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Abstract

Generalised Structure Tensors (GSTs) are used to formulate constitutive models for an-

isotropic �bre-reinforced materials in which �bres are dispersed. The GST approach has been

applied so far to models based on invariants I4 and I5 (I6 and I7). These anisotropic invari-

ants capture the e�ect of deformation on each �bre family in isolation, unlike the invariant

I8, which couples two �bre families. We extend the GST approach to models based on the

invariant I8. We consider two di�erent formulations and for each model derive expressions for

stress and elasticity tensors in both the general case and for axisymmetric distributions. We

apply the proposed formulation to the hyperelastic Holzapfel�Ogden model for myocardium

and obtain a modi�ed model, in which �bre dispersion is consistently accounted for in every

term of the strain-energy function. We demonstrate that when accounting for �bre dispersion

in the coupling term, the e�ect on the predicted material response can be signi�cant and may

also reduce material symmetry.

Keywords: soft tissue constitutive modelling, �bre dispersion, generalised structure tensor,

deformation invariants, myocardium, anisotropic elasticity

1 Introduction

Many soft biological tissues can be regarded as elastic solid composites, consisting of an incom-
pressible and isotropic matrix, which is reinforced by one or several families of �bres. From the
perspective of constitutive modelling, the term ��bres� can be used broadly to refer to slender one-
dimensional load-bearing objects. To this category belong mathematical representations for actin
�laments [1], which are elements of the cytoskeleton, and for collagen and elastin [2], which are
abundant in the extra-cellular matrix of connective tissues. Idealised and simpli�ed descriptions
are used for complex arrangements of �bres, which can be organised into hierarchical �brillar units,
as in tendons and ligaments [3], or into layers forming a multi-ply structure, as in the arterial wall
[4]. Another example is the myocardium, in which myo�bres are interconnected by �ne endomysial
collagen and form branching laminae, surrounded by the perimysial collagen network [5].
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The orientation of constituents is the central microstructural characteristic that determines the
anisotropy of the tissue response. The alignment can be described via the orientation of actual
�bres or in terms of a special direction that is not associated with any structural elements aligned
along it, such as the myocardium sheet normal vector [6, 7]. Local variability of microscopic
organisation is found in many tissues and can be captured at the continuum level using orientation
density functions (ODFs), which express the probability of observing certain orientations within
a representative volume element. This statistical datum is acquired by histological examinations
using modern imaging techniques: see, e.g., [8]. For the convenience of subsequent analysis, the
datum is �tted by unimodal 2D or 3D distribution functions, which reproduce the dispersion of
�bres around a preferred direction, as well as the extreme cases of the strict parallel alignment and
the isotropic distribution.

Structure-based constitutive models for soft tissues incorporate distributed orientation prop-
erties by means of the angular integration (AI) [9] or the generalised structure tensors (GSTs)
[4, 10], which are critically compared in [11, 12] and contributions cited therein. The AI approach
computes the total tissue stress as a weighted average of stresses for each possible structural ori-
entation. The resulting expression is an integral over a range of angles, hence the name. The GST
approach de�nes the anisotropic response using a GST, which is a weighted average of rank-one
structure tensors. The GST approach has been applied to various tissues, including arteries [13, 4],
myocardium [14, 15], heart valves [10], articular cartilage [16, 17], annulus �brosus [18], and cornea
[19]. The role of the GST in these models is to take into account �bre dispersion in anisotropic
invariants I4 and I5 (I6 and I7), which capture the e�ect of deformation on each �bre family in
isolation. To our knowledge, GST models for the invariant I8 have not been considered before.
This invariant couples two �bre families and is used, for instance, in models for myocardium [5]
and annulus �brosus [20].

In this paper we present a novel model for accounting for �bre dispersion in strain-energy
functions that depend on the coupling invariant I8. In Section 2 we give necessary background
information and introduce notation for the GSTs. In Section 3 we consider two di�erent formula-
tions for the dispersed coupling invariant, discuss issues arising and derive expressions for stress
and elasticity tensors in the general case and for axisymmetric distributions. In Section 4 we
demonstrate the e�ect of accounting for �bre dispersion in the coupling invariant using a modi�c-
ation of the Holzapfel�Ogden model for myocardium [5]. Discussion and �nal remarks conclude
the paper in Sections 5 and 6.

2 Invariant-based hyperelastic constitutive models

2.1 Anisotropic hyperelastic material

Consider a hyperelastic material with two distinguished directions M and M′. By the represent-
ation theorem [21, 22], a general strain energy Ψ(C,M,M′) can be expressed as a function of 9
invariants,
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I1 = trC = 1 : C, I2 =
1

2

(
tr2C− trC2

)
, I3 = det C, (1)

I4 = (M⊗M) : C, I5 = (M⊗M) : C2, (2)

I6 = (M′⊗M′) : C, I7 = (M′⊗M′) : C2, (3)

I8 = (M⊗M′) : C, Ĩ8 = (M ·M′)M ·CM′, Î8 = I2
8 = (M ·CM′)2 (4)

I9 = M ·M′, Î9 = (M ·M′)
2
, (5)

where the double contraction of two second-order tensors is de�ned as T : T̃ = tr
(
TT̃T

)
= TijT̃ij,

and 1 is the identity tensor. The complete set of invariants I1, . . . , I9 is not unique, in the sense
that alternative choices exist, e.g., for I8, and I9, which are listed above. Invariants I9 and Î9 do
not depend on the deformation, their role is to de�ne the undeformed values for I8|C=1 = I9 and

Ĩ8|C=1 = Î8|C=1 = Î9. For the sake of uniformity, we de�ne and use I8-like invariants, whose values
in the undeformed state are always zero,

I80 = I8 − I9 = 2M · EM′, Ĩ80 = Ĩ8 − Î9 = (M ·M′) (I8 − I9) , (6)

Î80 = (I8 − I9)2 = (2M · EM′)
2
, (7)

where the Green�Lagrange strain tensor E = 1
2

(C− 1) is introduced. The use of these invariants
as arguments of the strain-energy function guarantees that if the material is stress-free in the
undeformed state for some choice of M, M′, then this is also the case for any other choice of the
two vectors. Unless explicitly stated otherwise, we assume that the strain-energy function Ψ is
expressed in terms I80, Ĩ80, or Î80, and not in terms of I8, Ĩ8, or Î8.

In principle, M and M′ can be regarded as arbitrary directions, which are chosen for the purpose
of relating material orientation�any pair of non-collinear vectors will serve this purpose. However,
in �bre-reinforced materials it is convenient and customary to make no distinction between M and
−M (M′ and−M′). In other words, the strain energy is given in the form of Ψ(C,M⊗M,M′⊗M′).
This identi�cation has two consequences:

• the strain-energy function Ψ(C,M⊗M,M′⊗M′) cannot depend on the sign of I8, which
is an odd functions of M and M′. To ensure this, invariants Ĩ8 or Î8 = I2

8 can be used
instead of I8. Strictly speaking, I8 is an invariant of a function Ψ(C,M,M′), but not of
Ψ(C,M⊗M,M′⊗M′);

• if M and M′ are orthogonal, then the strain-energy functions Ψ(C,M⊗M,M′⊗M′) can
only describe orthotropic materials. In order to allow for general anisotropy, vectors M and
M′ must not be orthogonal. Orthotropy also arises when non-orthogonal directions M and
M′ are mechanically equivalent, in which case the vectors can be replaced by their bisectors,
which are orthogonal, see, e.g., [23].

Thus, without loss of generality, orthotropy implies orthogonality M ·M′ = 0. The strain energy
of an orthotropic material depends, in general, only on 7 invariants, I1 . . . I7, since I8, Ĩ8, and Î8

satisfy
Ĩ8 = 0, I2

8 = Î8 = I2 + I5 + I7 + I4I6 − I1(I4 + I6). (8)

The second identity is given in [24] without a proof, which we provide in the Appendix A. Note
that the orthogonality M ·M′ = 0 makes I80 and Î80 identical to I8 and Î8 respectively, whereas
invariants Ĩ80 = Ĩ8 = 0 become unsuitable for constitutive description.
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The second Piola�Kirchho� stress in an unconstrained hyperelastic material is given by

S = 2
∂Ψ

∂C
= 2

∑
i

∂Ψ

∂Ii

∂Ii
∂C

. (9)

The stress in an incompressible material reads

S = −pC−1 + 2
∑
i 6=3

∂Ψ

∂Ii

∂Ii
∂C

, (10)

where p is a Lagrange multiplier corresponding to the constraint I3 − 1 = 0, and any set of
independent invariants can be used. The following useful identities arise from (1)�(4),

∂I1

∂C
= 1,

∂I2

∂C
= I11−C,

∂I4

∂C
= M⊗M,

∂I5

∂C
= 2[CM⊗M]sym (11)

∂I6

∂C
= M′⊗M′,

∂I7

∂C
= 2[CM′⊗M′]sym,

∂I80

∂C
=
∂I8

∂C
= [M⊗M′]sym, (12)

∂Ĩ80

∂C
=
∂Ĩ8

∂C
= (M ·M′) [M⊗M′]sym,

∂Î80

∂C
= 2I80[M⊗M′]sym. (13)

Here [T]sym = 1
2

(
T + TT

)
denotes the symmetric part of the second order tensor T. By using

(11)�(13) in (10), we obtain

S = −pC−1 + 2Ψ11 + 2Ψ2(I11−C) + 2Ψ4M⊗M + 4Ψ5[CM⊗M]sym (14)

+2Ψ6M
′⊗M′ + 4Ψ7[CM′⊗M′]sym + 2Ψ80[M⊗M′]sym, (15)

where Ψi = ∂Ψ/∂Ii with the argument omitted for brevity. If invariants Ĩ80 or Î80 are used, then
the last term is replaced by either

2Ψ8̃0 I9[M⊗M′]sym or 4Ψ8̂0 I80[M⊗M′]sym, (16)

where Ψ80, Ψ8̃0, and Ψ8̂0 denote partial derivatives with respect to I80, Ĩ80, and Î80, respectively.

2.2 The GST model

Consider a family of distributed (dispersed) �bres, whose orientation is given by an even orientation
density function (ODF) ρ(N)=ρ(−N). The original GST model [4] accounts for the distributed
�bre reinforcement and extends a material model based on a �bre potential ψf(I4) as follows,

ΨGST = ψf(I
∗
4 ) = ψf(H : C), H =

ˆ

S2

ρ(N)N⊗Ndω, (17)

where H is the generalised structure tensor (GST), S2 = {N ∈ R3, |N| = 1} denotes the unit
sphere, N is the direction of integration, dω is the solid angle element in the direction N. We use¸
S2 ρdω = 1 as the normalisation condition for ρ. An alternative condition

¸
S2 ρdω = 4π is used by

other authors.
The unit vector N denotes one of many possible �bre directions and is distinguished from M,

which appears in (2) and denotes there a predetermined direction of anisotropy. One may as well
regard N as a stochastic analogue of the deterministic vector M, that is, I4(N) is the analogue to
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I4(M), etc. The modi�ed invariant I∗4 can be regarded as the average of I4(N) weighted by ρ(N).
Hence, the argument of the �bre potential ψf(I4) is replaced by its average:

I4(N) = (N⊗N) : C → I?4 = H : C. (18)

Phenomenological constitutive parameters must be �tted to experimental data using the modi�ed
�bre potential ψf(I

∗
4 ) and not the original function ψf(I4). Doing so is important to ensure that

the descriptive and predictive capabilities of the GST model are fully used [11].

2.2.1 Extension of the GST approach to multiple �bre families and invariant I5

The same procedure, as above, can be applied to a material containing several families, if the strain
energy of each of them depends on an I4-like invariant,

n∑
i=1

ψ
(i)
f (I4,i) →

n∑
i=1

ψ
(i)
f (I?4,i), I?4,i = H(i) : C, (19)

where, in general, ψ
(i)
f (I?4,i) are n di�erent functions, and H(i) are based on n di�erent distributions

ρ(i)(N(i)). In particular, we can replace I4 and I6 for I?4 = H : C and I?6 = H′ : C, where H and
H′ are GSTs computed based on ODFs ρ(N) and ρ′(N′) respectively. See Figure 1 for a schematic
representation of a material with two �bre families.

(a) (b)

N
M

ρ(N)

N′

M′

ρ′(N′)

α0 = arccos (M·M′)

arccos (−M·M′)

N
M

N′

M′

M·M′ = 0

N·N′ 6= 0

Figure 1: Two families of dispersed �bres with mean directions M and M′. Vectors N and N′

correspond to one of many possible �bre orientations in the respective �bre families, and are the
variables of integration in the computation of an average weighted by orientation density functions
ρ(N) and ρ′(N′). (a) Non-orthogonal mean �bre directions with angle α0 = arccos M ·M′ 6= π

2
.

Even though the material structure is invariant with respect to inverting the direction of M or
M′, the sign of cosα0 = M ·M′ will change. (b) In the case of orthogonal mean �bre directions
(M ·M′ = 0) particular �bre directions within a dispersion are not necessarily orthogonal (N ·N′ 6=
0).

Holzapfel and Ogden [11] provide an analogous expression for the modi�cation of invariant I5,

I5(N) = (N⊗N) : C2 → I?5 = H : C2. (20)
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Similarly, we can de�ne I?7 = H′ : C2 for the second �bre family, and I?5,i = H(i) : C2 for the ith
�bre family.

2.2.2 Axisymmetric �bre distribution

When the �bre distribution is assumed to be axisymmetric with respect to some direction M
(which is called the mean �bre direction), i.e. ρ(N) = ρ̃(θ) = ρ̃(arccos N ·M), the GST takes a
particularly simple form,

H = κ1 + (1− 3κ)M⊗M, κ = π

πˆ

0

ρ̃(θ) sin3 θdθ. (21)

The corresponding model is called �kappa-model" [4, 13], as the GST H captures the extent of
orientational dispersion using a single scalar, the dispersion parameter κ. The modi�ed invariants
are given by

I∗4 ≡ H : C = κI1 + (1− 3κ)I4, I∗5 ≡ H : C2 = κ(I2
1 − 2I2) + (1− 3κ)I5, (22)

where I4 and I5 are the standard anisotropic invariants corresponding to the mean �bre direction
M. Here we used identities (2) and 1 : C2 = I2

1 − 2I2, which follows from (1).

2.2.3 Extension of the GST approach to I8

To our knowledge, no modi�cation similar to (18) and (20) was previously considered for I8. Such
modi�cation can be used to model �bre splay or orientation uncertainty in materials with two
�bre families, whose strain energy has a term of the form ψ(I8) or similar. An example of such
material is the myocardium, wherein two material directions, labelled f and s, are distinguished.
Although GST models for distributed (dispersed) directions in myocardium have recently been
proposed [14, 15], these studies used constitutive models with the regular invariant I8fs and the
modi�ed invariants I?f , I

?
s . In other words, the models did not consider the e�ect of directional

dispersion on the mixed term ψfs(I8fs).
In this contribution, we consider a GST-based modi�cation procedure for I80, Ĩ80, and Î80,

thereby extend the GST approach to a complete set of anisotropic invariants. The proposed full
GST model de�nes the second Piola�Kirchho� stress tensor for a general incompressible material
with two dispersed orientations by

S = −pC−1 + 2Ψ11 + 2Ψ2(I11−C) + 2Ψ4H + 4Ψ5[CH]sym (23)

+2Ψ6H
′ + 4Ψ7[CH′]sym + 4Ψ8̂0 [H (C− 1) H′]sym , (24)

or, alternatively, by the same expression with the last term replaced by

2Ψ8̃0 [HH′]sym, (25)

where modi�ed anisotropic invariants are used throughout, i.e. Ψi = ∂Ψ/∂I?i , i = 4, . . . , 7, 80.
The original expressions without dispersion (14)�(16) can be recovered from the GST model by
replacing the GSTs H, H′ in (23)�(25) with the rank-one structure tensors M⊗M, M′⊗M′. The
Cauchy stress tensor is de�ned as the push forward of the second Piola�Kirchho� stress tensor,

σ = FSFT =− p1 + 2Ψ1b + 2Ψ2(I1b− b2) + 2Ψ4h + 4Ψ5[bh]sym (26)

+ 2Ψ6h
′ + 4Ψ7[bh′]sym + 4Ψ8̂0

[
h
(
1− b−1

)
h′
]

sym
, (27)
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where h = FHFT , h = F′H′FT are the structure tensors pushed forward into the current con�g-
uration and b = FFT is the left Cauchy�Green deformation tensor.

In the remainder of this paper, we derive the GST model for modi�ed invariants Ĩ?80, Î
?
80, explain

why invariants I?8 or I?80 cannot be used, and illustrate the e�ect of dispersion in the mixed term
using an orthotropic model for the myocardium.

3 Modi�ed invariants I?80, Ĩ
?
80, and Î?80

We introduce the following notation,

〈•〉 ≡
ˆ

S2

•ρ(N)dω, 〈•〉′ ≡
ˆ

S2

•ρ′(N′)dω, (28)

where 〈•〉 and 〈•〉′ are the (weighted) averaging operators, as they are linear, idempotent and
normalised in the sense that 〈1〉 = 〈1〉′ = 1. The modi�ed invariants I∗i can be regarded as the
averaged counterparts of the original invariants Ii, and the GSTs are thought of as the averaged
rank-one symmetric structure tensors,

I?4 = 〈I4(N)〉 = 〈(N⊗N):C〉 = H:C, I?5 = 〈I5(N)〉 = 〈(N⊗N):C2〉 = H:C2, (29)

I?6 = 〈I6(N′)〉′ = 〈(N′⊗N′):C〉′ = H′:C, I?7 = 〈I7(N′)〉′ = 〈(N′⊗N′):C2〉′ = H′:C2. (30)

In a similar way, we consider the weighted average of I80 with respect to orientation distributions
of N and N′, since I80 depends on both directions. We de�ne

I?80 = 〈〈I80(N,N′)〉〉′ = 2〈〈N · EN′〉〉′ . (31)

Note that I80 is an odd function of N and N′. Therefore, its average over the entire unit sphere
with respect to even orientation functions ρ(N) and ρ′(N′) is identically zero,

I?80 = 〈〈I80(N,N′)〉〉′ ≡ 0. (32)

Obviously, a de�nition of a strain-energy function with a constant argument I?8 ≡ 0 or I?80 ≡ 0 is
of no use. Therefore, we investigate models based on the averaging of invariants Ĩ80 and Î80, which
are even functions of the special directions.

3.1 Invariants Ĩ80 and Ĩ∗80

The average of Ĩ80 is de�ned as

Ĩ?80 = 〈〈Ĩ80(N,N′)〉〉′ = 2〈〈(N ·N′) N · EN′〉〉′ . (33)

In order to express it via the GST, we write

Ĩ?80 = 2〈〈(N⊗N)(N′⊗N′) : E〉〉′ = 2〈N⊗N〉〈N′⊗N′〉′ : E

= 2(HH′) : E = 2[HH′]sym : E, (34)

where we have used the fact that the integrand can separated into factors depending respectively
on N, N′, and E. Hence, we can de�ne a structure-like tensor

H̃ = [HH′]sym, so that Ĩ?80 = 2H̃ : E. (35)
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Remark 1. The second-order structure-like tensor H̃ is symmetric, but unlike the generalised
structure tensor, it is not necessarily positive semi-de�nite. For illustration, consider the strict
�bre alignment case, and the following eigendecomposition,

H̃ =
1

2
(M ·M′) (M⊗M′ + M′⊗M) = λ̃1Ẽ1⊗Ẽ1 + λ̃2Ẽ2⊗Ẽ2, (36)

where λ̃1,2 = 1
2
(M ·M′)(M ·M′± 1), Ẽ1,2 = (M±M′)|M±M′|−1, and the eigenvalues λ̃1,2 of H̃

are clearly of opposite sign. The lack of positive semi-de�niteness is related to the fact that Ĩ?80 can
take arbitrary large in magnitude positive and negative values, as for E = α(M±M′)⊗(M±M′)
we get Ĩ?80 = α(M · M′)(M · M′ ± 1)2, and such deformations are feasible in the sense that
F = U = (2E+1)1/2 is a well-de�ned deformation gradient, which satis�es det F > 0. The absence
of the in�mum makes invariants Ĩ80 and Ĩ8 less attractive for formulation of elastic potentials than
the quadratic invariant Î80. See [25] for a review of hyperelastic strain energies.

One can also de�ne

Ĩ?8 = 〈〈Ĩ8(N,N′)〉〉′ = 〈〈(N ·N′) N ·CN′〉〉′ = [HH′]sym : C = H̃ : C, (37)

and establish the relation between Ĩ?8 and Ĩ?80,

Ĩ?80 = 〈〈I9(N,N′)I8(N,N′)− (I9(N,N′))
2〉〉′ = Ĩ?8 − Ĩ?9 = H̃ : C− trH̃. (38)

The derivatives of Ĩ?80 and Ĩ
?
8 are given by

∂Ĩ?8
∂C

=
∂Ĩ?80

∂C
= H̃,

∂2Ĩ?80

∂C∂C
=

∂2Ĩ?8
∂C∂C

= 0 (39)

The second Piola�Kirchho� stress contribution due to the �bre potentials ψ̃(Ĩ?80) and ψ̃(Ĩ?8 )
have the identical form,

2
∂

∂C
ψ̃(Ĩ?80) = 2

∂ψ̃

∂Ĩ?80

∂Ĩ?80

∂C
= 2ψ̃′

8̃
H̃. (40)

The same applies to the Lagrangian elasticity tensor contribution due to ψ̃(Ĩ?80) and ψ̃(Ĩ?8 ) , which
read

4
∂2

∂C∂C
ψ̃(Ĩ?80) = 4

∂2

∂C∂C
ψ̃(Ĩ?8 ) = 4

(
∂2ψ̃

∂Ĩ?80∂Ĩ
?
80

∂Ĩ?80

∂C
⊗∂Ĩ

?
80

∂C
+
∂ψ̃

∂Ĩ?8

∂2Ĩ?80

∂C∂C

)
= 4ψ̃′′

8̃
H̃⊗H̃. (41)

Axisymmetric distributions

In the case of axisymmetric �bre distributions, the GSTs have the special form

H = κ1 + (1− 3κ)A, H′ = κ′1 + (1− 3κ′)A′, (42)

where A = M⊗M, A′ = M′⊗M′. The second-order structure-like tensor reads

H̃ = [HH′]sym = κκ′1 + κ′(1− 3κ)A + κ(1− 3κ′)A′ + (1− 3κ)(1− 3κ′)[AA′]sym. (43)
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Double contractions H̃ : C and 2H̃ : E yield, respectively,

Ĩ?8 = κκ′I1 + κ′(1− 3κ)I4 + κ(1− 3κ′)I6 + (1− 3κ)(1− 3κ′)Ĩ8, (44)

Ĩ?80 = κκ′ (I1 − 3) + κ′(1− 3κ) (I4 − 1) + κ(1− 3κ′) (I6 − 1) + (1− 3κ)(1− 3κ′)Ĩ80, (45)

since I1 = 1 : C, I4 = A : C, I6 = A′ : C, Ĩ8 = AA′ : C.
As expected, κ = κ′ = 0 recovers the strict alignment case, Ĩ?80 = Ĩ80 and Ĩ?8 = Ĩ8. The

fully isotropic case κ = κ′ = 1
3
yields Ĩ?80 = 1

9
(I1 − 3), Ĩ?8 = 1

9
I1. When one family is isotropic

(κ′ = 1
3
), invariants Ĩ?8 and Ĩ?80 capture the average squares of stretch and strain of the other

family, Ĩ?80 = 1
3
(Ĩ?4 − 1), Ĩ?8 = 1

3
Ĩ?4 . In a particular case of orthogonal alignment of families,

(M ·M′)2 = A : A′ = 0, the last term in (44) disappears, as Ĩ80 = 0 identically.
The contribution to the second Piola�Kirchho� stress for the axisymmetric case reads

2
∂

∂C
ψ̃(Ĩ?80) = 2ψ̃′

8̃
(κκ′1 + κ′(1− 3κ)A + κ(1− 3κ′)A′ + (1− 3κ)(1− 3κ′)[AA′]sym) . (46)

The special form of the elasticity tensor contribution can be computed by using (43) in (41).

3.2 Invariants Î8 and Î∗8

The average of Î80 is de�ned as

Î?80 = 〈〈Î80(N,N′)〉〉′ = 2〈〈(N · EN′)
2〉〉′ . (47)

It follows that

Î?80 = 2〈〈(N · EN′)
2〉〉′ = 4〈〈N⊗N′⊗N⊗N′〉〉′ :: E⊗E

= 4(H⊗̄H′) :: E⊗E = 4[H⊗̄H′]sym :: E⊗E (48)

where again we relied on the fact that the integrand can be separated into factors depending re-
spectively on N, N′, and E. We introduce the quadruple contraction of two fourth-order tensors,
de�ned as T :: T̃ = TijklT̃ijkl, and the modi�ed tensor products ⊗̄ and

¯
⊗, de�ned as [A⊗̄B]ijkl =

AikBjl, [A
¯
⊗B]ijkl = AilBkj. The fourth-order tensor E⊗E possess both major and minor sym-

metries, whereas [H⊗̄H′]ijkl = HikH
′
jl has only the major symmetry (a fourth-order tensor C is

said to have major or minor symmetries if, respectively, Cijkl = Cklij or Cijkl = Cijlk = Cjikl).

Nevertheless, the minor symmetries can be imposed upon H⊗̄H′ for the purpose of computing Î?80

and its derivatives. Thus, we can de�ne the fourth-order structure tensor as

Ĥ = [H⊗̄H′]sym =
1

4
(H⊗̄H′ + H′⊗̄H + H

¯
⊗H′ + H′

¯
⊗H), so that Î?80 = 4Ĥ :: E⊗E. (49)

The fourth-order and second-order structure-like tensors are related via H̃ = Ĥ : 1 = 1 : Ĥ.
One can also de�ne

Î?8 = 〈〈(I8(N,N′))
2〉〉′ = 〈〈(N ·CN′)

2〉〉′ = Ĥ :: C⊗C, (50)

and establish the relation

Î?80 = Î?8 − 2Ĩ?8 + Î?9 = Î?8 − 2Ĩ?80 − Î?9 , (51)

where Ĩ∗80, Ĩ
∗
8 are de�ned in (35), (37), and Î?9 = Î?8|C=1 = Ĥ :: 1⊗1 = trH̃.
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Remark 2. In general, C⊗C and Ĥ = [H⊗̄H′]sym possess major and minor symmetries, but are not
invariant with respect to any permutation of dimensions, e.g., [H⊗̄H′]sym 6= 1

2
(H⊗H′ + H′⊗H).

If this were the case, then one could use the spectral representation Ĥ =
∑3

i=1 ĥiÊi⊗Êi⊗Êi⊗Êi

for a general material structure, while in fact it holds only for some special cases (e.g., when H and
H′ are coaxial). If Ĥ is regarded as a bilinear operator acting in the linear space of second-order
tensors, then it is symmetric (major symmetries) and positive semi-de�nite. The latter follows
from 4E : Ĥ : E = Î?80 ≥ 0, where E is an arbitrary second-order tensor. This holds by virtue of
(48) and does not require E to be the Green�Lagrange strain tensor, although its symmetric part
is proportional to some Green�Lagrange strain tensor.

The derivatives of Î?80 are given by

∂Î?80

∂C
= 2Ĥ : 2E = 2 [H (C− 1) H′]sym ,

∂Î?8
∂C

= 2Ĥ : C =
∂Î?80

∂C
+ 2H̃, (52)

∂2Î?80

∂C∂C
=

∂2Î?8
∂C∂C

= 2Ĥ = 2[H⊗̄H′]sym. (53)

The second Piola�Kirchho� stress contribution due to the �bre potential ψ̂(Î?80) is given by

2
∂

∂C
ψ̂(Î?80) = 4

∂ψ̂

Î?80

[H (C− 1) H′]sym = 8ψ̂′
8̂0
Ĥ : E. (54)

The corresponding contribution to the Lagrangian elasticity tensor reads

4
∂2

∂C∂C
ψ̂(Î?80) = 4

(
∂2ψ̂

∂Î?80∂Î
?
80

∂Î?80

∂C
⊗∂Î

?
80

∂C
+

∂ψ̂

∂Î?80

∂2Î?80

∂C∂C

)
(55)

= 64ψ̂′′
8̂0

(
Ĥ : E

)
⊗
(
Ĥ : E

)
+ 8ψ̂′8̂0 Ĥ (56)

Next, we specialise the above expressions for the case of axisymmetric distributions. Similar
expressions for the case of non-axisymmetrically distributed but coaxially aligned �bre families are
included in Appendix B.

Remark 3. The choice of invariants Ĩ80 and Î80 is motivated by the possibility of using the same
strain-energy function for di�erent material structures. To predict a stress-free state in the un-
deformed con�guration, the strain-energy function must satisfy ∂

∂C
ψ = 0 at C = 1, for which

Ĩ8 = Î8 = Î9 = (M ·M′)2. Therefore, a particular form of the strain-energy function has to be
adjusted to a considered material structure. As for the averaged invariants Ĩ?8 , Î

?
8 , the undeformed

values can be taken into account for the whole structure, Î?9 , or for each combination of test dir-
ection, Î9(N,N′). These two options applied to Î8 = I2

8 correspond to the functional dependence
on 〈〈I2

8 − I2
9 〉〉′ and 〈〈(I8 − I9)2〉〉′. The latter option is chosen, because it guarantees positiveness

for the full range of deformation. When applied to Ĩ8 = I9I8, the two options are equivalent.

Axisymmetric distributions case

When the ODFs ρ and ρ′ are both axisymmetric, the second-order GSTs are given by (42), and
the fourth-order structure tensor reads

H = κκ′1⊗̄1 + κ′(1− 3κ)[A⊗̄1]sym + κ(1− 3κ′)[1⊗̄A′]sym + (1− 3κ)(1− 3κ′)[A⊗̄A′]sym, (57)
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wherein [[A⊗̄A′]sym]ijkl = 1
4

(
AikA

′
jl + AjkA

′
il + AilA

′
jk + AjlA

′
ik

)
etc.

In this special case, the derivative ∂Î?80/∂C is evaluated using (57), (52). The stress contribution
reads

2
∂

∂C
ψ̂(Î?80) = 2

∂ψ̂

∂Î?80

∂Î?80

∂C
= 4ψ̂′

8̂0

(
κκ′2E + κ′(1− 3κ)[2EA]sym (58)

+κ(1− 3κ′)[2EA′]sym + (1− 3κ)(1− 3κ′)I80[M⊗M′]sym

)
.

The quadruple contractions 4H⊗̄H′ :: E⊗E and H⊗̄H′ :: C⊗C yield, respectively,

Î∗80 = κκ′(I2
1 − 2I2 − 2I1 + 3) + κ′(1− 3κ)(I5 − 2I4 + 1) (59)

+κ(1− 3κ′)(I7 − 2I6 + 1) + (1− 3κ)(1− 3κ′)Î80,

Î∗8 = κκ′(I2
1 − 2I2) + κ′(1− 3κ)I5 + κ(1− 3κ′)I7 + (1− 3κ)(1− 3κ′)Î8, (60)

where we used 2E = C−1, the de�nitions of invariants (1)�(4) and the identity 1 : C2 = I2
1 − 2I2.

As expected, the strict alignment case Î∗8 = Î8, Î
∗
80 = Î80 is recovered for κ = κ′ = 0. When

one family is isotropic (κ′ = 1
3
) invariants Î?8 and Î?80 capture the average values of invariants

I5 and I50 = M⊗M : (C − 1)2, Î?8 = 1
3
I?5 = 1

3
κ(I2

1 − 2I2) + 1
3
(1 − 3κ)I5 and Î?80 = 1

3
I?50 =

1
3

(κκ′(I2
1 − 2I2 − 2I1 + 3) + κ′(1− 3κ)(I5 − 2I4 + 1)).

The elasticity tensor contributions can be computed by using (57) in (56).

3.3 Geometric interpretation of I8 and related invariants

The I8-like anisotropic invariants are de�ned as projections and can be expressed in terms of the
cosines of angles between deformed structural directions. With cosα0 = M ·M′ and cosα =
FM · FM′, we have

I8 =
√
I4I6 cosα, I80 =

√
I4I6 cosα− cosα0, (61)

Ĩ8 =
√
I4I6 cosα cosα0, Ĩ80 =

(√
I4I6 cosα− cosα0

)
cosα0, (62)

Î8 = I4I6 cos2 α, Î80 =
(√

I4I6 cosα− cosα0

)2

. (63)

These expressions allow us to interpret I8-like invariants geometrically: they capture the angle
between two structural directions along with their lengths, or the change thereof. One can consider
a strain energy term that depends on the cosine of the angle alone (e.g., as in [26, 20]),

ψ(I̊80), I̊80 =
I8√
I4I6

− I9 = cosα− cosα0. (64)

This invariant, unlike the ones considered previously, cannot be factorised into structural and
deformation parts, and cannot be expressed in terms of a structure tensor contracted with a
deformation dependent part. This precludes the direct application of the GST approach. Also,
there are no reasonable special cases that yield I̊80 ≡ I80, because demanding I4(N)I6(N′) = 1 for
a non-degenerate set of orientations leads to the trivial case of pure rotation, FTF = 1.

Remark 4. The dispersed invariant Î?80 incorporates �bre dispersion by averaging Î80 with respect
to orientation density functions of �bre families. Fibre dispersion can also be included into the
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I8-like term by de�ning Î�80 =
(√

I?4I
?
6 cosα− cosα0

)2
. This invariant takes into account �bre splay

only for computing mean square of stretch in �bre families, while the angles α and α0 are calculated
based on the mean �bre directions (in contrast to Î?80, which considers angles between pairwise
combinations of �bres from di�erent families). Even though Î�80 might seem a simpler alternative
to Î?80, we reject it for the following reasons. First, we do not see any particular justi�cation for
treating extensional and angular components di�erently for the purpose of averaging. Second, the
notion of mean �bre direction is not applicable to a general ODF, in which case Î�80 is not de�ned.
Finally, a model based on Î�80 displays a less complex behaviour. In Section 4.1 we show how
�bre dispersion in invariant Î?80 may reduce symmetry of a material with orthogonal mean �bre
directions, as it indirectly involves anisotropic invariants I5 and I7. This is not the case for Î�80,
which depends on deformation only through I1, I4, I6, and I8.

4 Example. Application to a myocardium model

We illustrate the application of the GST approach to the I8-term using the Holzapfel�Ogden model
[5] for passive myocardium as an example. This model distinguishes three mutually orthogonal
material directions in the reference con�guration: the myo�bre direction f0, the sheet direction
s0, and the sheet-normal direction n0. The mechanical response of the tissue is de�ned by the
strain-energy function

ΨHO = ψiso(I1) + ψf(I4f) + ψs(I4s) + ψfs(Î80fs), (65)

where

ψiso(I1) =
a

2b
{exp[b(I1 − 3)]− 1} , ψfs(Î80fs) =

afs

2bfs

{
exp(bfsÎ80fs)− 1

}
, (66)

ψi(I4i) =
ai
2bi

{
exp[bi(I4i − 1)2]− 1

}
, i = f, s, (67)

and I4f = f0 ·Cf0, I4s = s0 ·Cs0, and Î80fs ≡ Î8fs = (f0 ·Cs0)2, since f0 · s0 = 0. A modi�cation of
this model, which was considered in [14, 15], is de�ned by

ΨEPPH = ψiso(I1) + ψf(I
?
4f) + ψs(I

?
4s) + ψfs(Î80fs), (68)

where the dispersed invariants I?4i = κiI1 + (1 − 3κi)I4, i = f, s take into account axisymmetric
distributions of two structural directions around their mean values, f0 and s0 (the notation ΨEPPH is
due to �rst letters of the authors' names [14]). The extent of dispersion is controlled by parameters
0 ≤ κf , κs ≤ 1

3
. The last term in the strain energy (68), which is responsible for �bre-sheet

interaction, disregards �bre dispersion and is exactly the same, as in (65). We propose a model
that accounts for �bre dispersion in every anisotropic term of the strain energy,

Ψ?
HO = ψiso(I1) + ψf(I

?
4f) + ψs(I

?
4s) + ψfs(Î

?
80fs), (69)

where Î?80fs is de�ned as in (60). Note that Î?80fs 6= Î?8fs, unless κf = κs = 0, and Î?80fs is used here in
view of the considerations in Remark 3. In order to observe the consequence of �bre dispersion in
the mixed term alone, we also consider

Ψ?
HO8 = ψiso(I1) + ψf(I4f) + ψs(I4s) + ψfs(Î

?
80fs). (70)
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The models are analysed and compared in simple shear and biaxial stretch, which approximate
deformations in two common test protocols used for characterisation of the mechanical properties
of soft tissues. For comparison we use a single parameter set [14], which is given in Table 1. All
four models, HO, EPPH, HO8?, and HO?, are identical in the case of strict alignment of �bres
(κf = κs = 0). The discrepancy between the models increases with the extent of dispersion, as
demonstrated in what follows.

a b af bf as bs afs bfs κf κs

0.333 9.242 18.535 15.972 2.564 10.446 0.417 11.602 0.0886 0.0249

Table 1: Parameter values for Holzapfel�Ogden model for myocardium [5], which were provided
in [14] to �t the shear experimental data from [6]. Parameters a, af , as, afs have dimensions of
stress (kPa, hereinafter omitted), while parameters b, bf , bs, bfs are dimensionless. The values for
structural parameters κf and κs are estimated in [14]: κf corresponds to a diseased myocardium;
sheet dispersion datum was not available for the diseased case, therefore the value of κs for the
healthy case is used.

4.1 Simple shear

Six di�erent deformations are de�ned by spatially uniform deformation gradients Ffs, Ffn, Fsf , Fsn,
Fnf , Fns, e.g., Ffs = 1 + γs0⊗f0, where γ is the amount of shear. For each deformation mode,
consider a corresponding shear component of the Cauchy stress tensor, that is, for Ffs consider
σfs = f0 · σ(Ffs(γ))s0 and so on. Detailed analytical expressions for the Cauchy stress in simple
shear are derived in Appendix C. The resulting stress-strain curves, one for each deformation mode,
are widely used to match forces and displacements measured in shear experiments (for instance,
see [6, 5]), although it is commonly known that the uniform simple shear deformation cannot be
maintained in principle in the standard experimental protocol, in which forces are applied to only
two faces of a cuboidal sample.

The EPPH model (68) predicts values of σfs and σsf that are 22% and 43% higher than those
predicted by the HO? model (69), Figure 2a. This indicates that accounting for �bre dispersion
in the invariant Î?80 can lead to signi�cant changes in mechanical response. A comparison of the
models (65)�(70) reveals that accounting for dispersion in anisotropic invariants leads to a softer
material response, when the same set of material parameters is used. This �softening� e�ect of
dispersion is greater in invariants I?4f and I

?
4s than in Î?80fs, Figure 2b. The stress curves with and

without dispersion diverge due to the di�erence between the values of Î?80fs and Î80fs (Figure 4a)
and the values of ∂Î?80fs/∂C and ∂Î?80fs/∂C.

Incorporating �bre dispersion into the mixed term ψfs also reduces the symmetry of the material.
The original HO model (65) and the EPPH model (68) predict identical shear response in nf and ns
modes, whereas the HO? model (69) permits distinct behaviour. This can be explained by noting
that I?80 is no longer invariant under permutation f ↔ s, if only the two associated distributions are
not identical, see equation (59) and Figure 1. The identity (59) also shows that the strain energy
(69) indirectly involves more anisotropic invariants, compared to strain energy (68). One can
expect more anisotropy in a material characterised by a greater number of anisotropic invariants.
The di�erence |σnf − σns| increases as a monotonic function of |κf − κs|, as illustrated in Figure 3.
Some of the data reported in [6] shows clearly distinct behaviour of myocardium in nf and ns
modes, but the values of the dispersion parameters presently used are too low to account for it
within the HO? model (69).
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(a) (b)

Figure 2: Softening e�ect of orientational dispersion. (a) Shear stress as a function of amount
of shear in 6 shear modes as predicted by the EPPH model (68) [14] (solid) and the proposed
model HO? (69) (dashed). (b) Shear stress σfs in the corresponding shear mode, as predicted by
the original HO model (65), EPPH model (68), the proposed HO? model (69), which takes into
account dispersion in all terms, and the model HO8? (70), which considers dispersion only in the
invariant Î?80.

4.2 Biaxial stretch

The e�ect of dispersion in Î?80 is small in biaxial stretch deformations, which are de�ned as
Fbiax = λ1f0⊗f0 + λ2s0⊗s0 + λ−1

1 λ−1
2 n0⊗n0, where the principal stretches are related by the ratio

r = (λ1 − 1) / (λ2 − 1), and the boundary condition σ · n0 = 0 is implied. Detailed analytical
expressions for the Cauchy stress are derived in Appendix C. In the strict alignment case, we
have Î?80 ≡ Î80 = 0, as the deformation is coaxial with the structural directions f0, s0, and n0,
which remain orthogonal in the deformed state. In the presence of orientational dispersion, the
integrated �bre directions N and N′ are almost always (in the probability-theoretical sense) non-
orthogonal in both the reference and current con�gurations, as shown in Figure 1b. This leads
to a non-zero value of Î?80 and engages the mixed term ψfs into the stress response under biaxial
stretching. Notwithstanding, the value of Î?80 remains very small (Figure 4b), and the e�ect on
the stress curves is negligible for the parameter values given in Table 1. Note that the considered
ranges of shear and biaxial deformations are consistent in the sense that stress values of the same
order are recorded for them in experiments [7].

One can also consider a biaxial deformation that is not coaxial with the structural directions
f0, s0, i.e. rotated around n0. In this case, both Î80 and Î?80 are non-zero under a non-equibiaxial
stretch. Nevertheless, their values remain small and the e�ect of dispersion in Î?80 is negligible under
the biaxial stretching. This can be seen by computing the maximum value of I80 with respect to the
rotating orthogonal axes {f0, s0} or the maximum shear component of 2Ebiax = (λ2

1 − 1)E1⊗E1 +
(λ2

2 − 1)E2⊗E2 + (λ−2
1 λ−2

2 − 1)n0⊗n0, which is the same and is given by I80max = 1
2

(λ2
1 − λ2

2).
For the protocols used in [7], I80max = 0.05375 is attained at λ = 1.1, r = 2 and is one order
of magnitude smaller than the value in the fs-shear deformation mode, I80max = γmax = 0.5.
Therefore, the contribution of ψfs(Î

?
80) itself is not signi�cant in biaxial stretch, not to mention the

e�ect of dispersion in this mixed term.
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(a) (b)

Figure 3: The HO? model (69) allows distinct response in the nf and ns shear deformation modes.
(a) Shear stresses σnf and σns in the respective modes plotted for selected values of κs (the arrow
shows the order of σnf curves as κs increases). The value of a is chosen to satisfy σnf |γ=0.5 = 1, while
other parameters are �xed, κf = af = as = 0, b = 1.5, afs = 1, bfs = 13. (b) The value of |σnf − σns|
at γ = 0.5 in respective deformation modes as a function of κf and κs; other parameters are as in
(a). Both plots demonstrate that the di�erence |σnf − σns| increases together with |κf − κs|.

(a) (b)

Figure 4: Invariants Î?80 (dashed) and Î80 (solid) in simple shear (a) and biaxial stretch (b). Shaded
area depicts the di�erence Î?80 − Î80 in respective deformation modes. The e�ect of dispersion for
dispersion values κf = 0.086, κs = 0.0249 is substantial in simple shear, but insigni�cant in biaxial
stretch.

5 Discussion

We have applied the GST approach for materials with orientationally distributed �bres to strain-
energy functions that depend on the coupling invariant I8, which represent pairwise interaction
between �bre families. By analogy with the original GST model for I4 and its extension for I5

[4, 11], we have considered the weighted averages of invariants Ĩ8 = I8I9 and Î8 = I2
8 and de-

rived two corresponding GST formulations. With our contribution, one can properly incorporate
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�bre dispersion data into material models that include invariant I8 and, in principle, into any hy-
perelastic constitutive model, since GST-based expressions are now available for every anisotropic
invariant in the set I1, . . . , I9, which forms a functional basis for an arbitrary strain-energy function
[21, 22].

Using the Holzapfel�Ogden model for passive myocardium [5] as an example, we have demon-
strated that accounting for �bre dispersion in the coupled term can have a signi�cant quantitative
e�ect in shearing deformations (Figure 2). This indicates that the models that ignore �bre disper-
sion in this term [14] may predict behaviour inconsistent with their basic assumptions and need
to be reassessed or modi�ed in the fashion we propose. The proposed HO? model and the models
that ignore �bre dispersion in some or all terms �t shear test data [6] equally well for a range of
structural parameters, when the tissue is idealised as a homogeneously deformed uniform body (not
shown). However, depending on the values of �bre and sheet dispersion parameters, the proposed
model is capable of more complex anisotropic response, which we discuss next. It must be noted
that inhomogeneous deformations and variability of tissue structure across a test specimen, as well
as proper boundary conditions, should be taken into account when �tting a model to experimental
data. In general, this can only be done by solving the corresponding boundary value problem
numerically, e.g., using �nite element methods.

The incorporation of �bre dispersion in the coupling invariant, unlike that in other anisotropic
invariants, has a potential to reduce material symmetry, when the extent of dispersion varies
between the �bre families (Figure 3). This e�ect is minor for the parameter values used here
(Table 1, [14]): the phenomenological constitutive parameters were �tted to simple shear beha-
viour of porcine myocardium (with no record of abnormality) [6], while the dispersion parameters
correspond to hypertrophic �bre and normal laminar murine myocardial structures [27, 28, 14].
New data and further studies are required to estimate the relevance of this reduced material sym-
metry in diseased myocardium and other tissues, where the e�ect of �bre dispersion in the coupling
invariant can potentially be signi�cant and su�cient to explain increased mechanical anisotropy
without need for extra terms of the strain-energy function or explicit dependence on additional
anisotropic invariants.

It has been brought to our attention that the six shear modes of the HO? model (69) are not
only distinct, but also do not satisfy the relation

σfs(γ) + σsn(γ) + σnf(γ) = σsf(γ) + σns(γ) + σfn(γ), (71)

which holds for the HO model (65) and the EPPH model (68). The relation (71) was noted by
Latorre and Montans [29] for materials with the strain energy ΨLM =

∑
i,j ωij(Eij), where Eij are

the components of the logarithmic Lagrangian strain tensor E = ln E and ωij are suitable (but
otherwise arbitrary) spline functions. We note that condition (71) is ensured (for some materials)
by the additive split Ψ =

∑
i ψi(Ii), where each ψi(Ii) is invariant with respect to at least one

odd permutation of subscripts (f, s, n). For example, in the case of axisymmetric �bre dispersion,
the term ψf(I

?
4f) is invariant with respect to permutation (f, s, n) 7→ (f, n, s). It follows and can

be rigourously demonstrated that a bijection is established between the contributions of ψf to the
Cauchy stresses on the opposite sides of condition (71). Therefore, for a material model to satisfy
condition (71), it is su�cient that each additive term of its strain energy function respects some
odd permutation of subscripts (f, s, n). The condition (71) does not hold for the HO? model (69),
because the mixed term ψfs(Î

?
80fs) is a�ected by every odd permutation, with the only exception

being κf = κs, as can be seen from equation (59), which should be changed beforehand to adopt
notation used for myocardium.
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It is often assumed that �bres buckle under compression and only contribute to material re-
sponse when stretched. Constitutive models address this assumption by excluding compressed
�bres by means of switch conditions [4, 30], deformation-dependent [31] or pre-integrated GSTs
[12, 32]. These studies consider exclusion of compressed �bres in the context of decoupled �bre
families, whose elastic potentials are functions of I4. Avazmohammadi et al. [33] considered a
�bre interaction term, which vanishes as soon as one �bre family is slack. Their model captures
the coupling between �bre families using a linear combination of I4-like invariants. Even though
the relevance of �bre exclusion to invariant I8 remains to be examined from the physical stand-
point and also considering material stability [24], all existing methods for �bre exclusion can be
straightforwardly applied to the proposed formulations, since the fourth-order GST Ĥ and the
structure-like tensor H̃ are de�ned in terms of the second-order GSTs.

6 Conclusion

We have derived two GST formulations for invariants Î8 and Ĩ8, which capture the pair-wise
coupling of �bre families in a �bre-reinforced material. With this method, orientational distribution
of �bres can be incorporated into the coupling part of a hyperelastic constitutive model. Although
we have used a model for myocardium as an example, the method is general and can be applied to
any soft tissue. The following theoretical observations have been made in the course of derivation.
We have noted that I8 cannot be used as a basis of a GST model, since it is an odd function of
structural directions. We have also noted that in order to formulate a universal constitutive law
applicable to various material structures, the averaging must be applied not to Î8 or Ĩ8 directly,
but to their strain-based counterparts, Î80 and Ĩ80. The resulting models can be expressed in terms
of a fourth-order structure and second-order structure-like tensors, respectively, which in turn are
given by a tensor and dot products of the well-known GSTs. Simpler expressions are available for
the case of axisymmetric �bre distributions.

We have applied our formulation to the Holzapfel�Ogden model for myocardium [5] and ob-
tained a model, which takes into account �bre dispersion in every term of the strain-energy func-
tion. We have shown that including �bre dispersion in the coupling term signi�cantly decreases
the stress in simple shear deformations and also causes minor changes in biaxial stretching. In
addition, the proposed model can produce six distinct response curves, which correspond to six
simple shear modes, whereas in models without dispersion in the coupling term [5, 14] two curves
coincide exactly. This loss of symmetry is negligible for the parameter set that we used for myocar-
dium, but just like the e�ect on biaxial response, it can be signi�cant for other parameter values
or in other tissues. We conclude that the proposed model should be used instead of the models
we compared it to [5, 14], because it consistently incorporates �bre dispersion in every term of the
strain-energy function and can predict quantitatively and qualitatively di�erent behaviour.
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A Appendix A. An expression for I2
8 in an orthotropic ma-

terial

Lemma 1. We demonstrate that

0 = I2 + I5 + I7 + I4I6 − I1 (I4 + I6)− I2
8 , (72)

if only unit vectors M and M′ in (1)�(5) are orthogonal, i.e. M ·M′ = 0.

Proof. We introduce notation A = M⊗M, A′ = M′⊗M′, A′′ = M′′⊗M′′, where M′′ is a unit
vector, orthogonal to both M and M′. From these de�nitions if follows that

A⊗A = A⊗̄A, A′⊗A′ = A′⊗̄A′, A′′⊗A′′ = A′′⊗̄A′′. (73)

Orthonormality of M and M′ implies that {M,M′,M′′} is an orthonormal basis, therefore,

1 = A + A′ + A′′. (74)

For the terms involved in (72) we have the following,

I2 =
1

2
(1⊗1− 1⊗̄1) :: C⊗C (75)

I5 = A⊗̄1 :: C⊗C, I7 = A′⊗̄1 :: C⊗C, (76)

I4I6 = (A : C)(A′ : C) = A⊗A′ :: C⊗C, (77)

I1I4 = 1⊗A :: C⊗C, I1I6 = 1⊗A′ :: C⊗C, (78)

I2
8 = A⊗̄A′ :: C⊗C. (79)

Now we need to demonstrate that(
1

2
(1⊗1− 1⊗̄1) + A⊗̄1 + A′⊗̄1 + A⊗A′ − 1⊗A− 1⊗A′ −A⊗̄A′

)
:: C⊗C = 0.

It is su�cient to show that

1

2
(1⊗1− 1⊗̄1) + A⊗̄1 + A′⊗̄1 + A⊗A′ − 1⊗A− 1⊗A′ −A⊗̄A′ = 0⊗0, (80)

up to the major symmetry, in the sense that respects identi�cation A⊗A′ ≡ A′⊗A, A⊗̄A′ ≡
A′⊗̄A, etc. To proceed, we replace 1 via (74). The �rst term, up to the major symmetry, becomes

1

2
(1⊗1− 1⊗̄1) =

1

2
((A + A′ + A′′)⊗ (A + A′ + A′′)− (A + A′ + A′′) ⊗̄ (A + A′ + A′′))

= A⊗A′ + A⊗A′′ + A′⊗A′′ −A⊗̄A′ −A⊗̄A′′ −A′⊗̄A′′, (81)

where identities (73) were employed. Next,

A⊗̄1 + A′⊗̄1−A⊗̄A′ = (A⊗̄A + A⊗̄A′ + A′⊗̄A′′) + (A′⊗̄A + A′⊗̄A′ + A′⊗̄A′′)−A⊗̄A′

= A⊗A + A′⊗A′ + A⊗̄A′ + A⊗̄A′′ + A′⊗̄A′′, (82)

and similarly,

A⊗1 + A′⊗1−A⊗A′ = A⊗A + A⊗A′ + A⊗A′′ + A′⊗A + A′⊗A′ + A′⊗A′′ −A⊗A′′

= A⊗A + A′⊗A′ + A⊗A′ + A⊗A′′ + A′⊗A′′. (83)

After taking the sum of equations (81)�(83), one can clearly see that (80) holds.
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B Appendix B. Expressions for the case of coaxially aligned

non-symmetrically dispersed families of �bres

Consider two coaxial GSTs, which are given by H = diag(H11,H22,H33), H′ = diag(H′11,H
′
22,H

′
33)

in an orthonormal basis {M,M′,M′′}, that is,

H = H11A + H22A
′ + H33(1−A−A′), H′ = H′11A + H′22A

′ + H′33(1−A−A′), (84)

with A = M⊗M, A′ = M′⊗M′, A′′ = M′′⊗M′′. A specialisation of equation (49) for this case
reads

Ĥ = H33H′331⊗̄1 + (H11 −H33) (H′11 −H′33)A⊗A + (H22 −H33) (H′22 −H′33)A′⊗A′ (85)

+ (H′33 (H11 −H33) + H33 (H′11 −H′33)) [A⊗̄1]sym + (H′33 (H22 −H33) + H33 (H′22 −H′33)) [A′⊗̄1]sym (86)

+ ((H11 −H33) (H′22 −H′33) + (H22 −H33) (H′11 −H′33)) [A⊗̄A′]sym . (87)

Double contraction with 2E yields

2Ĥ : E = H33H′33 (2E) + (H11 −H33) (H′11 −H′33) (I4 − 1)A + (H22 −H33) (H′22 −H′33) (I6 − 1)A′ (88)

+ (H′33 (H11 −H33) + H33 (H′11 −H′33)) [2EA]sym + (H′33 (H22 −H33) + H33 (H′22 −H′33)) [2EA′]sym (89)

+ ((H11 −H33) (H′22 −H′33) + (H22 −H33) (H′11 −H′33)) I80 [M⊗M′]sym . (90)

Quadruple contraction with 4E⊗E results in

Î?80 = H33H′33 (I1 − 2I2 − 2I2 + 3)
2

+ (H11 −H33) (H′11 −H′33) (I4 − 1)
2

+ (H22 −H33) (H′22 −H′33) (I6 − 1)
2

(91)

+ (H′33 (H11 −H33) + H33 (H′11 −H′33)) (I5 − 2I4 + 1) + (H′33 (H22 −H33) + H33 (H′22 −H′33)) (I7 − 2I6 + 1)
(92)

+ ((H11 −H33) (H′22 −H′33) + (H22 −H33) (H′11 −H′33)) Î80. (93)

The axisymmetric case is recovered by letting H11=1−3κ, H22=H33=κ and H′22=1−3κ′, H′11=H′33=κ′,
in which case (85)�(87), (88)�(90), and (91)�(93) become, respectively, (57), the factor in paren-
thesis in (58), and (59).

C Appendix C. Analytical expressions for stress components

in shear and biaxial tests

Shear deformation Consider orthonormal basis {f0, s0,n0}. Let M = f0, M′ = s0, H =
diag(H11,H22,H33), H′ = diag(H′11,H

′
22,H

′
33). For a simple shear deformation corresponding to the

deformation gradient Ffs = 1 + γs0⊗f0, we have

C = 1 + γ2f0⊗f0 + 2γ[f0⊗s0]sym, C2 = 1 +
(
3γ2 + γ4

)
f0⊗f0 + γ2s0⊗s0 +

(
4γ + 2γ3

)
[f0⊗s0]sym, (94)

b = 1 + γ2s0⊗s0 + 2γ[f0⊗s0]sym, b2 = 1 + γ2f0⊗f0 +
(
3γ2 + γ4

)
s0⊗s0 +

(
4γ + 2γ3

)
[f0⊗s0]sym, (95)

C−1 = 1 + γ2s0⊗s0 − 2γ[f0⊗s0]sym, b−1 = 1 + γ2f0⊗f0 − 2γ[f0⊗s0]sym, (96)

I1 = I2 = 3 + γ2, I4 = I7 = 1 + γ2, I5 = 1 + 3γ2 + γ4, I6 = 1, I8 = I80 = γ. (97)

I∗4 = (1 + γ2)H11 + H22 + H33, I∗6 = (1 + γ2)H′11 + H′22 + H′33, (98)

I∗5 = (1 + 3γ2 + γ4)H11 + (1 + γ2)H22 + H33, I∗7 = (1 + 3γ2 + γ4)H′11 + (1 + γ2)H′22 + H′33, (99)

Î∗8 = (1 + γ2)2H11H′11 + H22H′22 + H33H′33 + (H11H′22 + H22H′11) γ2, (100)

Î∗80 = γ4H11H′11 + γ2 (H11H′22 + H22H′11) , (101)
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h = FHFT = H + 2γH11[f0⊗s0]sym + γ2H11s0⊗s0, (102)

[CH]sym = H + γ(H11 + H22)[f0⊗s0]sym + γ2H11f0⊗f0, (103)

[bh]sym = H + γ2H11f0⊗f0 +
(
(2γ2 + γ4)H11 + γ2H22

)
s0⊗s0 +

(
(3γ + 2γ3)H11 + γH22

)
[f0⊗s0]sym, (104)

[H (C− 1)H′]sym = γ2H11H′11f0⊗f0 + γ(H11H′22 + H22H′11)[f0⊗s0]sym, (105)[
h
(
1− b−1

)
h′
]
sym

= γ2H11H′11f0⊗f0 +
(
γ2(H11H′22 + H22H′11) + γ4H11H′11

)
s0⊗s0 (106)

+
(
γ(H11H′22 + H22H′11) + 2γ3H11H′11

)
[f0⊗s0]sym, (107)

where expressions for h′, [CH′]sym, and [bh′]sym are analogous to h, [CH]sym, and [bh]sym. Using
the above, we can specialise the Cauchy stress tensor (26)�(27), whose only non-zero entries are

σff = −p+ 2Ψ1 + 4Ψ2 + 2H11Ψ4 + 4H11(1 + γ2)Ψ5 + 2H′11Ψ6 + 4H′11(1 + γ2)Ψ7 + 4H11H′11γ
2Ψ8̂0, (108)

σss = −p+ 2(1 + γ2)Ψ1 + 2(2 + γ2)Ψ2 + 2(γ2H11 + H22)Ψ4 +
(
(2γ2 + γ4)H11 + (1 + γ2)H22

)
Ψ5

+ 2(γ2H′11 + H′22)Ψ6 +
(
(2γ2 + γ4)H′11 + (1 + γ2)H′22

)
Ψ7 + 4γ2

(
H11H′22 + H22H′11 + γ2H11H′11

)
Ψ8̂0, (109)

σnn = −p+ 2Ψ1 + (4 + 2γ2)Ψ2 + 2H33Ψ4 + 4H33Ψ5 + 2H′33Ψ6 + 4H′33Ψ7,

σfs = 2γΨ1 + 2γΨ2 + 2γH11Ψ4 + 2γ((3 + 2γ2)H11 + H22)Ψ5 + 2γH′11Ψ6 + 2γ((3 + 2γ2)H′11 + H′22)Ψ7

+ 2γ
(
H11H′22 + H22H′11 + 2γ2H11H′11

)
Ψ8̂0, (110)

where σfs(γ) is the function of interest. Shear stresses corresponding to other shear modes are
obtained in a similar way,

σfn = 2γΨ1 + 2γΨ2 + 2γH11Ψ4 + 2γ((3 + 2γ2)H11 + H33)Ψ5 + 2γH′11Ψ6 + 2γ((3 + 2γ2)H′11 + H′33)Ψ7

+ 2γ
(
H11H′33 + H33H′11 + 2γ2H11H′11

)
Ψ8̂0, (111)

σsf = 2γΨ1 + 2γΨ2 + 2γH22Ψ4 + 2γ((3 + 2γ2)H22 + H11)Ψ5 + 2γH′22Ψ6 + 2γ((3 + 2γ2)H′22 + H′11)Ψ7

+ 2γ
(
H11H′22 + H22H′11 + 2γ2H22H′22

)
Ψ8̂0, (112)

σsn = 2γΨ1 + 2γΨ2 + 2γH22Ψ4 + 2γ((3 + 2γ2)H22 + H33)Ψ5 + 2γH′22Ψ6 + 2γ((3 + 2γ2)H′22 + H′33)Ψ7

+ 2γ
(
H33H′22 + H22H′33 + 2γ2H22H′22

)
Ψ8̂0, (113)

σnf = 2γΨ1 + 2γΨ2 + 2γH33Ψ4 + 2γ((3 + 2γ2)H33 + H11)Ψ5 + 2γH′33Ψ6 + 2γ((3 + 2γ2)H′33 + H′11)Ψ7

+ 2γ
(
H11H′33 + H33H′11 + 2γ2H33H′33

)
Ψ8̂0, (114)

σns = 2γΨ1 + 2γΨ2 + 2γH33Ψ4 + 2γ((3 + 2γ2)H33 + H22)Ψ5 + 2γH′33Ψ6 + 2γ((3 + 2γ2)H′33 + H′22)Ψ7

+ 2γ
(
H33H′22 + H22H′33 + 2γ2H33H′33

)
Ψ8̂0. (115)

The form of the expressions (110)�(115) is the same, up to a permutation of indices in GSTs' components

(e.g., σns is obtained from σfs by replacing (f, s, n) → (n, s, f)). Note that Ψi in (110)�(115) implicitly

depend on invariants, which may be di�erent functions in di�erent deformation modes, that is, Ψ4 in

(110) is not the same as Ψ4 in (115).

Now we write σfs, . . . , σns for the special case of Holzapfel�Ogden model with axisymmetric �bre

dispersion (69),

σfs = aγ exp
[
bγ2
]

+ afγ
3(1− 2κ)2 exp

[
bfγ

4(1− 2κ)2
]

+ asγ
3κ′2 exp

[
bsγ

4κ′2
]

+ afsγ
((

1− 2κ′ − 2κ+ 5κκ′)
)

+ γ2(2− 4κ)κ′
)

exp
[
bbfγ

2
(
(1− 2κ− 2κ′ + 5κκ′) + γ2κ′(1− 2κ)

)]
,

(116)
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σfn = aγ exp
[
bγ2
]

+ afγ
3(1− 2κ)2 exp

[
bfγ

4(1− 2κ)2
]

+ asγ
3κ′2 exp

[
bsγ

4κ′2
]

+ afsγ
((
κ′ − κκ′

)
+ γ2(2− 4κ)κ′

)
exp

[
bbfγ

2
(
κ′(1− κ) + γ2κ′(1− 2κ)

)]
, (117)

σsf = aγ exp
[
bγ2
]

+ afγ
3κ2 exp

[
bfγ

4κ2
]

+ asγ
3(1− 2κ′)2 exp

[
bsγ

4(1− 2κ′)2
]

+ afsγ
((

1− 2κ′ − 2κ+ 5κκ′)
)

+ γ2κ(2− 4κ′)
)

exp
[
bbfγ

2
(
(1− 2κ− 2κ′ + 5κκ′) + γ2κ(1− 2κ′)

)]
,

(118)

σsn = aγ exp
[
bγ2
]

+ afγ
3κ2 exp

[
bfγ

4κ2
]

+ asγ
3(1− 2κ′)2 exp

[
bsγ

4(1− 2κ′)2
]

+ afsγ
((
κ− κκ′

)
+ γ2κ(2− 4κ′)

)
exp

[
bbfγ

2
((
κ− κκ′

)
+ γ2κ(1− 2κ′)

)]
, (119)

σnf = aγ exp
[
bγ2
]

+ afγ
3κ2 exp

[
bfγ

4κ2
]

+ asγ
3κ′2 exp

[
bsγ

4κ′2
]

+ afsγ
((
κ′ − κκ′

)
+ 2γ2κκ′

)
exp

[
bbfγ

2
((
κ′ − κκ′

)
+ γ2κκ′

)]
, (120)

σns = aγ exp
[
bγ2
]

+ afγ
3κ2 exp

[
bfγ

4κ2
]

+ asγ
3κ′2 exp

[
bsγ

4κ′2
]

+ afsγ
((
κ− κκ′

)
+ 2γ2κκ′

)
exp

[
bbfγ

2
((
κ− κκ′

)
+ γ2κκ′

)]
. (121)

One can see, for instance, that the di�erence between σnf − σns vanishes for κ = κ′. It can be expected

and is shown in Figure 3b that the di�erence |σnf − σns| is a monotonous function of |κ− κ′|.

Biaxial stretching With the same assumptions, as for the shear deformation modes, consider
F = diag(λ1, λ2, λ3), where λ3 = λ−1

1 λ−1
2 is assumed satisfy the incompressibility condition. A

biaxial stretch protocol is introduced by imposing a relation between λ1 and λ2 and the boundary
condition σ33 = 0, which is consistent with the deformation being considered. The expressions for
the deformation invariants read

I1 = λ2
1 + λ2

2 + λ−2
1 λ−2

2 , I2 = λ−2
1 + λ−2

2 + λ2
1λ

2
2, (122)

I4 = λ2
1, I5 = λ4

1, I6 = λ2
2, I7 = λ4

2, I8 = I80 = 0, (123)

I∗4 = H11λ
2
1 + H22λ

2
2 + H33λ

−2
1 λ−2

2 , I∗6 = H′11λ
2
1 + H′22λ

2
2 + H′33λ

−2
1 λ−2

2 , (124)

I∗5 = H11λ
4
1 + H22λ

4
2 + H33λ

−4
1 λ−4

2 , I∗7 = H′11λ
4
1 + H′22λ

4
2 + H′33λ

−4
1 λ−4

2 , (125)

Î∗8 = H11H′11λ
4
1 + H22H′22λ

4
2 + H33H′33λ

−4
1 λ−4

2 , (126)

Î∗80 = H11H′11

(
λ2

1 − 1
)2

+ H22H′22

(
λ2

2 − 1
)2

+ H33H′33

(
λ−2

1 λ−2
2 − 1

)2
. (127)

All the tensors involved in (26)�(27) are diagonal in the basis {f0, s0,n0}, so are the resulting stress
tensors. For instance, we have C = b = diag(λ2

1, λ
2
2, λ
−2
1 λ−2

2 ), h = diag(H11λ
2
1,H22λ

2
2,H33λ

−2
1 λ−2

2 ),
etc. The non-zero entries of the Cauchy stress tensor are

σ11 = −p+ 2λ21Ψ1 + 2

(
1

λ22
+ λ21λ

2
2

)
Ψ2 + 2H11λ

2
1Ψ4 + 4H11λ

4
1Ψ5 + 2H′

11λ
2
1Ψ6 + 4H′

11λ
4
1Ψ7 + 4H11H′

11λ
2
1

(
λ21 − 1

)
Ψ8̂0, (128)

σ22 = −p+ 2λ22Ψ1 + 2

(
1

λ21
+ λ21λ

2
2

)
Ψ2 + 2H22λ

2
2Ψ4 + 4H22λ

4
2Ψ5 + 2H′

22λ
2
2Ψ6 + 4H′

22λ
4
2Ψ7 + 4H22H′

22λ
2
2

(
λ22 − 1

)
Ψ8̂0,

σ33 = −p+
2

λ21λ
2
2

Ψ1 + 2

(
1

λ21
+

1

λ22

)
Ψ2 + 2H33

1

λ21λ
2
2

Ψ4 + 4H33
1

λ41λ
4
2

Ψ5 + 2H′
33

1

λ21λ
2
2

Ψ6 + 4H′
33

1

λ41λ
4
2

Ψ7 + 4H33H′
33

λ21λ
2
2 − 1

λ41λ
4
2

Ψ8̂0.

The boundary condition σ33 = 0 de�nes the incompressibility-associated Lagrange multiplier p.
For the special case of the Holzapfel�Ogden model with axisymmetric �bre dispersion (69), we
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have

σ11 = 2

(
λ2

1 −
1

λ2
1λ

2
2

)
Ψ1 + 2

(
λ2

1λ
2
2 −

1

λ2
1

)
Ψ2 + 2

(
H11λ

2
1 −H33

1

λ2
1λ

2
2

)
Ψ4 + 4

(
H11λ

4
1 −H33

1

λ4
1λ

4
2

)
Ψ5 (129)

+ 2

(
H′11λ

2
1 −H′33

1

λ2
1λ

2
2

)
Ψ6 + 4

(
H′11λ

4
1 −H′33

1

λ4
1λ

4
2

)
Ψ7 + 4

(
H11H′11

(
λ4

1 − λ2
1

)
−H33H′33

(
1

λ2
1λ

2
2

− 1

λ4
1λ

4
2

))
Ψ8̂0,

(130)

σ22 = 2

(
λ2

2 −
1

λ2
1λ

2
2

)
Ψ1 + 2

(
λ2

1λ
2
2 −

1

λ2
2

)
Ψ2 + 2

(
H22λ

2
2 −H33

1

λ2
1λ

2
2

)
Ψ4 + 4

(
H22λ

4
2 −H33

1

λ4
1λ

4
2

)
Ψ5

+ 2

(
H′22λ

2
2 −H′33

1

λ2
1λ

2
2

)
Ψ6 + 4

(
H′22λ

4
2 −H′33

1

λ4
1λ

4
2

)
Ψ7 + 4

(
H22H′22

(
λ4

2 − λ2
2

)
−H33H′33

(
1

λ2
1λ

2
2

− 1

λ4
1λ

4
2

))
Ψ8̂0,

σ11 = a

(
λ21 −

1

λ21λ
2
2

)
exp

[
b

(
λ21 + λ22 +

1

λ21λ
2
2

− 3

)]
(131)

+ af

(
(1− 2κ)λ21 − κ

1

λ21λ
2
2

)(
(1− 2κ)

(
λ21 − 1

)
+ κ

(
λ22 +

1

λ21λ
2
2

− 2

))
exp

[
bf

(
(1− 2κ)

(
λ21 − 1

)
+ κ

(
λ22 +

1

λ21λ
2
2

− 2

))2
]
(132)

+ asκ
′
(
λ21 −

1

λ21λ
2
2

)(
κ′
(
λ21 +

1

λ21λ
2
2

− 2

)
+
(
1− 2κ′

)
λ22

)
exp

[
bs

(
κ′
(
λ21 +

1

λ21λ
2
2

− 2

)
+
(
1− 2κ′

)
λ22

)2
]

(133)

+ 2afs

(
(1− 2κ)κ′λ21

(
λ21 − 1

)
+ κκ′

(
1

λ21λ
2
2

−
1

λ41λ
4
2

)2
)

exp

[
bfs

(
(1− 2κ)κ′

(
λ21 − 1

)2
+ κ(1− 2κ′)

(
λ22 − 1

)2
+ κκ′

(
1

λ21λ
2
2

− 1

)2
)]

(134)

σ22 = a

(
λ22 −

1

λ21λ
2
2

)
exp

[
b

(
λ21 + λ22 +

1

λ21λ
2
2

− 3

)]

+ afκ

(
λ22 −

1

λ21λ
2
2

)(
(1− 2κ)

(
λ21 − 1

)
+ κ

(
λ22 +

1

λ21λ
2
2

− 2

))
exp

[
bf

(
(1− 2κ)

(
λ21 − 1

)
+ κ

(
λ22 +

1

λ21λ
2
2

− 2

))2
]
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((
1− 2κ′

)
λ22 − κ′

1

λ21λ
2
2

)(
κ′
(
λ21 +

1

λ21λ
2
2

− 2

)
+
(
1− 2κ′

)
λ22

)
exp

[
bs

(
κ′
(
λ21 +

1

λ21λ
2
2

− 2

)
+
(
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)
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)2
]

(135)

+ 2afs

(
κ(1− 2κ′)λ22

(
λ22 − 1

)
+ κκ′

(
1

λ21λ
2
2

−
1

λ41λ
4
2

)2
)

exp

[
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(
λ21 − 1
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(
λ22 − 1

)2
+ κκ′
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1
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2
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