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Abstract This paper studies dissection propagation subject
to internal pressure in a residually-stressed two-layer arterial
model. The artery is assumed to be infinitely long, and the
resultant plane strain problem is solved using the extended
finite element method. The arterial layers are modelled
using the anisotropic hyperelastic Holzapfel–Gasser–Ogden
model, and the tissue damage due to tear propagation is
described using a linear cohesive traction–separation law.
Residual stress in the arterial wall is determined by an open-
ing angle α in a stress-free configuration. An initial tear is
introduced within the artery which is subject to internal pres-
sure. Quasi-static solutions are computed to determine the
critical value of the pressure, at which the dissection starts
to propagate. Our model shows that the dissection tends to
propagate radially outwards. Interestingly, the critical pres-
sure is higher for both very short and very long tears. The
simulations also reveal that the inner wall buckles for longer
tears, which is supported by clinical CT scans. In all sim-
ulated cases, the critical pressure is found to increase with
the opening angle. In other words, residual stress acts to pro-
tect the artery against tear propagation. The effect of residual
stress is more prominent when a tear is of intermediate length
(�90◦ arc length). There is an intricate balance between tear
length, wall buckling, fibre orientation, and residual stress
that determines the tear propagation.
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1 Introduction

An arterial dissection is a tear within thewall of a large artery,
such as the aorta. The dissection can lead to the creation of
a false lumen through which blood flows, and propagation
of the tear can quickly lead to death as a result of decreased
blood supply to other organs, damage to the aortic valve, and
rupture of the artery. The loading conditions on the arterial
wall, the geometry of the artery and of the tear, and the mate-
rial properties of the arterial wall determine whether the tear
propagates. A prediction of how the critical condition for tear
propagation depends on these factors could help to optimize
diagnosis and treatment.

In the absence of loading, many biological soft tissues are
not stress-free, but subject to residual stress. At physiological
loading, the residual stress in arteries reduces variation in the
stress distribution across the arterial wall and decreases the
peak stress (Cardamone et al. 2009; Chuong and Fung 1986).
Fung (1991) was the first to show that a radial cut along
artery can release much of the residual stress. Hence, using
an opening angle is a theoretical approach for recovering the
stress-free configuration, and the value of the opening angle
is often used to quantify the residual stress. For example,
Holzapfel et al. (2000) employed this method to obtain the
residual stress in a two-layer model of a rabbit carotid arterial
wall.

Here we study the effects of residual stress on an arter-
ial dissection or tear. If the artery is subject to hypertension
(Golledge and Eagle 2008; Kodolitsch et al. 2000) or the
arterial wall becomes weak, e.g. a defect arises in the inner
surface of arterial wall, then blood at high pressuremay force
its way into the wall and propagate longitudinally, creating a
dissection, as indicated in Fig. 1.

Tear propagation in the absence of residual stress has
been studied previously. For example, Sommer et al. (2008)
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Tear

Fig. 1 A cartoon of arterial dissection. A defect (a tear) that initially
begins in the intimal layer of the artery extends into the media where
it can grow to create a false lumen. Inflation of the false lumen by
blood pressure can restrict the true lumen, restricting blood supply to
major organs. In some cases, the tear can rupture the artery. The loading
condition on the arterial wall, the geometry of the artery and of the tear,
and the material properties of the arterial wall determine whether the
tear propagates

subjected samples of human aortic media to peeling tests
to estimate dissection property. This was followed by a
number of computational simulations (Ferrara and Pandolfi
2010; Gasser and Holzapfel 2006). Wang et al. (2014) and
Tong et al. (2011) performed similar experiments on human
coronary and human carotid arteries, respectively. In these
experimental and computational studies, the tear propaga-
tion is stably driven by controlling the displacement when
peeling apart strips. However, blood pressure drives the prop-
agation of dissections in vivo (Braverman 2010; Rajagopal
et al. 2007). There are fewer literatures on studying this
pressure-driven propagation. In experiments on a porcine
thoracic aorta subject to pressure, Carson and Roach (1990)
measured the peak pressure to tear themedia and thework per
unit area of tissue required to propagate a tear and showed
that these values are independent of the tear depth, while
Tam et al. (1998) studied the effect of depth of the initial tear
on the critical pressure for propagation and showed that the
critical pressure decreases as the depth increases. Arterial
dissection during balloon angioplasty of an atherosclerotic
artery was modelled by Badel et al. (2014), in which the
arterial wall is compressed by inflating a balloon controlled
by a displacement boundary condition. Recently, we devel-
oped a computational scheme to compute the energy release
rate, a variable for quantifying the risk of propagation, for
pressure-driven dissection propagation using a nonlinear
energy argument in a 2D model (Wang et al. 2015), and
reported how the critical pressure for arterial dissection can
be affected by fibre orientation, tear length, and surrounding
tissues.

In this paper, we extend our previous work (Li 2013;
Wang et al. 2015) and investigate what role the residual stress
plays in the critical condition for propagation of the dissec-
tion in a two-layer (media and adventitia) arterial wall. To
model the tear propagation, we use the eXtended Finite Ele-

ment Method (XFEM) (Moes et al. 1999) implemented in
ABAQUS (2014). For the material properties, we use the
fibre-reinforced anisotropic hyperelastic Holzapfel–Gasser–
Ogden (HGO) constitutive law (Holzapfel et al. 2000). We
developed a computational protocol that involves a sequence
of novel boundary conditions to close an opening angle, start-
ing from the stress-free configuration, to obtain the unloaded
configuration and so introduce the residual stress. Notably,
the unloaded configuration is the same for different values of
the opening angle, ensuring that the difference between sim-
ulations is solely due to the residual stress field. To achieve
this, we solve the equilibrium equations analytically to obtain
the individual stress-free configuration for different opening
angles.

The paper is organized as follows. In Sect. 2, we detail the
arterialmodel including the geometry, the constitutivemodel,
and the cohesive law. In Sect. 3, we show how to calculate
analytically the stress-free configurations for different open-
ing angles with a specified unloaded configuration, how to
incorporate residual stress usingABAQUS, and how to deter-
mine the critical pressure. The results are shown in Sect. 4,
followed by discussion and conclusions in Sect. 5.

2 The model

2.1 Geometry

Our model is based on the widely used two-layer rabbit
carotid artery (Holzapfel et al. 2000), but includes the effects
of residual stress as shown in Fig. 2. An arterial dissection
is modelled as a tear in the wall of thick-walled cylinder in
an unloaded and residually-stressed configuration Ωr. The

α

Ω0

2βa

2βm

Ωr

Media

Adventitia

Ω0

x

y

η

Fig. 2 Cross sections of the arterial wall in the stress-free Ω0 and
unloaded Ωr configurations, subject to the same pressure loading on
the inner radial and the tear surfaces. Each layer is a hyperelastic fibre-
reinforced material, modelled by the HGO strain-energy function. βm
and βa define the angles between the two families of fibres in the media
and adventitia. The tear subtends an angle η
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Table 1 The geometry of the two-layer arterial wall, tm and ta are the
wall thickness of the media and adventitia

Configurations ri (mm) tm (mm) ta (mm) α (◦)

Ω0 1.430 0.260 0.130 160

Ωr 0.739 0.259 0.120 0

residual stress field in Ωr is calculated from the value of the
opening angleα in the zero-stress configurationΩ0. The con-
figurations are listed in Table 1. The data forΩ0 are obtained
from (Holzapfel et al. 2000), and the data for Ωr are com-
puted using the analytical approach to be discussed below.
We introduce an idealized dissection (Fig. 2) along an arc
of constant radius in Ωr, which is connected to the lumen
of the vessel by negligibly small tears, so that the dissection
surfaces are subject to the same blood pressure as in the true
lumen.

2.2 Constitutive law

The description for the two layers of the arterial wall is the
same except for different values of parameters in each layer.
For the mechanical response of the arterial wall, we use the
incompressible Holzapfel–Gasser–Ogden (HGO) constitu-
tive law (Holzapfel et al. 2000), with strain-energy function

W = Wm(I1)+W f (I4, I6) = c(I1−3)+
∑

n=4,6

w(In, k1, k2),

(1)

where c, k1, k2 are material parameters for each layer of the
artery, as listed in Table 2 (Holzapfel et al. 2000), and I1, I4,
and I6 are the invariants of the right Cauchy–Green strain
tensor C and the fibre-structure tensor Mn , defined as

I1 = trC, In = C : Mn, n = 4, 6,

where M4 = A1 ⊗ A1 and M6 = A2 ⊗ A2 character-
ize the fibre orientations, A1 = (0, cosβ, sin β) and A2 =
(0, cosβ,− sin β), as shown in Fig. 2. The two fibre families
are aligned along the two directions, A1 and A2, and only
contribute to stress when stretched, i.e.

w (In, k1, k2)

=
{

k1
2k2

{
exp

[
k2(In − 1)2

] − 1
}

when In > 1

0 when In � 1.
(2)

Weassume that the artery is infinitely long (plane-strain prob-
lem), and the z-component in these fibre directions is ignored.
Therefore, changingβ only changes the contribution of fibres
in the circumferential direction.

T

ΔuΔuc

Tc

Gc

Δuc

(a) (b)

Fig. 3 A linear cohesive law governs propagation of the dissection. a
Cohesive law, b cohesive zone

2.3 Cohesive law

The initialization and propagation of a tear is modelled
using the XFEM in ABAQUS (2014). The existing tear is
implemented as an initial condition. The discontinuity of the
displacement field at the tear surface is modelled by adding
an enrichment term H(r)�u/2 onto the otherwise continu-
ous displacement field, where H(r) = ±1 when r ≷ rt , rt
is the radius of the tear surface in the configuration Ωr, and
�u is the displacement jump.

We assume that the propagation of tear is governed by a
linear cohesive traction–separation law (Ferrara and Pandolfi
2010) (Fig. 3), which is specified by the maximum traction
Tc just before damage, the separation energy Gc, and the
maximum displacement jump�uc, as listed in Table 2. Only
two are independent. After each incremental loading step, the
maximumprincipal stress σmp at the centroid of each element
is compared to Tc: if σmp ≥ Tc, then the displacement jump
�u is calculated. When Δu > �uc, the tear propagates in
the direction perpendicular to the maximum tensile principal
stress.

The actual value of Tc is material dependent and should
be determined by experiments. In the absence of such data,
we assume that Tc/c = 2 (where c is the value of the media)
in this study. This, together with the assumption of the plane-
strain problem, means that our computed results will be
qualitative. However, different values of Tc/c are used later
to check that the trend we observe is the same.

3 Methodology

All simulations are based on a residually-stressed configu-
ration Ωr. The residual stress and Ωr can be obtained both
analytically and numerically.

3.1 Analytical approach

Ωr can be obtained by setting pi = 0 and λz = 1, where
pi is the pressure and λz is the axial stretch. Let the stress-
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Table 2 The material
parameters for the HGO strain-
energy function (Holzapfel et al.
2000) and the cohesive law, for
a rabbit carotid artery

c (kPa) k1 (kPa) k2 β (◦) Tc (kPa) Gc (N/m2) �uc (mm)

Media 1.5 2.3632 0.8393 29 3 0.001 0.667

Adventitia 0.15 0.5620 0.7112 62 0.3 0.0001 0.667

free configuration of the artery Ω0 be characterized in polar
coordinates (R,Θ) by

Ri � R � Ro, 0 � Θ � (2π − α), (3)

where Ri, Ro, and α denote the inner and outer radii, and
opening angle, respectively. The corresponding unloaded
configuration Ωr in polar coordinates (r, θ) is

ri � r � ro, 0 � θ � 2π, (4)

where ri and ro are the inner and outer radii of Ωr. Incom-
pressibility requires that

r =
√

R2 − R2
i

k
+ r2i , θ = kΘ, (5)

where k = 2π/(2π −α). The deformation gradient fromΩ0

to Ωr is

F = λrer ⊗ ER + λθeθ ⊗ EΘ + ez ⊗ EZ , (6)

where

λr(R) = ∂r

∂R
= R

rk
, λθ (R) = r

R

∂θ

∂Θ
= kr

R
, (7)

are the principal stretches. The Cauchy stress is given by

σ = −pI + 2F
∂W

∂C
FT , (8)

where p is the Lagrangian multiplier associated with the
incompressibility condition.

Let σrr and σθθ be the radial and circumferential com-
ponents of the Cauchy (residual) stress tensor in Ωr, which
satisfy the momentum balance equation

dσrr
dr

= σθθ − σrr

r
. (9)

Integration of (9) leads to

σrr (r) − σrr (ri) =
∫ r

ri
(σθθ − σrr )

dr̃

r̃
, ri � r � ro,

(10)

Using the traction-free boundary condition

σrr (ri) = σrr (ro) = 0, (11)

in (10), we have

∫ ro

ri
(σθθ − σrr )

dr

r
= 0. (12)

Substituting (5) and (8) into (12), we obtain a nonlinear inte-
gral equation, which is solved for ri using Newton iteration.
Substituting (1) into (8) gives

σ = −pI + 2cB +
∑

n=4,6

2w′(In)mn, (13)

where B = FFT is the left Cauchy–Green tensor, mn =
FMnFT is the structure tensor in the residually-stressed
unloaded configuration, and p is determined from (10)
and (11)

p(r) = −σrr (r) + 2cλ2r (r). (14)

Equations (8) and (14) determine the Cauchy stress compo-
nents σθθ and σzz .

To ensure that the difference between various simulations
is only due to the residual stress, we can also determine Ω0

from (5), (7), and (12), given α and Ωr.

3.2 Numerical approach

We start from the stress-free configuration Ω0 with a spec-
ified opening angle. The numerical approach is to close the
opening angle numerically and obtain the unloaded configu-
rationΩr. This is achieved in several steps as shown in Fig. 4.
During the closing process, the inner radial and tear surface
are pressurized to avoid contact. Once the ring is closed, the
artificial pressure is removed. The closed configuration is
then inflated to simulate the deformation of the arterial wall
and dissection propagation subject to the pressure.

3.3 Finite element implementation

The computations are performed using the finite element
packageABAQUS (6.13). Four-node plane-strain hybrid ele-
ments are used to construct the mesh, as shown in Fig. 5. A
grid independence test was used to select the optimal number
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(a) (b) (c) (d)

Fig. 4 The closing process from Ω0 to Ωr , for opening angle α = 160◦ and tear length η = 90◦: a the stress-free configuration Ω0, b, cmove one
end and pressurize both the tear and the inner radial surface, d residually-stressed Ωr after the artery is closed and pressure removed

(Avg: 75%)
S, Max. Principal

−0.06
−0.00
 0.05
 0.11
 0.16
 0.22
 0.27
 0.32
 0.38
 0.43
 0.49
 0.54
 0.59

Fig. 5 The stress-free Ω0 (grey) and the unloaded Ωr (coloured) con-
figurations, where the colour indicates the magnitude of the maximum
principal stress, which is along the circumferential direction, and the
opening angle in Ω0 is 160◦

of elements (Table 3), and the computed stresses converge to
the analytical solutions as shown in Fig. 6. The relative error
in computed residual stress is

max

{‖σ rr − σ a
rr‖

‖σ a
rr‖

,
‖σ θθ − σ a

θθ‖
‖σ a

θθ‖
}

, (15)

where σ a
rr and σ a

θθ are the vectors of all the nodal values
of the exact analytical expression for the two components of
the residual stress across the wall, and ‖ · ‖ denotes standard
L2-norm, i.e. ‖x‖ = (∑

i x
2
i

)1/2
for a vector x. The interme-

diate mesh was then used in all the simulations for different
opening angles.

4 Results

4.1 The residual stress and critical pressure

The geometries (i.e. the radius Ri , thicknesses of the media
and adventitia, Tm , Ta) of stress-free configurationsΩ0 asso-
ciated with the same unloaded configuration Ωr (where we
specify α, thicknesses of the media and adventitia, tm, ta,
and inner radius ri which are equal to Tm , Ta , and Ri when
a = 0) are shown in Table 4. The residual stress components
computed analytically are shown in Fig. 7 as a function of
the opening angle α. The absolute value of σrr is greatest at
the mid-radius of the media and increases with α. The cir-
cumferential stress σθθ is in compression at the inner radius
of the media and is in tension at the outer radius of the media
and adventitia, and |σθθ | increases with α. The residual stress
is smaller in the adventitia.

The simulated configurations for α = 160◦ and η = 90◦
are shown in Fig. 8. The critical pressure at which the tear
starts to propagate is identified in Fig. 8c. Since the value
of pc changes with the material properties, we focus on the
dimensionless critical pressure p′

c = pc/c (where c is the
value of themedia). For the tear of lengthη = 90◦, the change
of p′

c with the opening angle is plotted in Fig. 9. Notice that
p′
c increases with α in all the cases simulated, suggesting that

existence of residual stress makes artery more resistant to the
tear propagation.

4.2 Inner wall buckling and tear length

Our previous study on a 2D strip (Wang et al. 2015) showed
that tear length plays an important role in the dissection; a

Table 3 Meshes used for the
grid independence tests

Mesh Nodes Elements Relative error in stress
via Eq. (15) (%)

Media Adventitia Circumference Total

Coarse 909 5 3 100 800 21.37

Intermediate 3417 11 5 200 3200 5.59

Fine 13,233 23 9 400 12,800 5.08
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Fig. 6 Comparison of the residual stress computed in the unloaded configuration Ωr when α = 160◦. The results from the intermediate and fine
meshes also overlap with the analytical solution

Table 4 Geometries ofΩ0 (thicknesses of themedia and adventitia Tm,
Ta, and inner radius Ri) corresponding to the specified Ωr and opening
angle α

α (◦) Ri (mm) Tm (mm) Ta (mm)

0 0.7395 0.2593 0.1197

40 0.8472 0.2595 0.1221

80 0.9858 0.2597 0.1246

120 1.1708 0.2599 0.1272

160 1.4300 0.2600 0.1300

200 1.8191 0.2601 0.1329

Ω0 ≡ Ωr , when α = 0

longer tear is always more likely to propagate. We now show
that this is no longer true for a circular geometry and when
residual stress is present. Three additional groups of simu-
lations were carried out with η = 30◦, 150◦, and 210◦, and
some interesting results are foundwhen tear length increases.
The deformed configurations for α = 160◦, Fig. 10, show
that buckling of the inner wall (the material section between
the lumen and tear) occurs for η = 150◦ and η = 210◦. The

maximum principal stress distribution and the critical pres-
sure are also shown in Fig. 10. Beyond the cohesive criterion,
the tear propagates. All tear propagations tend to be radially
outwards, as shown in Fig. 11.

Comparison of the critical pressure for different tear
lengths (Fig. 9) shows that the dimensionless critical pres-
sure p′

c increases with α in all the cases simulated. Notably,
the longest tear length studied (η = 210◦) has a higher value
of p′

c than that of η = 90◦, and 150◦. Hence, the relation-
ship between propagation and tear length is not as simple
as that of a 2D strip (Wang et al. 2015). This presumably is
due to the buckling of the inner wall, which is more likely to
occur for a longer tear. However, for the intermediate case,
η = 90◦, inner wall buckling occurs only for α = 0◦, and
not when α ≥ 40◦ (Fig. 12). This suggests that there is a sub-
tle interplay between dissection length, residual stress, and
inner wall buckling.

4.3 The effect of fibre orientation

Here we vary the fibre orientation. We refer to the fibre
orientation listed in Table 2 as the physiological or ‘true’
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Fig. 7 The magnitudes of residual stress components increase with the opening angle
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(a) (b) (c) (d)

Fig. 8 Tear propagation in an artery inflated by increased pressure
loading at Ωr when α = 160◦ and η = 90◦ for a the unloaded configu-
ration Ωr with residual stress, b both true and false lumens are inflated
at p/c = 0.23, c the tear starts to propagate at pc/c = 0.35(= p′

c), and
d the tear continues to propagate towards the adventitia at p/c = 0.35.

The elements in blue are not damaged; those in red are completely
torn. These in other colours indicate the cohesive zone. Increasing p/c
beyond the critical pressure results in a steady solution for which the
tear has propagated radially outwards

0 40 80 120 160 200
0.2

0.25

0.3

0.35

0.4
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p
′ c

η = 30◦ η = 90◦

η = 150◦ η = 210◦

B B
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B
B

B
B

B
B

B

Fig. 9 The dimensionless critical pressure p′
c versus the opening angle

α, for four different tear lengths η, where letter ‘B’ indicates that
the inner wall is buckled. For discussion of different tear lengths, see
Sect. 4.2

case. In the following simulations, we assume that the media
and the adventitia have the same fibre orientation, so that
βm = βa = β. Simulations were performed with β =
0◦, 10◦, 15◦, 20◦, 30◦, 60◦ and 90◦. In addition, a group
of simulations were run without fibres (k1 = 0), referred to
as the ‘free’ case.

To ensure that the differences between the simulations are
only due to the fibre orientations, we use the same unloaded
configuration Ωr , with Ω0 calculated for each fibre orienta-
tion using the analytical method. The normalized thicknesses
of themedia and adventitia, T ′

m = Tm/tm and T ′
a = Ta/ta, are

plotted against the opening angleα in Fig. 13, for the different
fibre orientations. The thickness of the media T ′

m decreases
with the opening angle for smaller values of β (e.g. when
β = 0◦, or 10◦), but the trend changes as β increases. When
β ≥ 30◦, it increases monotonically. On the other hand, the

thickness of the adventitia T ′
a increases monotonically with

the opening angle. For other fibre angles (β = 60◦, 90◦,
free, true), the results are identical to that of β = 30◦. This
is because fibres beyond this angle are no longer stretched,
i.e. I4 < 1.

The critical pressure also changes with different fibre ori-
entation (Fig. 14). Notice that with the inflation, fibres with
β = 30◦ also start to bear load, but fibres at greater angles
(β = 60◦ and 90◦) still do not take on any load, and hence,
the critical pressures for these cases remain the same as in the
‘free’ case. As expected, the critical pressure when β = 0◦ is
the highest, since the residual stress is the greatest in this case.

5 Discussion and conclusions

We have used both analytical and computational approaches
to study the effect of residual stress on the propagation of
arterial dissection. Our simulations show that the shortest
(30◦) and the longest tear (210◦) are the most stable (with
higher critical pressures), while tears of lengths 150◦ and
90◦ are most unstable. However, residual stress increases
the critical pressure in all cases; the most dramatic improve-
ment is seen for the 90◦ tear. This suggests that both the
length of tear and the residual stress play an important role
in determining the critical pressure for the tear propagation.
In particular, we found interesting inner wall buckling asso-
ciated with the longer tears. Similar buckling was observed
in a computed tomography (CT) scans of a patient in the
ascending aorta (Fig. 15). Clearly, there is an intricate bal-
ance between tear length, buckling of the inner wall, fibre
orientation, and residual stress, all of which may affect the
likelihood of tear propagation. One plausible explanation is
that, although a longer tear propagates more readily, it is also
more likely to cause the inner wall to buckle and so increase
the value of pc. However, the exact mechanism remains to
be explored.
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Fig. 10 The maximum principal stress σmp is plotted in the deformed
configuration for α = 160◦ and different lengths of tear subject to the
critical pressure. Note the buckling of the inner wall for η = 150◦ and
η = 210◦. Here σmax is the averaged peak stress over the quadra-
ture points of the adjacent elements around the tip. a η = 30◦,

p′
c = 0.41, σmin = −0.21 kPa, σmax = −4.18 kPa, b η = 90◦,

p′
c = 0.34, σmin = −0.42, σmax = −4.86kPa. c η = 150◦, p′

c = 0.29,
σmin = −0.67 kPa, σmax = −3.96kPa. d η = 210◦, p′

c = 0.37,
σmin = −0.97 kPa, σmax = −5.09kPa

(a) (b) (c) (d)

Fig. 11 Steady deformed configurations with α = 160◦ and different lengths η after dissection propagation: a η = 30◦, b η = 90◦, c η = 150◦,
and d η = 210◦. All the tears propagate radially

We now discuss the limitations of this study. Our model
is a plane-strain problem and does not include the effect of
axial stretch. In our previous work (Wang et al. 2015), we
found that axial stretching of fibres resists the opening of the
dissection and significantly decreases the energy release rate
for tear propagation. Clinically, dissections may propagate
axially and may re-enter the lumen. Our model also cannot
predict the absolute value of the critical pressure due to the

simplificationsmentioned above and lack of data on cohesive
parameters, e.g. the value of Tc. Nevertheless, thismodel pro-
vides a qualitative description of the variation of the critical
pressure with the residual stress. This is further illustrated in
Fig. 16 for Tc/c = 2, 6, 10 for the rabbit carotid artery, as
well for the aged human thoracic aorta, where the shear mod-
ulus of the media is much greater, as shown in Table 5. In the
human artery model, all the parameters for the HGO model
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Fig. 12 The maximum principal stress in the deformed configuration
at the critical pressure p′

c is plotted for η = 90◦ (above) and η = 150◦
(below), with (α = 40◦) and without (α = 0◦) residual stress. a
η = 90◦, α = 0◦, p′

c = 0.22, αmin = −0.37kPa, σmax = 3.35kPa. b

η = 90◦, α = 40◦, p′
c = 0.27 σmin = −0.28 kPa, σmax = 3.35kPa. c

η = 150◦, α = 0◦, p′
c = 0.23 σmin = −0.58kPa, σmax = 4.88kPa. d

η = 150◦, α = 40◦, p′
c = 0.25 σmin = −0.59 kPa, σmax = 4.90kPa
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Fig. 13 Wall thickness T ′
m and T ′

a for the media and adventitia in Ω0 normalized with respect to their values in Ωr , plotted against the opening
angle for different fibre angles. For other fibre angles (β = 60◦, 90◦, free, true), the curves overlap that for β = 30◦

(Table 5) are estimated by fitting the experimental data of
the cyclic uniaxial tensile tests of 14 human thoracic aortas
(60 ± 12 year, mean ± SD) (Fereidoonnezhad et al. 2016).
Our results show that changes of the critical pressure with
residual stress are similar for human aorta and rabbit carotid
artery.

The other limitation is that we use an isotropic cohesive
traction–separation law. The tensile testing of a porcine tho-
racic aorta performed by MacLean et al. (1999) showed that
the stiffness in the radial direction is significantly lower than
in the circumferential and longitudinal directions. MacLean
et al. (1999) also performed a histological analysis to show
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Fig. 14 The dimensionless critical pressure, p′
c, is plotted against the

opening angle,α, for different fibre orientations. The results forβ ≥ 60◦
are identical to that of β = 60◦, and the ‘free’ case, indicating that the
fibres at these angles do not bear load

Fig. 15 This CT shows an acute aortic dissection in the ascending and
descending aorta (Fig. 2; Braverman 2010), with buckling of the inner
wall indicated by the arrows. TL is the true lumen
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Fig. 16 The dimensionless critical pressures p′
c against the opening

angle α, for the rabbit carotid artery at different values of Tc, as well as
for the aged human thoracic aorta (Tc = 2c.)

Table 5 The model parameters used for the human thoracic aorta in
Ω0 (Fereidoonnezhad et al. 2016)

c
(kPa)

k1
(kPa)

k2 β (◦) Tc Gc
(N/m2)

α (◦) Ti
(mm)

Ri
(mm)

Media 20 112 20.61 41 2 0.001 80 0.69 1.13

Adventitia 8 362 7.089 50.1 2 0.0001 80 0.48 N/A

the behaviour of elastin layers and smooth muscle cells
during the aortic dissection. Work is ongoing to develop a
three-dimensional and anisotropic arterial dissection model
that could make use of the histological data.
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