h} - \overline{\sigma} + 2(1 - \varepsilon_c)]}{4\overline{h}(1 - \varepsilon_c + \overline{h}) + \overline{\sigma}(1 - \varepsilon_c)} = 0, & \frac{\overline{\sigma}}{\overline{\sigma} + 2\overline{h}} \le |\overline{n}| \le 1 \\ \hline \sigma = \sigma_c / \sigma_f = 0.1 \\ \overline{\sigma} = \sigma_c / \sigma_f = 0.1 \\ \overline{h} = h/c = 0.1 \end{cases}$$

Approximate yield criterion

2011-4-19

Analytic solution for the large deflection of metallic foam core sandwich beam

Initial collapse modes of metallic sandwich beam

Influence of finite deflections

Simply supported and fully clamped sandwich beams

Tagarielli and Fleck, ASME, J. Appl. Mech., 2005. 72: 408-417.

2011-4-19

Sandwich beams with axial restraints

Deformation modes in post-yield regime

Overall deformation of fully clamped sandwich beam

The total extension

$$e = e_1 + e_2 = \frac{1}{2} \frac{W_0^2}{L}$$

The angular rotation

$$\psi \cong \frac{W_0}{L}$$

The moment equilibrium equation

$$4M - PL + 2FW_0 = 0$$

According to the associated flow rule

$$\frac{\dot{e}_{1}}{\dot{\psi}} = \frac{\dot{e}_{2}}{\dot{\psi}} = \begin{cases} \left(\frac{1}{2} + \frac{\bar{h}}{\bar{\sigma}}\right)c|n|, & 0 \le |n| \le \frac{\bar{\sigma}}{\bar{\sigma} + 2\bar{h}} \\ \frac{c}{2}\left[|n|(\bar{\sigma} + 2\bar{h}) - \bar{\sigma} + 1\right], & \frac{\bar{\sigma}}{\bar{\sigma} + 2\bar{h}} \le |n| \le 1 \end{cases}$$

Analytical solution for large deflection

$$\begin{cases} P^{*} = \frac{1}{1-\overline{\alpha}} \left[1 + \frac{\overline{\sigma} \left(1 + 2\overline{h}\right)^{2}}{4\overline{h} \left(1 + \overline{h}\right) + \overline{\sigma}} W_{0}^{*2} \right], & 0 \le W_{0}^{*} \le \frac{1}{\left(1 + 2\overline{h}\right)} \\ P^{*} = \frac{(1 + 2\overline{h}) \left[(1 + 2\overline{h}) (W_{0}^{*2} + 1) + 2(\overline{\sigma} - 1) W_{0}^{*} \right]}{\left[4\overline{h} (1 + \overline{h}) + \overline{\sigma} \right] (1 - \overline{\alpha})}, & \frac{1}{1 + 2\overline{h}} \le W_{0}^{*} \le 1 \\ P^{*} = \frac{2(\overline{\sigma} + 2\overline{h}) \left(1 + 2\overline{h}\right)}{\left[4\overline{h} \left(1 + \overline{h}\right) + \overline{\sigma} \right] (1 - \overline{\alpha})} W_{0}^{*}, & W_{0}^{*} \ge 1 \\ \overline{\sigma} = 1 \underbrace{\overline{\sigma} \to 0}_{P^{*}} = \begin{cases} W_{0}^{*2} + 1, & 0 \le W_{0}^{*} \le 1 \\ 2W_{0}^{*}, & W_{0}^{*} \ge 1 \end{cases} \underbrace{P^{*}}_{0} \ge 1 \end{cases}$$
Monolithic solid beam

Jones, Structural Impact, 1989.

The energy absorption

$$U = \int_{0}^{W_0} P(W_0) \, dW_0$$

Analytical solution for the energy absorption

monolithic solid

معلقو

beam

Jones, Structural Impact, 1989. 2011-4-19

Large deflection of pin-supported sandwich beam

Analytical solution for large deflection

2011-4-19

Analytical solution for the energy absorption

$$\begin{cases} U^{*} = \frac{1}{1-\overline{a}} \left[\frac{2\overline{\sigma}(1+2\overline{h})^{2}}{3[4\overline{h}(1+\overline{h})+\overline{\sigma}]} W_{0}^{*3} + \frac{1}{2} W_{0}^{*} \right], \quad 0 \le W_{0}^{*} \le \frac{1}{2(1+2\overline{h})} \\ U^{*} = \frac{(1+2\overline{h})^{2} \left[4(W_{0}^{*3} - W_{0}^{*3})/3 + W_{0}^{*} - W_{0}^{*}/2 \right] + 2(\overline{\sigma} - 1)(1+2\overline{h})(W_{0}^{*2} - W_{0}^{*2}/4)}{2[4\overline{h}(1+\overline{h})+\overline{\sigma}](1-\overline{a})} + \frac{3\overline{h}(1+\overline{h})+\overline{\sigma}}{3(1+2\overline{h})[4\overline{h}(1+\overline{h})+\overline{\sigma}](1-\overline{a})}, \\ \frac{1}{2(1+2\overline{h})} \left[4\overline{h}(1+\overline{h}) + \overline{\sigma} \right](1-\overline{a}) \left(W_{0}^{*2} - \frac{1}{4} \right) + \frac{2\overline{h}(1+2\overline{h})^{2} + \overline{h}(1+\overline{h})(3\overline{\sigma} + 1) + \overline{\sigma}}{3(1+2\overline{h})[4\overline{h}(1+\overline{h}) + \overline{\sigma}](1-\overline{a})}, \quad W_{0}^{*} \ge \frac{1}{2} \\ \overline{\sigma} = 1 \qquad \overline{\sigma} = 0 \\ U^{*} = \begin{cases} \frac{2}{3} W_{0}^{*3} + \frac{1}{2} W_{0}^{*}, \quad 0 \le W_{0}^{*} \le \frac{1}{2} \\ W_{0}^{*2} + \frac{1}{12}, \quad W_{0}^{*} \ge \frac{1}{2} \end{cases} \qquad \text{monolithic solid} \\ \text{beam} \end{cases}$$

2011-4-19

Results and Discussion

(Tagarielli and Fleck, 2005)

Comparison of the present analytical solution with experimental results (Tagarielli and Fleck, 2005

(Tagarielli and Fleck, 2005)

Comparison of the present analytical solution with experimental results (Tagarielli and Fleck, 2005

Summary

• Yield criterion for sandwich structures incorporating the effect of core strength

which is valid for the sandwich structures with various core strength and geometries,

can reduce to the well-known one for solid monolithic structures and the classical one for the sandwich structures with weak core, respectively.

- Analytical solutions for the large deflections of fully clamped and simply supported metallic foam core sandwich beams under concentrated load.
- Large-deflection- induced axial force increases the capacity of load-carrying and energy absorption of foam core sandwich beam in post-yield regime.
- Core strength should be considered in analyzing large deflection of sandwich beam with strong core inside.

Thank you very much for your attention

