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Abstract
We study the collapsible behaviour of a vessel conveying viscous flows subject to external pressure, a scenario that could occur
in many physiological applications. The vessel is modelled as a three-dimensional cylindrical tube of nonlinear hyperelastic
material. To solve the fully coupled fluid–structure interaction, we have developed a novel approach based on the Arbitrary
Lagrangian–Eulerian (ALE) method and the frontal solver. The method of rotating spines is used to enable an automatic
mesh adaptation. The numerical code is verified extensively with published results and those obtained using the commercial
packages in simpler cases, e.g. ANSYS for the structure with the prescribed flow, and FLUENT for the fluid flow with
prescribed structure deformation. We examine three different hyperelastic material models for the tube for the first time in this
context and show that at the small strain, all three material models give similar results. However, for the large strain, results
differ depending on the material model used. We further study the behaviour of the tube under a mode-3 buckling and reveal
its complex flow patterns under various external pressures. To understand these flow patterns, we show how energy dissipation
is associated with the boundary layers created at the narrowest collapsed section of the tube, and how the transverse flow
forms a virtual sink to feed a strong axial jet. We found that the energy dissipation associated with the recirculation does
not coincide with the flow separation zone itself, but overlaps with the streamlines that divide the three recirculation zones.
Finally, we examine the bifurcation diagrams for both mode-3 and mode-2 collapses and reveal that multiple solutions exist
for a range of the Reynolds number. Our work is a step towards modelling more realistic physiological flows in collapsible
arteries and veins.

Keywords Collapsible tube flow · Hyperelasticity · ALE · Incompressibility · Fluid–structure interaction · Frontal method ·
Method of spines · Mode-3 bifurcation · Flow separation · Energy dissipation · Vortices

1 Introduction

Fluid–structure interaction (FSI) between flow and biologi-
cal vessel walls is intrinsic to the circulatory and respiratory
systems. For example, in cardiovascular diseases, wall shear
stress, blood flow patterns, and pressure can all impact
the vessel integrity, leading to endothelial cell damage,
thickness change of the endarterium, hyperplasia of inti-
mal smoothmuscle cells and proliferating intimal connective
tissue (Nerem 1992). The abnormal tissue stress on the vas-
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cular wall is the key cause of atherosclerosis (Ku et al.
1985; Giddens et al. 1993; Papaioannou et al. 2006). Pres-
sure increase against the vascular wall can affect oxygen
transmission through the wall (Moore and Ethier 1997). In
an vessel aneurysm, a high mortality cardiovascular dis-
ease, FSI-induced mechanical forces regulate its growth
and rupture (Liepsch 2002; Hoi et al. 2004). Experimental
observation shows that flow circulation regions exist in an
arterial aneurysm and sluggish flow of blood in the circula-
tion regions accelerates the formation of thrombus and the
coagulation of blood (Gobin et al. 1994). Flows in collapsi-
ble vessels, in particular, are associatedwith some interesting
physiological and pathological problems. For example, air-
flow in the lungs can be limited due to the large-airway
collapse, despite a strongly forced expiration. Wheezing is
a manifestation of collapsible vessel-induced self-excited
oscillations. In jugular veins of giraffe, the return of blood
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to the heart from the head must be accompanied by a par-
tial venous collapse (Pedley et al. 1996). Measurement of
blood pressure is based on the collapsible behaviour of
the elastic artery (Korotkov sounds) when compressed by a
blood-pressure cuff (Pedley and Pihler-Puzović 2015). These
providemotivations for studyingflows in a collapsible vessel.

Many experimental studies of flows in a collapsible ves-
sel are based on a Starling Resistor set-up, which consists
of a collapsible rubber tube whose two ends are clamped
onto rigid tubes and placed inside a chamber, so that the
pressure external to the tube can be adjusted. Fluid flow is
then driven through the collapsible tube, and resistors are
in place to control pressure and flow at the entrance and
exit of the collapsible segment. As the transmural (inter-
nal minus external) pressure becomes negative, the tube is
buckled (collapsed) into a shape of two-lobed (mode-2) or
higher circumferential modes, and rich dynamic phenom-
ena signatured by self-excited oscillations prevail (Truong
and Bertram 2009; Bertram and Elliott 2003; Bertram and
Tscherry 2006). Bertram et al. studied the conditions, in
terms of the upstream transmural (internal minus external)
pressure and the Reynolds number, for the onset of flow lim-
itation (Bertram and Elliott 2003). Barclay et al. identified
various self-excited oscillations by changing parameters such
as the tube length-to-diameter ratios, Reynolds numbers, and
the ratio of the transmural pressure to pressure drop (Barclay
and Thalayasingam 1986). Bertram found that self-excited
oscillations in the tubes are highly nonlinear and in four fre-
quency bands (Bertram 1986).

Conradwas thefirst to investigate the relationship between
flow and external pressure in collapsible tubes (Conrad
1969). Many theoretical and numerical studies have since
been carried out. The simplest approach used lumped-
parameter models in which the system’s characteristics are
described by a small number of scalar variables, such as
the cross-sectional area, the transmural pressure and the
fluid velocity at the point of strongest collapse (Bertram
and Pedley 1982). The next level of modelling is the one-
dimensional approach (Cancelli and Pedley 1985; Jensen
1990, 1992; Shapiro 1977), which enabled wave propaga-
tion to be included in the system, leading to the “choking”
mechanism. Indeed, some of these one-dimensional models
are extremely useful in explaining some system mecha-
nisms (Stewart et al. 2010; Stewart 2017). A more rational
two-dimensional fluid-membrane model was developed by
Pedley and coworkers, in which the collapsible tube is repre-
sented by a channel with part of the upper wall replaced by a
thin and inextensiblemembrane (Pedley andLuo 1998; Lowe
and Pedley 1995; Luo and Pedley 1996, 2000). To reflect the
fact that physiological vascular walls often experience elastic
stretching and bending, Cai and Luo proposed a fluid-beam
model and incorporated bending and extensional stiffness

into a geometrically nonlinear Lagrangian representation of
the wall (Cai and Luo 2003).

Ultimately, it is necessary to develop full three-
dimensional (3D) models to more accurately explain exper-
imental observations and physiological problems. Heil and
coworkers used finite element methods to couple geomet-
rically nonlinear Kirchoff–Love shell theory to an internal
3D Navier–Stokes flow (Heil 1997; Heil and Pedley 1996).
Restricting attention initially to Stokes flows, they showed
how non-axisymmetric buckling of the tube contributes
to nonlinear pressure-flow relations that can exhibit flow
limitation through purely viscous mechanisms. These com-
putations were then extended to describe steady 3D flows in
nonuniformly buckled tubes at Re of a few hundred (Hazel
and Heil 2003) for a mode-2, or two-lobed, buckling tube,
which revealed twin jets downstream, consistent with the
experimental observations (Bertram and Godbole 1997).
These jets were also found by (Marzo et al. 2005), whose
work included the effects of thick-walled tubes. Using a pre-
scribedoscillations of the tubewall,workby (Heil andWaters
2008; Whittaker et al. 2010a, b) suggested that the essential
elements of the sloshing instability mechanism identified
in two-dimensional flows (Jensen and Heil 2003) are also
present in the three-dimensional flow. The theoretical work
was extended to a tube of an initially elliptical cross sec-
tion (Whittaker et al. 2010c).

As three-dimensional approaches require extensive com-
putation, many model simplifications were made in previous
studies. For example, only a quarter of the tube was mod-
elled, and the focus was mostly on mode-2 collapse (Heil
1997; Heil and Pedley 1996; Marzo et al. 2005), the solid
mechanics was represented using a thin-shell theory or
even a tube-law (Whittaker et al. 2010d; Whittaker 2015).
On the other extreme, Zhu et al. (Zhu et al. 2008, 2010,
2012) adopted a purely solid mechanics approach to study a
three-dimensional nonlinear thick-walled tube under exter-
nal pressure and axial loading. Despite the absence of fluid,
their model offered some important insights on the collapsi-
ble behaviour of the tube. Using infinitesimal deformations
superimposed on a deformed circular cylindrical configu-
ration, Zhu et al. (Zhu et al. 2008) found that the critical
bifurcation pressure deviates from the thin shell prediction
in both the very thin and thick-walled regimes. For very
short and sufficiently thick tubes, transition from lower to
higher circumferential modes occurs in the range of axial
compression. Contrary to thin-shell theory, in thick-walled
tubes, mode 2 bifurcation becomes the dominant mode, as
shown in Fig. 1. The same authors (Zhu et al. 2010) also
carried out numerical simulations for large nonlinear defor-
mation of thick-walled tubes with the initial configuration
constrained to a circular cylindrical shape. Theworkwas later
extended to a fully 3Dandnonlinear thick-walled tubemodel,
which showed that the axisymmetric analysis provides a good
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Fig. 1 Non-dimensional critical pressure plotted against the tube length
L/B, for different values of thinness B/H , where B is the external
radius of the tube, L is the tube length, and H is the tube thickness.When
tube wall is thicker, e.g. B/H = 1.58, mode-2 buckling dominants
except the very short tubes. However, when tube wall is thinner, e.g.
B/H = 50, and L/B < 10, higher modes collapse first under the
critical pressure . Reproduced with permission from (Zhu et al. 2008)

approximation for the critical bifurcation pressure in short
tubes (Zhu et al. 2012). However, the critical bifurcation
pressure for longer tubes is smaller in the non-axisymmetric
three-dimensional model, and the post-buckling solution is
no longer unique. In particular, they found many different
intriguing mode-3 and higher mode bifurcations at the same
critical transmural pressure.Mixedmodes collapse andmode
transitions were also observed (Zhu et al. 2012).

Compared to the mode-2 collapse, flows in a collapsible
tube that has three-lobed mode received much less atten-
tion. This is because in many experiments using the Starling
resistor, the elastic tubes used are usually too long or too
thick for the mode-3 buckling to appear. However, in many
physiological applications, vessels are neither very long or
thick-walled, and thus, higher mode collapses can occur. For
example, the collapsed airways are often in mode-3 with a
shorter collapsed section (Gaver et al. 1996; Hell 1999). In
aortic dissection, flow going through the false lumen often
induces collapses of the true lumen in mode-3 or higher,
sometimes mixed modes (Sun et al. 2014; Wang et al. 2017,
2016). To date, detailed 3D flow patterns in an elastic vessel
under a higher-mode buckling, say, a three-lobed collapse,
have not been studied.

We develop a new three-dimensional model of a nonlinear
incompressible hyperelastic tube that is fully coupled with
the fluid flow governed by the Navier–Stokes equations. A
monolithic finite element solver that combines the Arbitrary
Lagrangian–Eulerian (ALE) and frontal approach is devel-
oped for the coupled fluid-structure system equations. The
method of spines with three-dimensional rotating spines is

used to update the adaptive mesh deformation. We perform
extensive verification of the solver against the commercial
software (ANSYS, on solid solver, and FLUENT, on fluid
solver), and compare the results using different nonlinear
constitutive laws for the tube. We show, for the first time,
detailed 3Dflow patterns following amode-3 ormixed-mode
buckling of an elastic tube, andwhere the energy is dissipated
in the system. We also study the bifurcation diagrams for
both mode-2 and mode-3 buckling and show how the system
yields multiple solutions at certain ranges of the Reynolds
number.

2 Themathematical model

2.1 Themodel

We consider fluid flow through a three-dimensional tube as
shown in Fig. 2, where the elastic section is initially cylindri-
cal. The tube is divided into three sections; an elastic section
in the middle and the two rigid upstream and downstream
sections. The tube is made of an incompressible hyperelastic
material. The fluid is assumed to be incompressible Newto-
nian fluid. The system is flux-driven, and the tube deforms
under an applied external pressure and the fluid stresses due
to the fluid-structure interaction.

In our ALEmodel, the fluid field is described by the Eule-
rian coordinate systemwith the position vector x and the tube
is described by two Lagrangian coordinate systems, using xe
and Xe, respectively. xe is the position vector in the current
configuration and Xe is the position vector in the reference
configuration. In the following, we denote the variables in the
reference configurations using capital letters, and the vari-
ables in the current configuration using lower case.

Let U∗
0 be the average flow velocity at the entrance of

the tube, D∗ be the inner diameter of the tube, ρ∗ and μ∗ be
the fluid density and viscosity, respectively. Unless otherwise
stated, we adopt the dimensionless variables and parameters
defined as follows,

xi = x∗
i /D∗, xei = x∗

ei/D
∗, Xei = X∗

ei/D
∗,vi = v∗

i /U
∗
0 ,

ui = u∗
i /D

∗, i = 1, 2, 3,

p = p∗/ρ∗U∗2
0 , L = L∗/D∗, h = h∗/D∗,

Re = U∗
0 D

∗ρ∗/μ∗, Pext = P∗
ext/ρ

∗U∗2
0 ,

c1 = c∗
1/ρ

∗U∗2
0 , c2 = c∗

2/ρ
∗U∗2

0 ,

μe = μ∗
e/ρ

∗U∗2
0 , ρe = ρ∗

e /D
∗ρ∗, (2.1)

where the quantities with a star are the dimensional ones. vi ,
xi (i = 1, 2, 3) are the velocity and coordinate components of
the fluid, ui are the displacement components of the structure,
and xei , Xei are the coordinate components of the structure
in the current and reference configuration, respectively. p is
the fluid pressure, Re is the Reynolds number, Pext is the
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Fig. 2 Geometry of the collapsible tube, where Lu , Lm and Ld are the lengths of the upstream, collapsible, and downstream sections, respectively.
The middle section is collapsible with wall thickness h and subjected to an external pressure of Pext

external pressure, h and L are the thickness and length of the
tube, ρe is the density of the tube wall. μe, c0 and c1 are
material constants of the tube wall; each has the unit Pa.

2.2 The governing equations

We first consider the governing equations of the tube wall.
In the absence of body force, the momentum equations in
the reference (undeformed and stress-free) configuration are
given by

SAi,A = ρeui,t t (2.2)

where S is the nominal stress tensor (which is the transpose
of the first Piola–Kirchoff stress tensor), i , A ∈ {1, 2, 3} refer
to the Cartesian indices in the current and reference configu-
rations, respectively, ui are the displacement components of
the elastic wall. For a given strain-energy function (per unit
volume) W , the constitutive relation can be written as

SAi =
(

∂W

∂F

)
Ai

− pe(F
−1)Ai , (2.3)

where F is the deformation gradient, and pe is the Lagrange
multiplier to ensure the material incompressibility (Cai and
Fu 1999),

det F = 1. (2.4)

The Cauchy stress tensor can be computed from

σ = 1

det F
FS. (2.5)

We consider three types of nonlinear materials: Neo–
Hookean, Mooney–Rivlin and Gent, for which the strain-

energy functions are given, respectively, by (Holzapfel 2002)

W = μe

2
(I − 3), (2.6)

W = c0
2

(I − 3) + c1
2

(I I − 3), c0 + c1 = μe, (2.7)

W = −1

2
μe Jm ln

(
1 − I − 3

Jm

)
, (2.8)

where I , I I are the first and second invariants of the right
Cauchy–Green deformation tensor, respectively. μe, c0, c1
and Jm are material constants. μe is the shear modulus, and
Jm is a non-dimensional parameter to indicate the material
hardening.However, although the sumof c0 and c1 represents
the shear modulus, individually, c0 or c1 does not have a
clear physical explanation. In the following, we will use the
Neo–Hookean material model as an example to establish the
governing equations. Substituting (2.3), (2.6) into (2.2), we
have

μeFi A,A − peF
−1
Ai,A = ρeui,t t . (2.9)

Equations (2.4) and (2.9) are the governing equations of the
hyperelastic tube.

The motion of the flow field is governed by the Navier–
Stokes equations and the continuity equation. The governing
equations for the coupled fluid-structure interaction system
are, thus:

∂vi

∂t
+ v j

∂vi

∂x j
= − ∂ p

∂xi
+ 1

Re
∇2vi ,

∂vi

∂xi
= 0, det F = 1,

μeFi A,A − peF
−1
Ai,A = ρeui,t t , i, j, A = 1, 2, 3. (2.10)

In the following, we may also use (x, y, z), (u, v, w), and
(ue, ve, we) as surrogates for xi , vi , and ui , i = 1, 2, 3,
respectively.
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2.3 The boundary conditions

We impose the following boundary conditions:

– Parabolic inlet flow:
(z = 0): v1 = v2 = 0, v3 = 2 − 8(x21 + x22 ).

– Zero velocity at the rigid walls: vi = 0, i = 1, 2, 3,
at r = R, 0 ≤ z ≤ Lu , and Lu + Lm ≤ z ≤ L , where
r = √

x2 + y2.
– Stress free at the outflow: σt = 0, σn = 0, at z = L .
– Clamped ends of the elastic tube: ui = 0, i = 1, 2, 3,

at z = Lu , and Lu + Lm .
– No slip condition at the interface: vi (t) = u̇i (t),

xi = xei , Lu ≤ z ≤ Lu + Lm , i = 1, 2, 3.
– External pressure on the outer wall of the tube:

σn = −Pextn, Lu ≤ z ≤ Lu + Lm , where n is the
outward normal vector of the tube.

3 The numerical method

3.1 Mesh generation

In the finite element analysis, the elements for the fluid are
isoparametric triangular prism elements with 15 nodes, and
the elements for the elastic tube are isoparametric hexahedron
elements with 20 nodes. At the interface, the elements are
made to conform to each other. We first obtain the grids on a
circular cross section as shown in Fig. 3, which is extruded to
the three-dimensional domainusing ameshmappingmethod.

To resolve the boundary layer near the tube wall, we
increase the density of the mesh towards the wall. The cross
section of the fluid field is divided into the internal and exter-
nal regions by a concentric circle. The ratio of the concentric
circle and the tube radii is denoted by br . We divide the inter-
nal region into nr2 layers. We use nb to indicate the number
of divisions of the most inner layer along the ring direc-
tion. The number of divisions of the subsequent layers are
nb + nb( j − 1), j = 1, . . . nr2.

In the external region, the most inner layer, which over-
laps with the most outer layer of the internal region, has
nb + nb(nr2 − 1) divisions, and the other layers have
(i+1)[nb+nb(nr2−1)], i = 1, . . . nr divisions. The external
region is divided into equal sections by the rotating spines as
shown in Fig. 3. (Details are given in the following section.)
Mesh quality of the circular cross section can be controlled
by adjusting the numbers nr , nr2 and nb. To get the coordi-
nates of the nodes of the external region, the coordinates of
the two ends of the rotating spines, such as A0(x0, y0, z0),
A1(x1, y1, z1) are determined first. The coordinates of all
other nodes on the rotating spines, say A(xa, ya, za), are

nb

nr2 nr

A0

A
C

B

A1
concentric 

circle 

nr1

FSI 
interface

Fig. 3 The schematic mesh structure of the circular cross section of the
tube—the grids used in the simulations are much denser. The thicker
(purple) lines are the rotating spines. The mesh points within the con-
centric circle are fixed, and these outside the circle are movable. The
nodes on the FSI interface are also called the public nodes. The ratio
of the concentric circle and the tube radii is denoted by br , the region
within the concentric circle is divided into nr2 layers, and immediate
layer outside the circle, has nb + nb(nr2 − 1) divisions. For description
of the other symbols, see text

interpolated using

xa = x0 + ωA(x1 − x0), ya = y0 + ωA(y1 − y0),

za = z0 + ωA(z1 − z0), (3.1)

whereωA is a scaling factor between 0 and 1. The coordinates
of the nodes that are not on the rotating lines are linearly inter-
polated from those on the rotating spines. For instance, the
coordinates of the node C(xc, yc, zc) in Fig. 3 are calculated
from:

xc = 1

2
xa + 1

2
xb, yc = 1

2
ya + 1

2
yb, zc = 1

2
za + 1

2
zb (3.2)

where (xa, ya, za) and (xb, yb, zb) are the coordinates of
points A and B, respectively, both are on the rotating lines.
The collapsible tube wall is divided into nr1 layers, each
layer has the same number of divisions in the radial direction
determined by nr , nr2 and nb. The numbers of divisions of
the upstream, elastic and downstream sections are denoted by
nu , nm and nd , respectively. The upstream section is divided
equally along the tube, the downstream section is divided
sparser towards the outlet of the tube and the grids of the
elastic section are denser towards the two ends. Figure 4
shows an example grid of the whole model.
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Fig. 4 The finite element mesh of the whole model

z=2.24 z=4.48

Fig. 5 Selected cross-sectional slices of the finite element mesh for the
fluid in the elastic section of the domain after large deformation

To see the mesh quality after deformation, two selected
cross sections for the fluid in the elastic section of the domain
(for a simulated case where the large deformation occurs) are
shown in Fig. 5. It can be seen that there is controlled mesh
distortion even at themost collapsed section. The largest ratio
between the maximum and the minimum sizes of any single
element is < 4.0. Almost all the pentahedron elements at
these cross sections remain acute triangles after deformation.

3.2 Mesh adaptation and rotating spines

The elastic boundary of the fluid field moves according to the
wall deformation. To ensure themesh can copewith themov-
ing boundary, the fluid mesh is made adaptive by adopting
the method of rotating spines initially developed for two-
dimensional problems (Cai and Luo 2003). This method is
illustrated on a circular cross section as shown in Fig. 6. A set
of spines originating from the fixed concentric circle are con-
nected to the tube wall. These spines remain straight, but can

rotate around the fixed points as the tube wall deforms. For
example, in the reference configuration, the spine k connects
a fixed node (xkb , y

k
b , z

k
b) on the concentric circle to amaterial

point (Xk
e ,Y

k
e , Zk

e ) on the tube wall. After the deformation,
(Xk

e ,Y
k
e , Zk

e ) moves to (xke (t), y
k
e (t), z

k
e(t)) according to:

xke (t) = Xk
e+ue(t), yke (t) =Y k

e +ve(t), zke(t) = Zk
e+we(t),

(3.3)

where (ue, ve, we) are the corresponding displacements. The
mesh nodes of spine k move along it according to

xkj (t) = xkb + ωk
j (x

k
e (t) − xkb ),

ykj (t) = ykb + ωk
j (y

k
e (t) − ykb ),

zkj (t) = zkb + ωk
j (z

k
e(t) − zkb), (3.4)

where ( j = 1, 2, 3, . . . nk), nk is the total number of nodes
on spine k, and ωk

j are the fixed scaling factors defined by

ωk
j =

√
(xkj (0) − xkb )

2 + (ykj (0) − ykb )
2 + (zkj (0) − zkb)

2

√
(Xk

e − xkb )
2 + (Y k

e − ykb )
2 + (Zk

e − zkb)
2

,

(3.5)

with xkj (0), y
k
j (0), z

k
j (0) being the initial coordinates of the

(fluid) node j on spine k. This spine-based mesh adapta-
tion is automatic as no new meshing and interpolations are
needed. Our previous studies on a 2Dmodel showed that this
was not only computationally efficient, but also numerically
accurate (Liu et al. 2012).

3.3 The ALE finite element approach

The time derivatives appearing in the Navier–Stokes equa-
tions are the Eulerian time derivatives ∂/∂t which are defined
in the fixed space. However, as the grid is moving, we need to
define the time derivatives with respect to the moving grid,
say δ/δt . Using the chain rule, we write the relation between
δ/δt and ∂/∂t as

δvi

δt
= ∂vi

∂t
+ w · ∇vi , i = 1, 2, 3, (3.6)

wherew is the velocity of themoving grid. The ALENavier–
Stokes equations become,

δvi

δt
− w · ∇vi + v j

∂vi

∂x j
= − ∂ p

∂xi
+ 1

Re
∇2vi . (3.7)

We employ the Petrov–Galerkin method to improve the
numerical convergence, the velocities and displacements are
interpolated using the quadratic shape functionsψ , andψ(e),
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k k
k+1

k+1

xbk,ybk,zbk

x j
k(t),y j

k(t),z j
k(t)

xek(t),yek(t),zek(t)Xe
k,Ye

k,Ze
k

x j
k(0),y j

k(0),z j
k(0)

Fig. 6 A sketch of two rotating spines

respectively, and the fluid pressure and solid’s ‘pressure’
are interpolated using the linear shape functions φ, and φe,
respectively:

v j =
15∑
i=1

v j iψi (L1, L2, L3, Lz),

u j =
20∑
i=1

u jiψ
e
i (ξ, η, ζ ), j = 1, 2, 3

p =
6∑

i=1

piφi (L1, L2, L3, Lz),

pe =
8∑

i=1

peiφ
e
i (ξ, η, ζ ), (3.8)

where (L1, L2, L3, Lz), and (ξ, η, ζ ) are the local coordi-
nates of the isoparametric fluid triangular and solid hexahe-
dron elements, respectively. All the fifteen nodes of the fluid
elements have degrees of freedom of velocity, only the six
vertices have the degree of freedom of pressure. Likewise,
all the 20 nodes of the solid elements have degrees of free-
dom of displacement and only the eight vertices have degree
of freedom of ‘pressure’. On the public nodes of the fluid
and solid’s elements, both the fluid’s and solid’s degrees of
freedom exist.

The finite element formulation of the ALE and continuity
equations, after integration by parts, can be written as

∫
�

[(
δvi

δt
− w · ∇vi + v j

∂vi

∂x j

)
ψ

−p
∂ψ

∂xi
+ 1

Re

∂vi

∂x j

∂ψ

∂x j

]
dω

+
∫
A

(
pni − 1

Re

∂vi

∂x j
n j

)
ψ da = 0, (3.9)

∫
�

∂vi

∂xi
φ dω = 0. (3.10)

where ni are the components of the outwards unit normal
vector of the fluid boundary, and � and A denote the total
volume and area of the fluid in the current configuration,
respectively.

The finite element form of the solid governing equations
in the current configuration is:

−
∫

v

(
σi j, j − ρeui,t t

)
ψ(e)dv

+
∫
sσ

(
σi jm j − fi jm j

)
ψ(e)ds = 0 (3.11)

∫
v

(det(F) − 1)φedv = 0 (3.12)

where σi j are the Cauchy stress components, v and sσ are
the volume and the stress boundary of the solid in the current
configuration, respectively, m j are the outward normal unit
vector components of the structure boundary, and fi jm j are
the components of the force vector acting on the elastic tube,

fi jm j =
{{

−pδi j + 1
Re

(
∂vi
∂x j

+ ∂v j
∂xi

)}
m j , on the inner wall of the tube,

−Pext δi jm j , on the outer wall of the tube.

(3.13)

We may also push back the solid governing equations to
the reference configuration,

−
∫
V
(SAi

∂ψe

∂XA
+ρeui,t tψ

e)dV +
∫
Sσ

fik F
−1
Pk NPψedS=0,

(3.14)∫
V

(det(F) − 1)φedV = 0, (3.15)

where use of

σi j = 1

det(F)
Fi ASAj , m jds = F−1

P j NP det(F)dS, (3.16)

has been made in deriving (3.14) and (3.15), V and Sσ are
the volume of the solid and the stress boundary of the solid
in the reference configuration, respectively, and NP are the
unit outward normal vector components of Sσ .
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3.4 Numerical implementation

We now limit ourselves to consider quasi-static wall and
steady flows only, hence, the coupled system equations (3.9),
(3.10), (3.14) and (3.15), when discretised and assembled,
can be written in a matrix form

K(U)U − F = R = 0. (3.17)

whereU is the global vector of unknowns (u, v, w, p, ue, ve,
we, pe), M is the mass matrix, K(U) represents the non-
linear stiffness matrix, F is a force vector, and R is the
overall residual vector. (3.17) is solved using a second order
Newton–Raphson method.

3.4.1 Numerical solvers and the frontal approach

Weuse the frontal scheme to solve the algebraic matrix equa-
tion during each iteration to avoid forming the large sparse
global matrices, K and M. The frontal method was initially
developed by (Irons 1970) and has been successful used in
numerical simulations of two dimensional collapsible chan-
nel flows (Rast 1994; Cai and Luo 2003; Luo et al. 2008; Liu
et al. 2012; Hao et al. 2016). Building on a LU or Cholesky
decomposition, the frontal solver assembles and eliminates
the equations only on a subset of elements at a time. This
subset is the so-called front, and it is essentially the transi-
tional region between the part of the system already solved
and the part unsolved. In essence, we make use of the frontal
solver by storing the element matrices together with a steer-
ing matrix which points to the location of the element entries
in the global matrices. The full sparse global matrices are
never assembled. Processing the front involves operations
on dense but much smaller matrices, which uses the CPU
efficiently (Hao et al. 2016).

3.4.2 Continuation techniques and initial perturbations

The strong nonlinearity of the system often presents mul-
tiple solutions of different post-buckling modes (Zhu et al.
2008). To ensure that simulations converge to the required
solutions, one must use an efficient continuation tech-
nique. Inspired by the arc-length continuation proposed
by (Keller 1977), here we follow a simplified version of
the idea by either controlling the external pressure, or the
displacement (Heil 2004), with a simple switch between
the pressure and displacement-control as appropriate. The
pressure-control solves a fully displacement-based problem,
while the displacement-control method specifies a displace-
ment of the tube at one specific point and regards the external
pressure Pext as anunknown.Wechoose the control point on a
solid element (say, at x = R + h, y = 0, z = Lu + 0.75Lm)

Fig. 7 Thewholemodel is divided into several substructures for parallel
computations

and prescribe the displacement in the x direction which is
typically varied between 0 and 0.5 − br .

All variables are set to zero in the initial guess for
the Newton iterations. In order to ensure convergence, the
displacement-control starts with a small value at the first iter-
ation. Since the axisymmetric solution is remarkably robust,
it is necessary to add an asymmetric perturbation to the pres-
sure to follow the non-axisymmetric solution branch. This
is done using the perturbation Pc cos(Nθ), where N indi-
cates the buckling mode or lobe number of the tube in the
azimuthal direction, and Pc regulates the magnitude of the
perturbation. The numerical perturbation is removed once
the tube is buckled.

3.4.3 Parallel computations

We adopt parallel computations based on the substructure
method and implement this using the OpenMulti-Processing
(https://en.wikipedia.org/wiki/OpenMP).The computational
domain is divided into several sections along the tube, as
shown in Fig. 7. Every segment is a substructure which can
be regarded as a “big element”, with the links to other sub-
structures through the nodes of the cross sections (interfaces).
The variables of the internal nodes of each substructure are
eliminated using the frontal method to obtain a large element
stiffness matrix which is only related to the nodal variables
of the interfaces. The elimination of each substructure is per-
formed by one core. Once the variables of the interfacial
nodes are obtained, all the internal nodal variables can then
be recovered from the frontal method.

To test the parallel efficiency of the program, we com-
pare the computations using two different grids. Both have
the same discretizing parameters along the tube, but the dis-
cretization of the cross sections differ. The two grids have the
interfacial nodes of 289 and 385, and the total nodal num-
ber of 40,469 and 53,885, respectively. Figure 8 shows the
speedup (the ratio of the running time between a single pro-
cessor and parallel processors for the same task) in latency
of the execution of a task at a fixed workload.We can see that
the parallel efficiency is good in both cases, though it is bet-
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Fig. 8 The speedup ratio (Sp) versus number of cores, n, for two dif-
ferent meshes

ter for the grid with less number of nodes on the collapsible
cross section. This is because added nodes on the collapsi-
ble cross sections increase the maximummatrix width of the
frontal solver. Obviously, computational efficiency needs to
be balanced with the numerical accuracy. All simulations are
performed on a 3.2 GHz Linux computer. Extensive model
validation and grid independence tests are provided in the
Appendix.

4 Results

4.1 Different material models

To study the impact of three different hyperelastic tube mate-
rials, we choose the same value ofμe in all three models, and
the additional parameters are Jm = 3.5 for the Gent material
model and c0 = 0.7μe, c1 = 0.3μe for the Mooney–Rivlin
material model. These parameters are chosen so that all three
models have the same linear elastic response when strain is
small. In the first case, case A, we compare the results with
that of (Marzo et al. 2005), who verified their results against
a case by (Hazel and Heil 2003). We set all the parame-
ters to be the same as in (Marzo et al. 2005) (Re = 128,
P∗
ext = 1.4 Pa, D = 4mm, Lu = 0.5, Lm = Ld = 5, and

d = 1/40), except we use nonlinear models withμ∗
e = 1530

Pa and they used a linear material model with the Poisson
ratio of μ = 0.49, and Young’s modulus of 4559.4Pa. The
result, in terms of pressure drop along the tube axis, is shown
in Fig. 9a. Notice that all the three material models yield the
similar results. This is because the maximum strain in the
deformed tube is small (about 0.066 in this case), and the

different nonlinear material models have the same response
in this case.

In the second case, case B, we change the parameters to
be μ∗

e = 23.75 Pa, Re = 64, and P∗
ext = −0.7488 Pa and

the others are kept to be the same as in the previous case.
The pressure drops are plotted in Fig. 9b. In this case, a
greater difference in the results of different models exists.
The maximum xy shear strains from the three material mod-
els are 1.21 (Neo–Hookean), 0.95 (Mooney–Rivlin) and 0.69
(Gent) models, respectively. For a finite strain problems as
in this case, the nonlinear characteristic, represented differ-
ently in each model, becomes prominent. These simulations
show that it is important to choose a suitable constitutive law
that can describe the tissue material in a nonlinear range. For
example, flows in arteries with an aneurysm could operate in
such a parameter range.

4.2 Flows and energy dissipation in amode-3
buckling tube

Under external pressure, the cross section of the tube may
buckle into multiple lobes. Since mode-2 post-buckling flow
patterns have been extensively studied (Hazel and Heil 2003;
Marzo et al. 2005), here we concentrate on the buckling
mode-3,which becomes dominantwhen eitherwhen for thin-
ner or shorter vessels, as shown in Fig. 1. Consider a small
strain bucking case,we use theNeo–Hookeanmaterialmodel
with the dimensionless parameters:

Lu = 3.0, Lm = 5.0, Ld = 30.0, d = 0.0102,

μe = 15370.62, Pext = 3.0789, Re = 450, Pd = 0.

(4.1)

The corresponding dimensional values are in the range for
human arteries (Horgan and Saccomandi 2003; Prendergast
et al. 2003).

The pressure distribution and flow streamlines overlapped
with viscous energy dissipation along the bucked mode-3
tube are shown in Fig. 10a, b. We can see that immediately
after the tube collapses, there are three strong flow separation
zone associated with the three concave sides, and a higher
viscous dissipation appears at themost inward wall—wewill
come back to this later. The flow features are better viewed
from the cross-sectional views shown in Fig. 11. At locations
upstreamof the elastic tube, the flow ismore or less Poiseuille
flowwith only negligible transverse flow.Then just before the
collapsed section at z = 4.0 the transverse flow moves away
from the centre, forming a six regional patterns. As we move
into the collapsed section at location A (z = 5.5), some fluid
from the side walls moves towards the centre some moves
while towards the lobes. The central flow is intensified as
the collapse becomes more severe at location B (z = 6.0).
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Fig. 9 The axial pressure drop along the elastic section of three different material models in the situation of a small strain, case A, and b finite
strain, case B
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(a) (b)

Fig. 10 a The collapsed tube, showing a circumferential waves (buck-
ling mode of three) towards downstream. As the tube is very long, only
the segment between z = 0 and z = 13 is shown, where the elastic
section lies between z = 3 and z = 8. The flow is from left to right. The
contours show the pressure dropping along the tube, the downstream

end is subject to the strongest compressive load. The corresponding
flow field is shown in Fig. 11. b the grey lines are the stream lines of
the fluid field, showing three flow separation zones downstream the col-
lapsed section. The coloured contours show the distribution of energy
dissipation

Further downstream at location C (z = 6.6), the narrowest
cross section, there is clearly defined tri-diagonal lines join
at the centre, fluid moving towards the centre to form a 2D
sink, which feeds into the axial jet. The sink becomes slightly
weaker at z = 6.8 as indicated by the transverse velocity val-
ues and the tri-diagonal lines started to disappear. At location
D (z = 7.04), flow continues to be drawn from the lobes but

in the centre it starts to move towards the sides. The tube
starts to recover at E (z = 7.46) and F (z = 7.98), the jet
weakens, and the secondary flow pattern becomes complex,
with all six streams of flows moving away from the walls
but moving towards what were the concave sides to form
three forks, totally avoiding the centre. Indeed, these fork-
like streamlines are associatedwith the three flow separations
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Fig. 11 Flow patterns at twelve different cross sections along the tube
from z equals 3–14, where the elastic section lies between z = 3
and z = 8. The contours indicate the magnitude of the axial veloc-
ity, the black curves are the transverse streamlines of the cross sections.

a z = 3.1, b z = 4.0, c z = 5.5 (A), d z = 6.0 (B), e z = 6.6 (C), f
z = 6.8 g z = 7.04 (D), h z = 7.46 (E), i z = 7.98 (F), j z = 8.3 (G),
k z = 11.0, k z = 14.0
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Fig. 12 The contours of the energy dissipation at different cross sec-
tions along the collapsed tube where the flow separation zones are
shown. The contours are plotted between 0.5 and 7.5 with a equal space

of 0.5. The cross sections A–G are located at A = 5.5, B = 6.0,
C = 6.6, D = 7.04, E = 7.46, F = 7.98 and G = 8.3, respectively

in the axial direction, as indicated by the negative value (in
blue). This pattern persists until location G (z = 8.3) when
the flow starts to reattach. Further downstream at z = 11.0
the transverse flow forms six beautiful vortices, which slowly
merge into three pairs at z = 14.0. The vortices gradually
disappear as z increases, and the flow eventually recovers to
its Poiseuille profile (not shown).

We remark that themode-3 flow patterns are very different
to those of mode-2 buckling reported previously, where often
there are two central axial jets and the transverse flow is
typically signatured by four regional patterns (Marzo et al.
2005; Hazel and Heil 2003).

The viscous energy dissipation in the flow domain, com-
puted from D = 1

Re (ui, j + u j,i )ui, j , is deemed important
in the onset of instability in collapsible tubes. It is shown in
Fig. 10b on the tube outer surface.More details can be seen in
Fig. 12. We note that most of the energy dissipation sites are
in the boundary layers of the domain where the tube is most
collapsed, similar to what was found in a two-dimensional
model (Luo and Pedley 1996; Liu et al. 2012; Luo et al.
2008). There are also some small dissipations distributed in
the domain where the flow separations exist. Interestingly,
the energy dissipation does not appear directly at the sites
of the flow separations but occurs at the transverse stream-
lines that separate the flow separation zones, as shown in

cross sections E–G in Fig. 12. Interestingly, the maximum
dissipations occur at the concave sides, but the there appear
to be two maximum points within each side, as is shown in
Fig. 10b. We also note that the energy dissipation associated
with the transverse vortices downstream is almost negligible.

4.3 Themixed-mode bifurcation

When the tube is softer and thinner, e.g. d = 0.0102,
μe = 2161.49, then mixed buckling modes can also occur.
One such an example is shown in Fig. 13 for Pext = 3.408,
Re = 300. Despite a mode-2 or mode-3 perturbation, the
solution converges to a buckling state that is a mixed-mode.
In this case, the flow patterns are qualitatively different to the
mode-3 case shown in Fig. 11. There is a shift of the sym-
metry in the transverse flows, and no sink is formed at the
centre. At the beginning of the elastic section, although the
cross section is still circular, we can see the changes in the
transverse flow, reflecting the tube deformation downstream.
However, these appear to be either four (e.g. z = 4.7) or
six regional flows (e.g. z = 4.85 and 5.5), which are usu-
ally associated with of mode-2 or mode-3 buckling. As the
tube starts to deform, these patterns disappear at z = 6.5.
At the most collapsed section (z = 7), the flow is pushed
to left by the wall deformation and then scatters in all direc-
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Fig. 13 Flow patterns at nine different cross sections along the tube
from z equals 3.5 to 10, where the elastic section lies between z = 3
and z = 8. The contours indicate the magnitude of the axial velocity,

the black curves are the transverse streamlines of the cross sections. a
z = 3.5, b z = 4.7, c z = 4.85, d z = 5.5, e z = 6.5, f z = 7.0, g
z = 7.25, h z = 8.0, i z = 10.0

tions (z = 7.25), before moving back to right as the tube is
reopened (z = 8). As the total collapse is small, no flow sep-
arations are observed, although there are complex transverse
flow patterns with two large vortices forming downstream of
the elastic section (z = 10).

4.4 The bifurcation diagrams

We now study the changes of the system buckling behaviour
due changes in flow rate or the Reynolds number. We use the

same model as in the previous section, except that we will
present results in terms of the dimensional shearmodulus and
pressure, i.e. μ∗

e (= 124502.016 Pa), P∗
ext, and the pressure

drop, dp∗, across the tube between z = 0 and 15. This is to
enable us to interpret the results more easily, since the cor-
responding non-dimensional quantities are scaled with Re2.

We vary the Reynolds numbers from 25 to 600 and study
the results at three different values of external pressure:
P∗
ext = 15.911, 21.141, and 24.939 Pa, respectively as shown

in Fig. 14. The relationship between the Reynolds number
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Fig. 14 Mode-3 buckling solutions at different values of P∗
ext: a two

cuts that cross the most bludged and collapsed wall sides, b The pres-
sure drop dp∗ against Reynolds number, c shapes of the cross sections
at z − Lu = 4, for P∗

ext = 21.141 Pa and Re = 500 (one solution),

400 (two solutions), and 437 (three solutions), and d the bifurcation
diagrams of the radial displacement at fixed axial position z − Lu = 4
plotted against Re

and the pressure drop dp∗ is shown in Fig. 14b for differ-
ent values of the external pressure. The straight lines are
obtained for axisymmetric deformation, and these remain
almost the same under the different external pressures. At
P∗
ext = 15.911 Pa, two solutions exit, one axisymmetric and

one buckling. As Re increases, to 302 < Re < 315, there
are three solutions, one symmetric and two different buck-
led configurations, and the tube recovers to its axisymmetric
solution for Re > 315 This trend is more obvious when

external pressure is increased. For P∗
ext = 21.141 Pa, there

are two solutions exist for Re < 430, and three solutions
at Re = 430−450, as shown in Fig. 14b. Again, the tube
recovers to its axisymmetric solution for Re > 450. Simi-
lar behaviour is seen for P∗

ext = 24.939 Pa, except that the
deformation is greater, and the critical values ofRe are shifted
higher, to 522 for two solutions to occur, and 522–548 for
three solutions, before the buckling solutions disappear at
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Fig. 15 Same as in Fig. 14, but for buckling mode-2 and cuts 3 and 4, and shapes of cross sections are for P∗
ext = 159.744 Pa and Re = 405 (one

solution), 25 (two solutions), and 275 (three solutions)

Re > 548. Notice that the axisymmetric solutions (non-
buckling) are independent of the external pressure.

The multiple solutions, in terms of shapes of the cross
sections at z − Lu = 4, for P∗

ext = 21.141 Pa and Re =
500, 400, 437 are shown in Fig. 14c. Choosing the points
with the same axial location (z − Lu = 4.0), we can also
plot a bifurcation diagram in terms of tube deformation
and Re as shown in Fig. 14d. The positive values indi-
cate the wall bulged out, and the negative ones showing
the opposite wall collapse at the same axial location. The

straight line at r − r0 = 0 stands for the axisymmetric pre-
bucking deformation, which is independent of the external
pressure.

For comparison, we also obtain the corresponding results
of mode-2 by setting N = 2 in the pressure perturbation. All
the parameters are the same as in the model-3 case except the
tubewall is twice as thick:d = 0.05.This is because a thicker
tube loses stability to mode-2 first, as suggested by Fig. 1. A
thicker tubewill also buckle under a greater external pressure.
The results are shown in Fig. 15 for three different exter-
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nal pressure. The bifurcation diagrams for mode-2 buckling
in Fig. 1 are quite different to the mode-3 case. In partic-
ular, we found that the ranges of Re where three buckling
solutions occur are much greater, namely, Re = 44 − 200,
170 − 300, and 267 − 402, for P∗

ext = 152.258, 156.060,
159.744 Pa, respectively. The range of Rewithmultiple solu-
tions increases with the external pressure.

Finally, we confirm that the bifurcation diagrams from the
Gent orMooney–Rivlinmaterial models are similar to that of
the Neo–Hookean model, with critical points shifted slightly
towards left (≈ 3% difference in Re). This is because the
strains are small (around 5%) in these simulations.

4.5 Discussion and conclusion

We have carried out a extensive study on three-dimensional
flows in a hyperelastic collapsible tube. Novel finite ele-
ment approaches such as rotating spines, frontal solver and
substructure-based parallel computing are adopted for the
strongly coupled fluid-structure interaction problem. The
incompressibility of the tube material is solved explicitly.
To induce the asymmetrical deformation, both pressure-
and displacement-control techniques are implemented to
obtain various circumferential buckling modes of the tube.
Our model is extensively verified against the previous pub-
lications for a simpler material model, and against two
commercial software (ANSYS and FLUENT), for the solid
and fluid solvers, separately.

New results in this study include detailed flow patterns of
flows in a circumferential mode-3 buckling tube. Our results
show a rich pattern of flow separations and transverse vor-
tex formation. It is interesting to see that the transverse flow
forms a virtual sink in the centre of the tube at the most col-
lapsed section, which then feeds into a single axial jet. An
energy analysis reveals that the maximum energy dissipa-
tion occurs at the narrowest section of the collapsible tube
as shown in Fig. 11, which is consistent with the findings
of previous 2D models (Luo and Pedley 1996). However,
this 3D model reveals that the energy at the flow separation
is dissipated via the streamlines that separate the three flow
separations zones. This is because dissipation always occurs
at higher shears.We also show that despite the complex trans-
verse vortices downstream, these consume very little energy.
When the tube is thinner and softer, mixed mode bifurcation
also occurs. These mixed modes are qualitatively similar to
some of the CT images reported for true lumen in aortic dis-
section (Sun et al. 2014; Wang et al. 2017, 2016). The flow
patterns within these tubes are very different frommode-3 or
mode-2 collapsed tube flows, and these can only be simulated
using a whole tube model.

For the mode-3 buckling case, we found there exists a
range of Reynolds numbers when two or three solutions exist
at a same external pressure, with one non-buckling and one

or two different buckling scenarios (Fig. 14 c). This type of
bifurcation diagrams for the mode-3 buckling has not been
reported before.

By way of comparison, bifurcation diagram of the mode-
2 buckling is also shown. The bifurcation diagrams are very
different to that of mode-3. In particular, the range of Re
for which three solutions can occur is much greater than that
of mode-3 case. These results are also different from those
by (Heil and Pedley 1996), who studied the bifurcation dia-
gram of the mode-2 buckling for a pressure-driven system, in
which the upstream transmural pressure is kept as zero (Heil
and Pedley 1996). This is different to our flux-driven case,
where we impose stress-free condition at the flow outlet, so
the tube is always compressed under a positive external pres-
sure.

It is worth pointing out that not all the solutions iden-
tified here are physically stable. To study the stability of
the solutions requires dynamic simulations or an eigenvalue
study (Luo and Pedley 1996; Luo et al. 2008), which is
beyond the scope of this paper.

The success of a mathematical modelling relies on ratio-
nally reducedmathematicalmodels given the highly complex
physiological systems. These models can provide insight on
the most important factors or can be experimentally tested.
Our model is based on the Starling resistor set-up, and hence,
is a simplified geometric representation of arteries and veins.
However, compared to many published papers on flows in
collapsible vessels (Heil and Pedley 1996; Luo and Ped-
ley 1996; Luo et al. 2008; Hazel and Heil 2003; Whittaker
2015), the new model is sophisticated (realistic) in terms
of taking account of the fully coupled FSI, while repre-
senting the vessel wall using large deformation nonlinear
strain energy functions (i.e. Neo–Hookean, Mooney–Rivlin,
and Gent). Indeed, the development of the hyperelastic wall
model enables us to study the impact of different nonlinear
material models on the collapsible vessel flows, and the FSI
allows us to assess the critical buckling loadmore accurately.
Importantly, our results show that for small strain problems,
all the nonlinear models yield very similar solutions as lin-
ear material models used in previous studies. However, in the
finite strain case, the characteristics of individual nonlinear-
ity of eachmodel differ. Furthermore,when the tube is bulged
out, the strain tends to be greater than when it is collapsed.
As a result, the differences in both the mode-2 and mode-3
bifurcation diagrams are small (< 3%) between the differ-
entmaterialmodels. However, when the arteries are diseased,
and the material stiffness decreases, the strain will increase,
and the system behaviour will be different. It is, therefore,
important to choose a suitable model with parameters deter-
mined from experiments for a particular problem at hand.We
are aware that biological vessels such as arteries and veins
also consist of more than two families of collagen fibres and
obey anisotropic hyperelastic constitutive laws (Holzapfel
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et al. 2000; Gasser et al. 2006). In addition, physiological
vessels present residual stress even without loading. Both
of these aspects were studied in our previous work on an
arterial model (Wang et al. 2016, 2017), albeit without FSI.
Results from those models (Wang et al. 2016, 2017) suggest
that the wall anisotropy and residual stress will potentially
increase the critical pressure of the buckling in our present
model. Taking the fibre distribution into consideration, our
Neo–Hookean model can be readily extended to the HGO
model (Holzapfel et al. 2000), which is the state-of-the-art
constitutive law for realistic arteries. Research is underway
to quantify the effects of the material anisotropy and residual
stress on biological flows in healthy and diseased collapsible
vessels.
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Appendix: Model validation

A1: Grid independence test

To ensure numerical convergence, grid independence tests
are carried out, particularly under the condition of large
deformation. We choose the test case to be the same as used
by (Marzo et al. 2005), who reproduced the results by (Hazel
and Heil 2003) for a three-dimensional steady collapsible
tube flow with the maximum degree of collapse of 80%.
We choose the Neo–Hookean material model and the same
parameters as they used, i.e. D∗ = 8mm , Lu = 0.5 , Lm =
Ld = 5, d = 0.025, ρ∗ = 1000Kg/m3, μ∗ = 0.001 Pa s,
μ∗
e = 1530 Pa, Re = 128, and P∗

ext = 1.4 Pa. Two different
meshes are used. The coarser model is discretized to 16,200
finite elements and 50,507 nodes, and the finer one is dis-
cretized to 33,888 finite elements and 105,313 nodes. The
wall shapes along the tube in the symmetry planes x = 0
and y = 0, respectively, are compared in Fig. 16. It can be
seen that the two different grids predict identical elastic wall
shapes along the tube.

A2: Comparison with published results by Marzo et
al. (Marzo et al. 2005)

The fluid pressures along the tube axis are compared with the
results by (Marzo et al. 2005) in Fig. 17a. The agreement

z-Lu

0 2.5 5
0

0.25

0.5

0.75

50507 nodes
105313 nodes

x

y

Fig. 16 Shapes of the tube projected to the two symmetry planes (x =
0: above, and y = 0: below) for the testing case using two different
grids. The results from the two grids are identical

is generally very good, except for a small discrepancy at the
upstream. We think this may be caused by the fact that the
incompressibility was not strictly satisfied in their model; we
use the Poisson’s ratio of 0.5, but 0.49 was used in (Marzo
et al. 2005). We also compare the displacements of the inter-
nal wall of the tube at the intersection of the symmetry plane
in Fig. 17b. Again, excellent agreement is obtained.

A3: Comparison with the results of ANSYS and
FLUENT

There are very few commercial softwares that can simulate
nonlinear large deformation FSI problems directly. Thus, to
verify our coupled solver, we use the commercial solid soft-
ware ANSYS and fluid software FlUENT, to verify our solid
and fluid solvers separately. The parameters are chosen to be:

D∗ = 0.02m, Lu = 2.5, Lm = 2.5,

Ld = 5, d = 0.05, μe = 151.98,

ρ∗ = 103 kg/m3, μ∗ = 4 × 10−3Pa s,

P∗
ext = 0.47968 Pa, Re = 50.

The Neo–Hookean material model is used for the validation
purpose. All the parameters are non-dimensionalized as in
(2.1). For the flow simulations, we import the final configu-
ration of the tube into FLUENT as the boundary of the flow
field. Comparing the Navier–Stokes equations before and
after nondimensionalization, we set ρ∗ = 1 kg/m3, μ∗ =
1
Re = 0.02 Pa s to make the parameters consistent for the
fluid simulation. The results of the flow field are compared
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Fig. 17 a Pressure drop along the tube axis (z − Lu)/R, b the elastic
wall shape in the symmetry plane y = 0 as a function of the axial dis-
tance, compared with the results by (Marzo et al. 2005) for the same
model problem. Note in order to compare the fluid pressure, we rescaled

the pressure in the same way as by (Marzo et al. 2005) (i.e. our results
are multiplied by ρU2

0 to get the dimensional values first, and then
divide by the bending stiffness K = Ed∗3/[3(1 − υ2)D∗3], to obtain
the dimensionless values)
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Fig. 18 Comparison of the flow fields computed using FLUENT and our code. a FLUENT—velocity. b Our fluid velocity. c FLUENT—pressure.
d Our fluid pressure
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in Fig. 18. It can be seen that both the velocity and pressure
fields calculated using our code agree well with those cal-
culated using FLUENT. The maximum relative error in the
maximum velocity and pressure between the two simulations
is < 0.6%.

The solid modelling is verified using ANSYS. We first
build a model of the deformation section of the tube for
ANSYS and select the Neo–Hookean material with the
shear modulus μe = 151.98 and incompressibility parame-
ter de = 0 (The incompressibility parameter in ANSYS is
defined by de = 2/K = 6 × (1 − 2μ)/E , where K is the
bulk modulus. Here we use μ = 0.5, so de = 0.). To ensure
that we use the same boundary conditions, we impose the
viscous fluid forces from our coupled model as the loading
condition for the ANSYS model. The comparison is shown
in Fig. 19. Again, almost identical results are obtained; the
maximum relative error of the displacement between the two
solvers is < 0.5%.
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