IB, **IBARM** and mitral valves

<u>X. Y. Luo</u>¹, B.E.Griffith², M. Yin³, T. J. Wang³, P. N. Watton⁴

¹Department of Mathematics, University of Glasgow, UK

²Department of Medicine, NYU Langone Medical Center New York University, USA

³Department of Mechanical Engineering, Xi'an Jiaotong University, China

⁴Department of Engineering Science, University of Oxford, UK

Mitral valve

Typical diseases of MV: Mitral stenosis & mitral regurgitation.

Need to be repaired or replaced when damaged (225,000 replaced yearly world wide).

A New Bioprosthetic Mitral Valve

A new bioprosthesis (polyurethane) design developed by Dept. of Cardiac Surgery, University of Glasgow

D.J. Wheatley (2002), Mitral valve prosthesis Pat. no. WO03037227.

Benefits:

- durable
- no need for anticoagulation therapy,
- biostable (tested on sheep)
- based on real MV geometry, "similar" mechanical properties
- with chordae !

Immersed Boundary (IB) Methods-1

Old version: IB

Uniform Eulerian grid, 1st order approximation, no bending, solved with FFT, periodic BCs, Fortran code

Key results: reasonable agreement with experiments.

Highlighted problems in design (over-stretched posterior leaflet with chordae). Modelling issues: Predicted opening pressure too high, valve over-opening, and not closing.

(Watton, Luo, Wang, Bernacca, Molloy & Wheatley JBM, 2007, Watton, Luo, Yin, Bernacca & Wheatley, JFS, 2008)

The IB valve modelling

The mitral valve mesh

LV effects: modelled with IB (with 1st order, no bending, and uniform mesh)

- Analyse Human MRI data with CMRTOOLS software package for analysing Cardiovascular Magnetic Resonance (CMR) images (IC: www.cmrtools.com)
- Determine dynamic geometry of ventricle and papillary muscle axes.

The MV model is placed inside the moving LV

Flow vertex in the left ventricle

Horizontal mid-plane view of the flow

Vertical mid-plane view of the flow

Clock-wise vortex is observed, the system becomes more asymmetric. However, the flow vortex does help with the valve closure.

(Yin, Luo, Wang & Watton, CMN, 2009).

Immersed Boundary (IB) Methods-2

New version: IBAMR

Adaptive grid, formally 2nd order in time & space, can add bending force, coded in C++, solved with libraries: SAMRAI (adaptive mesh refinement), HYPRE (parallel multigrid solvers, PETSC (linear/nonlinear solvers), and VisIT (post-processing), physiological BCs.

(Griffith et al. Journal of Computational Physics, 2007, Griffith, Luo, McQueen & Peskin, IJAM, 2009)

IB validation: collapsible channel flows

IBAMR reaches the steady solution computed using our ALE in-house code.

IBAMR: Valve closure

No valve bending: better closing, poor opening

Top view

with valve bending

Experiments

Computed flow rate agrees well with experiments

Better agreement can be achieved by using a lumped parameter model downstream.

Conclusion

IBAMR is successfully used to simulate dynamic mitral valves.

It is a promising tool for studying fluid-structure interactions of more complicated 3D model (i.e. heart).

Acknowledgement

British Heart Foundation Royal Academy of Engineering The Royal Society Royal Society of Edinburgh Edinburgh Mathematics Society