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SUMMARY

Finite stress and strain analyses of the heart provide insight into the biomechanics of myocardial function
and dysfunction. Herein, we describe progress toward dynamic patient-specific models of the left ventricle
using an immersed boundary (IB) method with a finite element (FE) structural mechanics model. We use
a structure-based hyperelastic strain-energy function to describe the passive mechanics of the ventricular
myocardium, a realistic anatomical geometry reconstructed from clinical magnetic resonance images of
a healthy human heart, and a rule-based fiber architecture. Numerical predictions of this IB/FE model
are compared with results obtained by a commercial FE solver. We demonstrate that the IB/FE model
yields results that are in good agreement with those of the conventional FE model under diastolic loading
conditions, and the predictions of the LV model using either numerical method are shown to be consis-
tent with previous computational and experimental data. These results are among the first to analyze the
stress and strain predictions of IB models of ventricular mechanics, and they serve both to verify the IB/FE
simulation framework and to validate the IB/FE model. Moreover, this work represents an important step
toward using such models for fully dynamic fluid–structure interaction simulations of the heart. © 2014 The
Authors. International Journal for Numerical Methods in Engineering published by JohnWiley & Sons, Ltd.
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1. INTRODUCTION

Cardiac diseases have been a major public health burden in industrialized countries for more than

a century and are now the leading causes of morbidity and mortality worldwide. Despite intense

effort, however, the biomechanics of heart disease and heart failure remain incompletely understood.

It is well known that alterations in myocardial stress and strain distributions can have a significant

impact on maladaptive processes such as hypertrophy [1, 2], but it is not possible to measure directly

intramural stress distributions in patients. Three-dimensional stress and strain distributions are read-

ily provided by computational models of the heart, however, and such models therefore could assist
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in patient risk stratification and inform clinical decision making [3]. An improved understanding of

ventricular biomechanics is also important for optimizing medical therapies and surgical procedures

aimed at restoring normal heart function [4].

The development of realistic computational models of the heart is complicated by several factors.

The heart is a multiphysics system in which the contractions of the myocardium are stimulated

and coordinated by the electrophysiology of the heart. The passive and active mechanical proper-

ties of the myocardium are anisotropic and nonlinear, and the heart experiences large deformations

resulting both from diastolic filling and also from systolic contraction. In addition, the heart is fun-

damentally a fluid–structure system, and a fully dynamic computational model of the heart must

account for the substantial inertia of both the muscular heart wall and the blood. Finally, there are

significant intersubject differences in cardiac anatomy and physiology that must be incorporated into

fully subject-specific computational models. For a recent survey of approaches to patient-specific

modeling of cardiac biomechanics, see ref. [5] .

Because of the complex anatomical geometry, large deformations, and nonlinear material

response of the heart, most detailed models of cardiac mechanics have used nonlinear finite element

(FE) methods. Nash and Hunter [6] developed an FE framework for large deformation heart simula-

tion using the pole zero constitutive law. A subsequent study by Stevens et al. [7] suggested that the

pole-zero law might need to be reformulated to achieve a better separation of material parameters

associated with deviatoric stresses. Vetter and McCulloch [8] modeled the rabbit left ventricle (LV)

in diastole using a three-dimensional FE method, and a good agreement with experimental measure-

ment was found. Using a three-dimensional finite deformation model, Usyk et al. [9] studied the

effects of the laminar fiber architecture on regional stress and strain.

Since the 1990’s, various studies have demonstrated that the layered organization of the ventric-

ular myofibrils results in an orthotropic passive material response [10, 11]. Relatively few studies

have used orthotropic material laws for LV simulations, however. Instead, the most earlier work has

described the myocardium as transversely isotropic [12, 13]. The Holzapfel–Ogden model of the

ventricular myocardium [10] provides a description of the orthotropic and hyperelastic behavior of

cardiac muscle that is based on strain invariants that reflect the structure of the myocardium. Among

the first organ-scale simulations to use this model were by Göktepe et al. [14], who used it with an

FE model of the heart with an idealized biventricular geometry.

In earlier work, we also used the Holzapfel–Ogden strain-energy functional to model ventricular

mechanics. We developed a realistic human left ventricular geometry derived from clinical magnetic

resonance (MR) imaging data along with a rule-based fiber architecture. Using this model along

with a nonlinear FE method for the structural mechanics, we studied the effects of changes in fiber

organization and material properties on diastolic mechanics, and we demonstrated that changes to

the fiber orientations have substantially larger effects on the passive response of the myocardium

than changes to the sheet orientations [15]. We also showed that the effects of the residual stress,

determined either from measured residual strains or by the opening-angle method, can be easily

incorporated in a modified Holzapfel–Ogden model [16].

Dynamic fluid–structure interaction (FSI) models of the heart have also been developed. Perhaps

the most widely used approach to construct such models is to use body-conforming discretizations

of the fluid and structure, for example, via an arbitrary Lagrangian–Eulerian (ALE) formulation

[17–20]. Watanabe et al. [17] developed an FSI model of the LV using an ALE FE method with

strong coupling that also included a description of the electrophysiology of the LV. More recently,

Nordsletten et al. [18] developed an FE framework for simulating blood flow and myocardial

dynamics in both the diastolic and systolic phases of the cardiac cycle via a nonconforming ALE FE

scheme. Their method has been used to study the effects of left ventricular assist devices on the heart

[19] and to investigate the diastolic function of patients with hypoplastic left heart syndrome [20].

Fluid–structure interaction methods involving body-fitted grids generally require dynamic mesh

generation for problems that involve large structural deformations and this requirement substan-

tially complicates the implementation of such schemes. The immersed boundary (IB) method [21]

offers an alternative to body-fitted methods that avoid the need for dynamic mesh generation. The

IB method is a general approach to modeling systems in which an incompressible elastic structure

is immersed in a viscous incompressible fluid. Within the IB framework, the momentum, viscosity,
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and incompressibility of the coupled fluid–structure system are described in Eulerian form, and the

structural deformations, stresses, and forces are described in Lagrangian form. Integral equations

with Dirac delta function kernels couple the Eulerian and Lagrangian variables, and when the con-

tinuous equations are discretized, the singular delta function is replaced by a carefully constructed

regularized version of the delta function. A key advantage of the IB approach to FSI is that it does not

require the construction of conforming discretizations of the fluid and solid. This approach is there-

fore extremely well-suited for applications such as cardiac dynamics that involve large structural

deformations.

Conventionally, many of the structural models used with the IB method have described the elas-

ticity of the immersed body using systems of elastic fibers. Such fiber models have been used

to develop a variety of biofluid dynamics models, including detailed three-dimensional models of

the heart [22–28] and its valves [29–32]. Although fiber-based elasticity models are well-suited

to describing anisotropic tissues such as the ventricular myocardium, it is challenging to use fiber

models along with constitutive models, such as the Holzapfel–Ogden model [10], that account for

the experimentally observed orthotropic properties of the ventricular myocardium. Further, in ven-

tricular mechanics, stress and strain are important biomarkers [2], and despite extensive work on

simulating cardiac dynamics by the IB method, we are aware of no previous studies that have

assessed the accuracy of the stress and strain predictions of IB models of cardiac mechanics.

The IB method is not restricted to fiber-based elasticity models, and various extensions of the IB

method have been introduced that use FE-based structural models [33–39]. In this study, we apply

one of these schemes, a hybrid finite difference-finite element IB method [38] to simulate left ven-

tricular biomechanics under diastolic loading conditions, and we present an initial verification of

the accuracy of the predicted stress and strain distributions by comparing the model results to those

generated by a well-established FE solver. As in our earlier work using a purely structural nonlinear

FE method [15], here, we use the structure-based hyperelastic ventricular model of Holzapfel and

Ogden [10] along with an anatomical geometry derived from clinical MR imaging data obtained

from a healthy human subject and a rule-based myocardial fiber structure. Numerical predictions

of the IB/FE LV model are shown to be in good qualitative and quantitative agreement with results

from the earlier FE-based LV model, and the predictions of both models are shown to be in good

agreement with previous computational and experimental data. We also demonstrate that improved

numerical predictions of the intramural strain and stress can be obtained by employing straight-

forward modifications of the constitutive model that effectively redistribute part of the hydrostatic

pressure from the Eulerian grid to the Lagrangian mesh.

Although the present study considers only the quasi-static mechanics of the LV under diastolic

loading conditions, it is nonetheless among the first to employ the IB method to simulate car-

diac mechanics along with realistic descriptions of cardiac anatomy and physiology. Moreover, our

results serve to verify the IB/FE methodology and also provide an initial validation of this IB/FE

model of ventricular mechanics. Our results also are among the first to demonstrate that the IB

method is capable of producing quantitatively accurate stress and strain distributions for realistic

models of the heart and is thereby a suitable framework for developing realistic FSI models of

the heart.

2. METHODOLOGY

In this section, we give the details of developing an IB/FE LV model based on a subject-specific

LV geometry from clinical imaging. We begin with a brief introduction of the IB formulation and

the constitutive model of the passive myocardium. We then discuss modifications of the structural

stress tensor that improve the accuracy of the computed structural stresses, as demonstrated empir-

ically in Section 3. Next, we give an overview of the numerical methods, including the spatial

discretization and time-stepping schemes. We subsequently describe the reconstruction of a human

left ventricular model from MRI data. We conclude by describing the benchmark nonlinear FE

LV model, which is implemented using the commercial ABAQUS nonlinear FE software and by

providing a listing of the boundary and loading conditions of the IB/FE model and its numerical

discretization parameters.

© 2014 The Authors. International Journal for Numerical Methods in
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2.1. Immersed boundary formulation

In the IB approach to modeling FSI, the momentum, velocity, and incompressibility of the coupled

fluid-structure system are described in Eulerian form, whereas the structural deformation, stress,

and forces of the immersed solid body are described in Lagrangian form. In this work, the physical

domain occupied by the fluid–structure system is denoted � � R
3, in which x D .x1; x2; x3/ 2 �

are fixed Eulerian (physical) coordinates, and the reference configuration of the immersed solid is

denoted U � R
3, in which X D .X1; X2; X3/ 2 U are fixed Lagrangian (material) coordinates.

� W .U; t/ 7! � is a time-dependent deformation mapping relating material and physical coordi-

nates, so that �.X; t / 2 � gives the physical position of material point X at time t . The physical
region occupied by the immersed structure at time t is �.U; t/ D �s.t/ � �, and the physical
region occupied by the fluid at time t is�f.t/ D �n�s.t/. The fluid–solid interface in the physical

configuration at time t is @�s.t/ and has an outward unit normal n.x; t / (i.e., n is oriented pointing

out the solid region �s.t/ into the fluid region �f.t/). The boundary of the solid body in the fixed
reference coordinate system is @U and has an outward unit normal N.X/.

The continuous equations of motion for the coupled fluid–structure system are [36] as follows:

�

�

@u

@t
.x; t /C u.x; t / � ru.x; t /

�

D  rp.x; t /C �r2
u.x; t /C f.x; t /; (1)

r � u.x; t / D 0; (2)

@�

@t
.X; t / D

Z

�

u.x; t / ı.x  �.X; t // dx; (3)

f.x; t / D

Z

U

rX � Pe.X; t / ı.x  �.X; t // dX

 

Z

@U

Pe.X; t / N.X/ ı.x  �.X; t // dA.X/;

(4)

in which u.x; t / is the Eulerian velocity field that provides a spatial description of the veloc-
ity of the coupled fluid–structure system, p.x; t / is the Eulerian pressure field that enforces the

incompressibility of the coupled fluid–structure system, f.x; t / is the Eulerian elastic force density,
Pe.X; t / is the first Piola–Kirchhoff elastic stress tensor associated with the immersed solid, and
ı.x/ D ı.x1/ ı.x2/ ı.x3/ is the three-dimensional Dirac delta function. Implicit in the formulation

(1)–(4) are the assumptions that the mass density � and viscosity � of the fluid and solid are equal.
These assumptions are not essential, however, and versions of the IB method have been developed

that permit the use of spatially varying structural mass densities [39–44] and viscosities [39, 44].

The IB formulation includes two interaction equations that relate Lagrangian and Eulerian

quantities via integral transforms with Dirac delta function kernels. The first interaction equation (3)

determines the deformations of the immersed solid from the Eulerian velocity field u.x; t /. The
presence of viscosity ensures that the Eulerian velocity field is continuous, and so Equation (3)

implies

@�

@t
.X; t / D u.�.X; t /; t/: (5)

This condition holds along the fluid–solid interface and therefore is equivalent to the velocity con-

tinuity (i.e., no slip) condition typically imposed at fluid–solid interfaces by ALE methods for FSI.

Because r � u.x; t / D 0, the immersed solid is automatically treated as an exactly incompressible

material. In particular, in the continuous equations, it is not necessary to impose the incompressibil-

ity constraint in the Lagrangian equations (e.g., via penalty terms in the elastic energy associated

with the immersed solid). However, in practice, we empirically find that such penalty terms improve

the stress predictions of the discrete LV model used in this work; see Section 3.
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The second interaction equation (4) converts the Lagrangian description of the elastic stresses

generated by deformations of the immersed solid into a corresponding Eulerian force density. It can

be shown [36] that for f defined by Equation (4), the right-hand side of the momentum equation (1)

is equivalent to

r � � .x; t / D r � Œ� f.x; t /C � e.x; t /� ; (6)

in which � .x; t / is the total Cauchy stress tensor of the coupled fluid–structure system, � f.x; t / is
the stress tensor of a viscous incompressible fluid, and � e.x; t / is the stress tensor that corresponds
to the elastic response of the immersed structure. The fluid-like stress tensor � f is defined by

� f D  p I C �
h

ruC .ru/T
i

; (7)

in which I is the identity tensor, and the elastic stress tensor � e is defined in terms of Pe by

� e D

´

1
J

Pe F
T for x 2 �s.t/,

0 otherwise,
(8)

in which F D @�=@X is the deformation gradient tensor associated with the mapping� W.U; t/ 7! �
and J D det.F/ is the Jacobian determinant. The stress tensors � f and � e are both defined for all

x 2 �, and although � e is nonzero only in the solid region�s.t/ � �, fluid-like stresses are present
throughout the physical domain. It is possible to remove the viscous stresses within the immersed

body via an extension of the present formulation [39, 44]. Such viscous stresses are appropriate to

include in models of many biological tissues, including the ventricular myocardium, in which water

comprises a substantial fraction of the tissue volume.

Because � e is nonzero only within the solid region�s.t/, continuity of traction at the fluid–solid
interface generally requires discontinuities in the pressure and viscous stress along that interface.

Such discontinuities are automatically accounted for in the IB formulation. Let J�K indicate the value
of a discontinuity in the bracketed quantity across an interface, which we define for a Eulerian

function g.x/ at a position x 2 @�s.t/ by

Jg.x/K D lim
s#0

g.xC sn/  lim
s#0

g.x  sn/ D gC.x/  g .x/; (9)

in which gC.x/ and g .x/ indicate the limiting values of g.x0/ as x
0 D x˙ sn approaches x from

�f.t/ and �s.t/, respectively
‡.

Continuity of traction along @�s.t/ requires

J� nK D J� f nKC J� e nK D 0; (10)

but the definition of � e in Equation (8) implies that along the fluid–solid interface @�s.t/,

J� e nK D  � e
 

n; (11)

because � e � 0 in �f.t/. Thus, along @�s.t/, there must be a corresponding discontinuity in the
fluid-like traction,

J� f nK D � e
 

n: (12)

It can be shown that this implies

JpK D n � � e
 

n; (13)

‡Recall that n is oriented so that it points from the solid region�s.t/ into the fluid region�f.t/.
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and

r
t � �

h

ruC .ru/T
i

n

z
D t � � e

 
n (14)

for any unit vector t tangent to the interface. Thus, the limiting value of the elastic traction on @�s.t/

determines the magnitudes of the discontinuities in the pressure and viscous stress. By Equation (8)

and Nanson’s relation, the limiting value of the elastic traction is given by

� e
 

n D
Pe N

kF T1 � F T2k
; (15)

in which T1 and T2 are mutually orthogonal unit tangent vectors to @U in the material coordinate

system, and kF T1 � F T2k
 1
is a conversion factor that relates densities per unit area in the ref-

erence and physical configurations at time t . Pe N is precisely the force density that appears in the

second integral transform in Equation (4), and in the IB formulation, this term imposes the required

discontinuities in the pressure and viscous stress [45]. Moreover, these jump conditions are equiva-

lent to the traction continuity conditions typically imposed at fluid–solid interfaces by ALE methods

for FSI.

2.2. Orthotropic constitutive model

We describe the orthotropic elastic properties of the myocardium using a hyperelastic strain-energy

functional introduced by Holzapfel and Ogden [10]

W D
a

2b
expŒb.I1 3/�C

X

iDf;s

ai

2bi

°

exp
h

bi

 

I ?
4i  1

�2
i

 1
±

C
afs

2bfs

°

exp
h

bfs .I8fs/
2
i

 1
±

; (16)

in which a, b, ai , and bi (for i D f, s, and fs) are eight non-negative material parameters. Here,

I1 D tr.C/ is the first invariant of the right Cauchy–Green deformation tensor C D F
T

F , and

I ?
4f, I

?
4s, and I8fs are structure-based invariants that account for the anisotropy and shear properties

of the myocardium. Specifically, let f0 D f0.X/ and s0 D s0.X/ denote the fiber and sheet axes

in the reference configuration. In terms of these material direction fields, the basic structure-based

invariants are defined by

I4f D f
T
0 Cf0 D f � f; I4s D s

T
0 Cs0 D s � s; and I8fs D f

T
0 Cs0 D f � s; (17)

in which f D F f0 and s D F s0 are the deformed fiber and sheet axes in the physical configuration

at time t . Thus, I4f is the square of the stretch in the fiber direction, I4s is the square of the stretch

in the sheet direction, and I8fs measures the relative orientation and deformation in the fiber and

sheet directions. The constitutive model is not defined in terms of I4f and I4s but rather in terms of

modified fiber and sheet invariants I ?
4i , which are given by

I ?
4i D max.I4i ; 1/ (18)

for i D f and s. This ensures that the elastic energies and stresses associated with the collagen

fibers are nonzero only in states of extension and not compression. For further discussion on this

constitutive model, the reader is referred to the work of Holzapfel and Ogden [10].

The first Piola–Kirchhoff stress tensor is computed from W via

Pe D
@W

@F
: (19)

In this work, we use the constitutive model parameters determined in our previous study [15], a D

0:2362 kPa, b D 10:81, af D 20:037 kPa, bf D 14:154, as D 3:7245 kPa, bs D 5:1645, afs D

0:4108 kPa, and bfs D 11:3, which were determined from the porcine experimental data of Dokos

et al. [46].
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2.3. Modified stress tensor

As previously discussed, nonzero values of Pe N along the fluid–solid interface @U generate discon-

tinuities in the pressure p and shear stress �ŒruC .ru/T �. These discontinuities are not artifacts

of the IB formulation and are in fact required to obtain traction continuity at the fluid–solid inter-

face. In the spatially discrete IB equations, such pressure discontinuities lead to spurious volume

changes, and although these spurious fluxes vanish under grid refinement, they do so only at a first-

order rate [47]. It is straightforward to verify that with the present constitutive model, Pe N ¤ 0

along the fluid–solid interface for F ¤ 0.

To reduce the magnitude of the pressure discontinuity in the Eulerian pressure field and thereby

reduce the magnitude of spurious volume loss at fluid–solid interfaces, we have found that it is

useful to employ a modified stress tensor QPe defined so that QPe D 0 for F D I. Specifically, we use

QPe D
@W

@F
 a expŒb.I1  3/�F T ; (20)

so that in �s.t/,

Q� e D
1

J
QPe F

T D
1

J
Pe F

T  
a expŒb.I1  3/�

J
I: (21)

The modified stress tensor QPe differs from Pe only by a modification to the pressure. Specifically, in

the solid region �s.t/, the physical pressure is

Qp D p C ps; (22)

in which

ps D
a expŒb.I1  3/�

J
: (23)

This modified stress tensor is similar to modifications proposed for simpler neo-Hookean models

to ensure that the stress vanishes in the reference configuration [48]. We briefly derive this modified

stress tensor from a modified strain-energy functional, as follows. Let

QW D
a

2b
expŒb.I1 3 2 log.J //�C

X

iDf;s

ai

2bi

®

exp
�

bi .I
?
4i  1/2

�

 1
¯

C
afs

2bfs

°

expŒbfs .I8fs/
2�  1

±

:

(24)

For an incompressible material, J D 1 and log.J / D 0, and therefore, QW is identical to W in

Equation (16). In addition, the definitions of W and QW differ only in the isotropic term. Thus, it

suffices to consider only the terms

W1 D
a

2b
expŒb.I1  3/�; (25)

QW1 D
a

2b
expŒb.I1  3  2 log.J //�: (26)

We compute the corresponding stresses as

@W1

@F
D a expŒb.I1  3/�F ; (27)

@ QW1

@F
D a expŒb.I1  3  2 log.J //�

 

F  F
 T

�

: (28)

© 2014 The Authors. International Journal for Numerical Methods in

Biomedical Engineering published by John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. (2014)

DOI: 10.1002/cnm



H. GAO ET AL.

For J D 1, which is exactly imposed in the continuum setting but only approximately imposed in

the discrete setting, we have

@ QW1

@F
D

@W1

@F
 a expŒb.I1  3/�F T : (29)

This is precisely the form of the stress modification employed in this work.

Although incompressibility is enforced in the Eulerian equations (1) and (2), when the continu-

ous equations are discretized, the numerical interpolation of the Eulerian velocity to the solid region

may not always yield a divergence-free discrete Lagrangian velocity field. This numerical error van-

ishes under grid refinement [47], but it can nonetheless lead to non-negligible errors in Lagrangian

volume conservation at practical grid spacings, especially in three spatial dimensions. In the present

context, such volume conservation errors appear to lead primarily to errors in the computed stress

distributions rather than errors in the overall structural displacement. We obtain improved accuracy

in the computed stress by including a penalty term to impose approximately the incompressibility

constraint in Lagrangian form, namely,

QQPe D
@W

@F
C . a expŒb.I1  3/�C ˇs log.I3// F

 T ; (30)

in which I3 D det.C/ D J 2 and ˇs > 0 is a penalty parameter. When using this modified stress,

the physical pressure in the solid region �s.t/ is

QQp D p C ps  ˇs
log.J 2/

J
: (31)

The Eulerian pressure field p is not a state variable of the system and automatically adjusts to

account for the inclusion of additional pressure-like terms in the structural stress. Thus, at least in

the continuum setting, the dynamics are identical regardless of whether we use Pe or
QQPe to determine

the elastic stress. Except where otherwise noted, we use
QQPe with ˇs D5.0e6 dyne/cm

2 to determine

the stress of the body, and we show that in the spatially discrete setting, the modified stress yields

improved numerical accuracy (although not order of accuracy).

2.4. Numerical methods

The IB formulation (1)–(4) is not well-suited for discretization methods that employ standard

FE methods for the structural equations. Consequently, in practice, we use a weak form of the

Lagrangian equations:

�

�

@u

@t
.x; t /C u.x; t / � ru.x; t /

�

D  rp.x; t /C �r2
u.x; t /C f.x; t /; (32)

r � u.x; t / D 0; (33)

@�

@t
.X; t / D

Z

�

u.x; t / ı.x  �.X; t // dx; (34)

f.x; t / D

Z

U

F.X; t / ı.x  �.X; t // dX; (35)

Z

U

F.X; t / � V.X/ dX D  

Z

U

Pe.X; t / W rXV.X/ dX; 8V.X/; (36)
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in which F.X; t / is the Lagrangian elastic force density and V.X/ is an arbitrary Lagrangian

test function that is not assumed to vanish on @U . This formulation permits us to approximate

the Eulerian equations on a Cartesian grid and to approximate the Lagrangian equations on an

unstructured hexahedral FE mesh that corresponds to the imaged LV geometry. We summarize our

discretization approach in the following subsections.

2.4.1. Eulerian spatial discretization. Let .i; j; k/ label the grid cells of the Cartesian grid used

to discretize the Eulerian equations. We denote the physical location of the center of cell .i; j; k/

by xi;j;k D ..i C 1=2/h; .j C 1=2/h; .k C 1=2/h/, in which h D �x1 D �x2 D �x3 is the

Cartesian grid spacing. We use a staggered-grid discretization of the Eulerian velocity and force

fields, so that each vector component is approximated at the center of the Cartesian cell face to

which that component is normal. Specifically, the x1 components of u and f are approximated at

spatial locations xi 1

2
;j;k D .ih; .j C 1=2/h; .k C 1=2/h/, the x2 components are approximated at

spatial locations xi;j 1

2
;k D ..iC1=2/h; jh; .kC1=2/h/, and the x3 components are approximated

at spatial locations xi;j;k 1

2

D ..i C 1=2/h; .j C 1=2/h; kh/. The pressure p is approximated at

the centers of the grid cells, that is, at spatial locations xi;j;k . Standard second-order accurate finite

difference approximations to the divergence, gradient, and Laplace operators are employed [30, 49].

The convective term is discretized using a version of the piecewise parabolic method [49–51].

2.4.2. Lagrangian spatial discretization. Let l label the nodes of the FE mesh used to discretize the

Lagrangian equations. The Lagrangian deformation mapping � is approximated at the nodes of the

FE mesh and is interpolated to arbitrary material coordinates using the FE shape functions, that is,

�.X; t / D
X

l

�l.t/ 'l.X/; (37)

in which �l is the physical position of FE mesh node l and 'l is the nodal basis function associated

with node l . The deformation gradient is approximated in the element interior by directly differenti-

ating the approximation to � in (37), and the stress Pe is evaluated directly from the approximation

to F . From Pe, we compute an approximation to the Lagrangian body force F that satisfies

F.X; t / D
X

l

Fl.t/ 'l.X/; (38)

Z

U

F.X; t / 'm.X/ dX D  

Z

U

Pe.X; t /rX'm.X/ dX (39)

for all Lagrangian basis functions 'm. This implicitly defines a system of linear equations for the

nodal force densities Fl involving the FE mass matrix. We use a standard selectively reduced inte-

gration approach to avoid volumetric locking [52], whereby reduced-order quadrature rules are used

for the pressure normalization (ps ¤ 0) and penalty (ˇs ¤ 0) terms in the modified stress, whereas

full-order quadrature is used for the remaining terms of the structural stress tensor.

2.4.3. Lagrangian–Eulerian interaction. Our approach to discretize the interaction equations (34)

and (35) is first to define a force-spreading operator S that determines f from F and then to define

the velocity-restriction operator R that determines @�=@t from u to be the adjoint of the spread-

ing operator, so that R D S
�. This construction yields a numerical scheme that, at least in the

semi-discrete case, conserves energy during Lagrangian–Eulerian interaction [21]. In these approxi-

mations, we replace the singular delta function kernel with a regularized delta function of the tensor

product form ıh.x/ D ıh.x1/ ıh.x2/ ıh.x2/. In this work, we construct the three-dimensional reg-

ularized delta function in terms of the four-point one-dimensional regularized delta function of

Peskin [21].
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To convert the Lagrangian elastic force density into the corresponding Eulerian elastic force

density, we compute f D .f1; f2; f3/ from F D .F1; F2; F3/ via

.f1/i 1

2
;j;k D

Z

U

F1.X; t / ıh.xi 1

2
;j;k  �.X; t // dX; (40)

.f2/i;j 1

2
;k D

Z

U

F2.X; t / ıh.xi;j 1

2
;k  �.X; t // dX; (41)

.f3/i;j;k 1

2

D

Z

U

F3.X; t / ıh.xi;j;k 1

2

 �.X; t // dX; (42)

in which F is defined by (38), and the right-hand side integrals are approximated via Gaussian

quadrature. We use the notation

f D SŒ�� F; (43)

in which the discrete operator S D SŒ�� is defined by Equations (40)–(42).

To determine the velocity of the immersed structure, we first note that from (37), U D @�=@t

satisfies

U.X; t / D
X

l

d�l

dt
.t/ 'l.X/; (44)

that is, U is in the space of Lagrangian functions spanned by the nodal basis functions and has nodal

values Ul D d�l=dt . It can be shown [38] that the operator R that determines U from u which

satisfiesR D S
� is implicitly defined by requiring U to satisfy

Z

U

U.X; t / 'm.X/ dX D

Z

U

U
IB.X; t / 'm.X/ dX; (45)

for all basis functions 'm, in which the right-hand side of (45) is computed via the same quadrature

rules as used in (38) and in which

U IB
1 .X; t / D

X

i;j;k

.u1/i 1

2
;j;k ıh.xi 1

2
;j;k  �.X; t // h3; (46)

U IB
2 .X; t / D

X

i;j;k

.u2/i;j 1

2
;k ıh.xi;j 1

2
;k  �.X; t // h3; (47)

U IB
3 .X; t / D

X

i;j;k

.u3/i;j;k 1

2

ıh.xi;j;k 1

2

 �.X; t // h3: (48)

Notice that U
IB is a continuous Lagrangian velocity field, but that U

IB is not in the span of the nodal

basis functions. From (44) and (45), it can be seen that U.X; t / is the L2 projection of U
IB onto the

space of functions spanned by the Lagrangian basis functions. We use the notation

U DRŒ�� u: (49)

Applying the operatorR requires the solution of a linear system of equations involving the FE mass

matrix, whereas applying the operator S is a purely local operation.
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2.4.4. Time stepping. We use a time discretization that combines the explicit midpoint rule for the

Lagrangian equations with a Crank Nicolson–Adams Bashforth scheme for the Eulerian equations.

Let un and�n indicate the approximations to the Eulerian velocity field and Lagrangian deformation

field at time tn D n�t , in which �t is the time step size, and let pnC 1

2 indicate the approxima-

tion to the Eulerian pressure field at time tnC 1

2 D .n C 1=2/�t . The time discretization proceeds

as follows.

First, we compute an approximation to � at tnC 1

2 via

�nC 1

2  �n

�t=2
DRŒ�n� u

n: (50)

We compute a corresponding approximation to the Lagrangian force density F
nC 1

2 from �nC 1

2 , and

we spread this force to the Cartesian grid via

f
nC 1

2 D SŒ�nC 1

2 � F
nC 1

2 : (51)

Next, we solve the incompressible Navier–Stokes equations for u
nC1 and

pnC 1

2 via

�

�

u
nC1  u

n

�t
C Œu � rhu�nC

1

2

�

D  rhpnC 1

2 C �r2
h

u
nC1 C u

n

2
C f

nC 1

2 ; (52)

rh � u
nC1 D 0; (53)

in which

Œu � rhu�nC
1

2 D
3

2
u

n � rhu
n  

1

2
u

n 1 � rhu
n 1: (54)

Solving (52) and (53) requires the solution of the incompressible Stokes equations, and to do so,

we employ an iterative Krylov method preconditioned by a block-multigrid preconditioner based

on a pressure-free projection method [49]. Finally, we determine the structure configuration at time

tnC1 via

�nC1  �n

�t
DRŒ�nC 1

2 �
u

nC1 C u
n

2
: (55)

In the initial time step, we do not have lagged velocity values and therefore cannot compute the

multistep approximation to the convective term used in subsequent time steps. Consequently, for the

first time step, we instead use an explicit midpoint rule to approximate the convective term, which

requires an additional Stokes solve.

2.4.5. Implementation. This IB/FE scheme is implemented within the open-source IBAMR soft-

ware framework [27, 28, 53], which provides an adaptive and distributed-memory parallel infras-

tructure for developing FSI models that use IB method. IBAMR leverages functionality provided

by other freely available software libraries, including SAMRAI [54, 55], PETSc [56–58], and

libMesh [59, 60].

2.5. Imaging-derived human left ventricle model

A human left ventricular model is reconstructed from a cardiac MR imaging study on a healthy

volunteer (male, age 28 years), performed at the British Heart Foundation MRI Facility at the

University of Glasgow, as described previously [15]; see Figure 1(a). In this work, we use a
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(a) (b)

(c) (d)

Figure 1. Imaging-derived model of the human left ventricle (LV). (a) Manual LV boundary segmentation;
(b) hexahedral mesh; (c) rule-based fiber architecture; and (d) fiber tracing.

hexahedral LV mesh composed of 48,050 elements and 53,545 nodes; see Figure 1(b). A rule-based

myocardial fiber generation procedure based on the work of Potse et al. [61] is employed to deter-

mine the fiber and sheet directions within the myocardium. In the present work, the fiber angle

rotates from  60ı to 60ı from endocardium to epicardium, and the sheet angle rotates from  45ı

to 45ı, thereby corresponding to a normal, healthy LV [11]; see Figure 1(c,d).

2.6. Structural analysis by ABAQUS

To verify the implementation of the IB/FE model, the same structural model is also analyzed using

commercial ABAQUS (SIMULIA, Providence, RI, USA) nonlinear FE software, as in earlier work

[15, 16].

2.7. Physical and numerical parameters, boundary conditions, and loading conditions

In our simulations, we set � D1.0 g/ml and � D0.04 cP§, and � is taken to be a 15 cm � 15 cm �

15 cm box that is discretized on a regular Cartesian grid. The integrals of the interaction equations

are discretized using dynamically generated Gaussian quadrature rules that ensure a density of at

least two quadrature points per Cartesian mesh width. A Cartesian grid convergence analysis is per-

formed to demonstrate the sensitivity of the results on the Eulerian spatial mesh width. We consider

N � N � N Cartesian grids for N D 64, 80, 96, 112, and 128. Unless otherwise noted, in the

majority of our simulations, we use N D 96, which we find to yield essentially grid-converged

results; see Section 3. In this case, the Eulerian grid spacing is h D �x1 D �x2 D �x3 D

§In this study, we consider only the equilibrium configuration of the LV model under steady loading conditions, and
although the values of � and � affect the transient dynamics, they have no effect on the steady-state results.
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Figure 2. Schematic illustrating the boundary and loading conditions applied to the IB/FE LV model. c,
circumferential direction; r , radial direction; and ´, axial direction. LV cavity pressure loading is applied
to the endocardial surface, and displacements of the basal plane are fixed in the c and ´ directions, thereby
permitting only radial expansion. The overall computational domain is represented by the black box with
zero pressure and zero tangential slip along @�, in which u is the Eulerian velocity field and t is the unit

tangent vector along @�.

0:15625 cm. A relatively small time step size is required because of the explicit time stepping

scheme employed herein. Using the method of bisection, we empirically determined that a time step

size of�t D 1.6276e-4 s is approximately the largest stable time step size permitted by our method

and model.

In both the IB/FE-based model and the FE-based model, longitudinal and circumferential dis-

placements of the basal plane are constrained, whereas radial displacements of the basal plane are

left free¶. The reminder of the left ventricular wall, including the apex, is also left free. A spatially

uniform pressure load is applied to the endocardial surface. In the IB/FE model, the endocardial

pressure linearly increases over a period of 1.0 s from 0 to 7.5 mmHg and is subsequently main-

tained at 7.5 mmHg until the model reaches steady state. The static FE model determines the

deformations only for the final loading pressure. In the IB/FE model, displacement-type boundary

conditions are approximately imposed via penalty forces that provide an energetic penalty for the

constrained motions, whereas in the ABAQUS-based FE model, the displacement boundary condi-

tions are imposed exactly. Additionally, in the IB/FE model, zero tangential slip and zero normal

traction boundary conditions are imposed along @�. For an incompressible flow, imposing no-slip

tangential velocity boundary conditions along a flat boundary implies that the normal component of

the boundary traction (i.e., n � � f � n) is proportional to the pressure [62]. Thus, the physical bound-

ary conditions imposed on the exterior boundary of the computational domain are equivalent to a

boundary condition for the pressure. Unless otherwise noted, these boundary and loading conditions

are employed in all computations described herein. Figure 2 shows a schematic of the boundary and

loading conditions for the LV model. To compare the IB/FE model predictions to results from the

ABAQUS-based FE model, we allow the dynamic IB/FE model to run until it reaches equilibrium,

which occurs at approximately 5 s.

¶These boundary conditions are slightly different than those used in our earlier work [15, 16]. In those earlier studies,
longitudinal displacements of the basal plane were constrained along with circumferential displacements of the epicar-
dial edge of the basal plane. Except where otherwise noted, all FE-based model results described in this work use the
new boundary conditions, that is, longitudinal and circumferential but not radial, displacements are constrained along
the basal plane.
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3. RESULTS

We first perform a grid sensitivity analysis for N � N � N Cartesian grids for N D 64, 80, 96,

112, and 128. Table I shows the differences in the computed displacements, fiber strains, and fiber

stresses when compared with the ABAQUS-based model. Notice that only small differences in the

computed values are observed for N > 96. Consequently, we use N D 96 for all subsequent IB/FE

computations.

The displacement magnitudes determined by both models at a loading pressure of 7.5 mmHg are

shown in Figure 3 panels (a) and (b), whereas panels (c) and (d) show the normed difference in the

computed displacement. The maximum displacement obtained using the IB/FE model is 9.31 mm,

which is within 1% of the maximum displacement of 9.40 mm obtained from the ABAQUS-based

FE model. In addition, the spatial distributions of displacement are nearly identical in both models;

compare panels (a) and (b) of Figure 3. Figure 3(c) plots the spatial distribution of the norm of

the difference of the displacement vectors. In most of the volume, the differences are seen to be

negligible, much less than 0.1 mm, that is, much less than a 1% difference. Figure 3(d) shows

Table I. Cartesian grid sensitivity analysis, comparing the mean
displacement, fiber strain, and fiber stress differences related to the
results from the ABAQUS-based model. Notice that essentially

grid-resolved results are obtained for N > 96.

N Displacement (mm) ln.�f/ (Dimensionless) � ff (kPa)

64 0.59˙ 0.47 (0.9˙ 6)e-4  0.7 ˙ 4
80 0.13˙ 0.07 (0.1˙ 5)e-5  0.2 ˙ 2
96 0.07˙ 0.02 (0.27˙ 4)e-4  0.12˙ 0.7
112 0.07˙ 0.02 (0.24˙ 6)e-4  0.13˙ 0.7
128 0.07˙ 0.02 (0.25˙ 6)e-4  0.12˙ 0.6

ln.�f/, logarithmic fiber strain; � ff, fiber stress.

(a) (b)

(c) (d)

Figure 3. Distributions of displacement for (a) the IB/FE model and (b) the ABAQUS-based FE model; (c)
norm of the difference in displacements produced by the two models; and (d) regions in which the normed

difference is greater than the mean difference plus two standard deviations.
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(a) (b)

(c) (d)

Figure 4. Fiber stresses generated by (a) the IB/FE model and (b) the ABAQUS-based FE model, and
logarithmic fiber strains generated by (c) the IB/FE model and (d) the ABAQUS-based FE model.

the spatial distribution of the regions where the displacement difference is greater than the mean

difference plus two standard deviations. From Figure 3(d), it is clear that the regions with the greatest

differences are mainly located along the basal plane, where the displacement boundary conditions

are applied.

The distributions of the fiber stress � ff are shown in Figure 4(a,b) for both the IB/FE and FE

models. Figure 4(c,d) show the logarithmic fiber strain distributions for both the IB/FE and FE

models. Stress and strain distributions generated by the two models are similar, although some

minor differences can be seen. For instance, along the basal plane, there are modest differences,

which likely result from differences in the treatment of displacement-type boundary conditions in

the two models.

To facilitate a closer inspection of the results, seven selected transmural paths across the LV

free wall are constructed, as shown in Figure 5. Figure 5(a–g) show fiber strain comparisons along

the seven paths, and Figure 5(h) shows the differences between the IB/FE and FE-based models

along those selected paths. The results indicate that the general fiber strain distributions obtained

from both models are similar; however, the IB/FE model tends to yield slightly larger fiber strains

close to the epicardium. The relative strain difference is generally less than 8%; see Figure 5(h).

Figure 6(a–g) show fiber stress distributions along the same seven paths. Again, similar results are

found in Figure 5: the fiber stress is similar in the two models, and the relative fiber stress difference

is less than 8%.

Figure 7 compares the results of the IB/FE-based and FE-based models to published strain distri-

butions from earlier experimental and computational studies of the canine heart [12, 63, 64]. These

data show that there is an overall qualitative and quantitative agreement between the IB/FE model

predictions, the FE-based model, and the earlier experimental and computational results, especially

for Err (radial strain), Ecr (circumferential–radial shear), and Elr (longitudinal–radial shear). The

IB/FE-based and FE-based models are also in good quantitative agreement for Ecc (circumferen-

tial strain), Ell (longitudinal strain), and Ecl (circumferential–longitudinal shear), although in those

cases, there are some discrepancies between our models and the results from earlier experimental

and computational models. We remark that the strain distributions determined by the FE model in

this work are moderately different from those determined in our earlier work [15], in which differ-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. (a–g) Transmural distributions of logarithmic strain ln.�f/ along seven selected transmural paths;
(h) transmural average strain difference between the IB/FE and ABAQUS-based FE models, in which the
average difference from the seven paths is in red and the relative difference is in black; and (i) definitions of

the seven selected material paths.

ent boundary conditions were imposed on the basal plane of the model LV. This suggests that these

strain measurements are relatively sensitive to changes in boundary conditions.

Figure 8 compares the end-diastolic pressure–volume relationship (EDPVR) of the IB/FE and FE

models to EDPVR measurements from ex vivo human hearts by Klozt et al. [65]. These curves are

normalized by EDVn D .EDV V0/=.V30 V0/, in which V0 is the initial unloaded LV volume, and

V30 is the LV volume with a loading of 30 mmHg. It is clear that there is good agreement between

the IB/FE and FE model results and the data of Klozt et al.

Figure 9 shows the effects of using the modified structural stress tensors, which include an addi-

tional pressure-like term ps, an incompressibility penalty term that is activated for ˇs > 0, or both,

on the average logarithmic fiber strain and the stress along the selected seven paths, as defined in

Figure 5(i) and their differences. For the fiber strain, the differences are mainly concentrated at the

endocardial and epicardial surfaces, where the IB/FE method yields lower-order accuracy because

of its treatment of the Eulerian pressure discontinuities at those surfaces. A modified structural

stress tensor obtained when using only the penalty term (i.e., ps D 0 and ˇs ¤ 0) predicts similar

fiber strains as when we include both pressure normalization and the penalty term (i.e., ps ¤ 0 and

ˇs ¤ 0); see Figure 9(b). By contrast, higher accuracy is achieved in the fiber stress when including

both the pressure normalization and the penalty term, as shown in Figure 9(d). When these terms are

not included in the stress, the IB/FE method yields fiber strains that are as much as 12% lower than

those generated by the ABAQUS-based model and fiber stresses that are as much as 14% greater

than those generated by the ABAQUS-based model. Table II summarizes the effects of different
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. (a–g) Transmural distributions of fiber stress � ff; (h) transmural average stress difference between
the IB/FE and ABAQUS-based FE models, in which the average difference is in red and the relative

difference is in black; and (i) definitions of the seven selected material paths.

modifications to structural stress tensors on the computed incompressibility of the myocardium. By

including ˇs ¤ 0 in the structural stress tensor, J is very close to 1, indicating near incompressibil-

ity, whereas with ˇs D 0, some elements can be compressed substantially. Table II suggests that for

the discretized LVmodel used in this study, it is necessary to include terms that act to impose incom-

pressibility in a Lagrangian sense even though the computed Eulerian velocity field is discretely

divergence free.

Figure 10 shows the velocity fields at t D 0:75 s and t D 5:0 s. At the beginning of the simulation,

when the ventricular wall is initially pressurized, there is inflow into the LV as the chamber expands.

By time t D 5:0 s, the model has essentially reached equilibrium and there is no further flow.

Because of the lack of valves and simplified boundary conditions, the flow patterns from the present

model are not physiological.

4. DISCUSSION

The IB method has been widely used to model cardiac FSI and to predict flow patterns and structural

deformations; however, the fiber-based structural models conventionally used in IB simulations of

cardiac dynamics are restricted to somewhat simple constitutive models. This makes it difficult

to incorporate experimentally based material models into IB computations and thereby limits the

ability of these models to predict tissue stress and strain distributions. Quantities such as the end-

diastolic left-ventricular stress and strain distributions in patients with diastolic heart failure are
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Transmural distributions of normal and shear strains along the equatorial region of the anterior
wall. Results from the IB/FE-based and FE-based models are compared with experimental studies of
Omens et al. [64] and May-Newman et al. [63] and numerical results from a canine left ventricular
model of Guccione et al. [12]. Ecc, circumferential strain; Err, radial strain; Ell, longitudinal strain; Ecr,

circumferential–radial shear; Ecl, circumferential–longitudinal shear; Elr, longitudinal–radial shear.

important biomarkers and, moreover, are not accessible via standard clinical imaging. A typical

approach to obtain these stress and strain data is to employ a nonlinear FE method along with

a detailed model of the myocardium [10, 14–16]. Herein, we have demonstrated that the IB/FE

framework provides an effective alternative approach to conventional FE methods that yields strain

and stress distributions that are comparable with those generated by conventional FE methods for

large deformation structural mechanics.

The primary focus of this study is to verify and to validate the stress and strain predictions gen-

erated by the IB/FE framework by comparisons with results obtained using a previously described

LV model implemented within the ABAQUS FE software and by comparisons with earlier compu-

tational and experimental data sets. For the purposes of these comparisons, it is necessary to use
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Figure 8. Comparison of end-diastolic pressure–volume relationships obtained using the IB/FE model and
the FE results of Wang et al. [15] to measurements from ex vivo human hearts [65]. Normal, healthy heart;
ICM, ischemic cardiomyopathy; DCM, diopathic dilated cardiomyopathy; LVAD, hearts supported by a left

ventricular assist device.

(a) (b)

(c) (d)

Figure 9. Comparisons of the average logarithmic fiber strain and fiber stress between the ABAQUS-based

FE and IB/FE models using the modified structural stress tensor
QQPe, with or without the pressure shift ps

and incompressibility penalty term. The average stress or strain is defined as the average value over all of
the selected paths.
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Table II. The effects of including pressure normalization (ps ¤
0) and volumetric penalty terms (ˇs ¤ 0) in the structural stress
tensor on myocardial incompressibility at the integration points of

the reduced-order quadrature rule.

Pressure normalization Volumetric penalty Min J Max J

Yes Yes 0.9937 1.008
Yes No 0.1540 1.141
No Yes 0.9932 1.008
No No 0.2728 1.093

(a) (b)

Figure 10. Velocity field (scaled by magnitude) and structural configuration (colored by displacement mag-
nitude) along a plane bisecting the chamber (a) at t D 0:75 s and (b) at t D 5:0 s. The maximum velocity is

41 mm/s in panel (a) and 3 mm/s in panel (b).

quasi-static conditions as well as loading conditions and, where possible, material properties cor-

responding to those used in these earlier studies. Our results are some of the first to consider the

accuracy of the stress and strain distributions generated by the IB method for realistic models of ven-

tricular mechanics, and they indicate that the IB method can yield quantitatively accurate stresses

and strains for such models. We show that improvements in the accuracy of the stress predictions

can be obtained by a simple modification to the Lagrangian stress tensor that acts to reduce the mag-

nitude of discontinuities in the Eulerian pressure field. We further show that obtaining high accuracy

can require imposing the incompressibility constraint in both Lagrangian and Eulerian forms. This

latter result is contrary to the prevailing approach used within the IB community, whereby it is typi-

cally assumed that it is sufficient to impose incompressibility only as an Eulerian constraint and not

also as a Lagrangian constraint [21].

Although good agreement is demonstrated between the IB/FE-based model and the benchmark

FE model implemented in the ABAQUS FE software, the strain and stress results generated by the

current model via either approach need to be interpreted with some care because of limitations of

the model: (i) the material parameters are not subject specific but rather are obtained from a porcine

study [46]; (ii) the endocardial pressure loads are uniform and are no subject-specific; (iii) the heart

geometry is simplified and does not include a right ventricle, the atria, the valves, and the great

vessels; (iv) LV biomechanics under diastolic loading is modeled as purely passive inflation, as is

commonly done in the literature [13]; and (v) experimental results from different animal models are

used for strain comparison as in Figure 7.

We remark that the present model also does not account for the dynamics of the diastolic phase

of the cardiac cycle. Instead, it yields stress and strain distributions that correspond to late diastole

(after diastasis [66]), when the heart has been passively filled and the heart is approximately in an

equilibrium state, or to ex vivo conditions in which the heart is externally pressurized, as in the

experiments described in [63–65]. A more complete model of the diastolic phase of the cardiac
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cycle would include the rapid filling, slow filling, and atrial contraction phases of diastole. Such

a model would require a description of cardiac dynamics. Moreover, obtaining the correct stress

and strain states within the LV myocardium at the onset of diastole would seem to require a model

of myocardial active tension generation and relaxation, as well as a description of both the strain

state and the activation state at the onset of diastole. Although these features can all be incorporated

into the present modeling framework, they are beyond the scope of this study, which focuses on

verifying and validating the computational predictions of this IB/FE model under typical diastolic

pressure loads.

In addition, there remain some relatively small discrepancies between the IB/FE-based and FE-

based models. For example, the maximum displacement obtained from the IB/FE model is within

1% of that obtained using the FE-based model. Fiber stresses and strains along the selected transmu-

ral paths across the left ventricular free wall are also slightly different. Stress and strain are derived

quantities in both the IB/FE-based and FE-based models, and it is well known that differences in

displacements can lead to differences in the recovered stress or strain that are an order of magnitude

larger [67]. Small differences in the computed displacements will result from different numerical

treatments of the equations of structural mechanics by the IB/FE implementation and by ABAQUS

and from differences in the manner in which displacement boundary conditions and pressure load-

ing conditions are imposed in the two models. In addition, different stress recovery methods are used

in the two codes. Because detailed experimental strain and stress measurements inside the LV wall

are currently lacking, it is not possible to assess the actual prediction accuracy of either simulation

approach, only to verify that both approaches yield comparable model predictions.

Although we only consider quasi-static conditions in this work, the IB method is well-suited

for fully dynamic FSI models of the heart wall and the blood. Indeed, the IB method is primar-

ily intended to simulate dynamics. In particular, because our IB/FE model must use a time step

that is below the stability threshold associated with the explicit time stepping scheme used in our

present implementation, the IB/FE model requires substantially more computational time than the

comparable FE model. The IB/FE method is designed to model FSI, however, and we expect that it

will be relatively straightforward to extend this model to yield subject-specific simulations of car-

diac dynamics with potential clinical applications. We aim to consider the fully dynamic case in

future work and to incorporate more realistic loading conditions and material models with active

contraction for human ventricular tissue.

5. CONCLUSIONS

We have successfully applied an IB method with FE mechanics to an imaging-derived subject-

specific model of the human LV under diastolic loading conditions. The predicted stress and strain

distributions agree well with our previous model, which used a conventional nonlinear FE method,

as well as other experimental and computational data sets that serve to validate both the IB/FE-

based and FE-based models. These results indicate that it is possible to obtain quantitatively accurate

results using the IB method in conjunction with realistic experimentally constrained constitutive

models and suggest that the IB method can also yield quantitative accuracy when using such

constitutive models in the context of fully dynamic models of the heart.
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