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We study flow driven through a finite-length planar rigid channel by a fixed upstream
flux, where a segment of one wall is replaced by a pre-stressed elastic beam subject to
uniform external pressure. The steady and unsteady systems are solved using a finite
element method. Previous studies have shown that the system can exhibit three steady
states for some parameters (termed the upper, intermediate and lower steady branches,
respectively). Of these, the intermediate branch is always unstable while the upper and
lower steady branches can (independently) become unstable to self-excited oscillations.
We show that for some parameter combinations the system is unstable to both upper and
lower branch oscillations simultaneously. However, we show that these two instabilities
eventually merge together for large enough Reynolds numbers, exhibiting a nonlinear
limit cycle which retains characteristics of both the upper and lower branches of oscilla-
tions. Furthermore, we show that increasing the beam pre-tension suppresses the region
of multiple steady states but preserves the onset of oscillations. Conversely, increasing
the beam thickness (a proxy for increasing bending stiffness) suppresses both multiple
steady states and the onset of oscillations.

Keywords: flow-vessel interaction; collapsible channel flows; stability.

1. Introduction

Fluid flow through flexible conduits in the human body can exhibit a wide variety

of interesting physiological phenomena [Heil and Hazel, 2011]; such flows can be

investigated experimentally using a Starling Resistor, where fluid is driven through

a segment of externally pressurised flexible tubing by either a prescribed driving

pressure or a prescribed upstream flux [e.g. Bertram, 1982, 1986]. In particular,

pressure driven flow can exhibit a phenomenon known as ‘flow limitation’, where

the flow rate along the tube does not continue to increase as the driving increases:

the large flow speeds collapse the tube through the Bernoulli effect inhibiting the

flow [Bertram and Castles, 1999; Bertram and Tscherry, 2006]. Similarly, flux driven

systems can exhibit the associated phenomenon of ‘pressure drop limitation’, where

the pressure difference between the ends of the collapsible tube does not increase
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with increases in flow rate [Bertram, 1986; Bertram et al., 1990]. In physiology, flow

limitation can occur during tidal breathing, when the flow rate of air being expelled

from the lung becomes maximised during forced expiration [Tantucci].

In some cases these highly collapsed steady configurations can co-exist with

other, more inflated, configurations of the vessel. Such multiplicity in steady so-

lutions is evident in Starling Resistor experiments, where the system can exhibit

hysteresis i.e. different steady configurations at the same operating point depen-

dent on the history and termed an ‘open-to-closed transition’ [Bertram et al., 1991;

Bertram and Castles, 1999]. Such co-existing steady states are also evident in the-

oretical models of flow in collapsible tubes [Hazel and Heil, 2003; Heil and Boyle,

2010]. In particular, lumped parameter models indicate that the collapsible tube

can typically exhibit three co-existing branches of steady solutions across a range

of parameters [Armitstead et al., 1996]; these three branches have been termed the

upper branch (where the tube is mostly inflated), the lower branch (where the tube

is highly collapsed) with an intermediate branch between them. The upper (lower)

steady solutions is connected to the intermediate branch through a saddle-node

bifurcation at the upper (lower) branch limit point; the upper and lower steady

branches are stable to non-oscillatory perturbations and the intermediate branch is

always unstable [Armitstead et al., 1996].

In physiology, flow limitation in the lung airways is often accompanied by wheez-

ing, associated with rapid fluttering of the airway wall [Grotberg and Gavriely,

1989]. Similarly, Starling Resistor experiments investigating flow limitation can

sometimes exhibit spontaneous self-excited oscillations which fall into distinct fre-

quency bands [Bertram and Pedley, 1982; Bertram et al., 1990, 1991]. Such self-

excited oscillations are also evident in theoretical models of flow in collapsible tubes,

such as lumped parameter models [Bertram and Pedley, 1982; Armitstead et al.,

1996], cross-sectionally averaged one-dimensional models [Jensen, 1990] and full

three-dimensional models [Heil and Boyle, 2010; Whittaker et al., 2010].

In this study we consider a theoretical model for a planar analog of the Starling

Resistor experiment, formed by removing a segment of one wall of a rigid channel

and inserting an elastic wall. This planar analog exhibits multiple steady solutions

in some parameter regimes [Luo and Pedley, 2000; Heil, 2004; Stewart, 2017; Wang

et al., 2021; Herrada et al., 2021], with a three branch structure qualitatively sim-

ilar to the collapsible tube models. In addition, this collapsible channel system ex-

hibits transition to self-excited oscillations from both the lower (collapsed) branch

of steady solutions [Heil, 2004; Stewart, 2017] as well as the upper (inflated) branch

of steady solutions [Herrada et al., 2021; Wang et al., 2021]. Fully developed upper

branch oscillations exhibit an upstream propagating hump along the compliant seg-

ment; this wave is suppressed by reflection at the upper rigid segment and replaced

by a new wave at the downstream end of the compliant segment [Wang et al., 2021].

By contrast, fully developed lower branch oscillations exhibit a constriction at the

downstream end of the compliant segment which propagates up and downstream
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Fig. 1. The fluid-beam model.

over a narrow range [Luo and Pedley, 1996; Wang et al., 2021].

In particular, we use a model where the wall takes the form of a thin pre-

stressed (massless) elastic beam with resistance to both bending and stretching

(Sec. 2) [Cai and Luo, 2003; Luo et al., 2008; Wang et al., 2021]. We use this model

to explore how the size of the region of multiple steady states is influenced by the

system parameters, particularly the beam pre-tension and bending stiffness (Sec. 3).

Finally, we also use this model to explore the onset of self-excited oscillations from

both the upper and lower branches of steady solutions, showing that in some cases

these two families of oscillations merge together (Sec. 4).

2. The Model

We consider an incompressible Newtonian fluid (of density ρ and viscosity µ) driven

through a finite-length rigid channel with uniform width D. We consider a parabolic

inlet flow driven through the channel with flux Q against a fixed outlet pressure

p0. One segment of the upper wall is replaced by a plane strained elastic beam of

thickness h subject to a uniform external pressure pe. The corresponding lengths of

the upstream and downstream rigid and elastic segments are denoted Lu, Ld and L,

respectively. We parameterize the domain using a Cartesian coordinate system with

origin at the intersection between the upstream rigid segment and the compliant

segment on the entirely rigid wall (see Fig. 1). Time is denoted t.

We model the flexible wall as a massless elastic beam and denote the axial

pre-tension along the beam as T . The extensional and bending stiffnesses of the

beam are denoted as EA and EJ , respectively. Here E is the Young’s modulus of

the material while A and J are the cross-sectional area and the second moment of

inertia of the cross-sectional area of the beam, respectively. The undeformed elastic

beam is parameterized by the coordinate l (where 0 ⩽ l ⩽ L).

2.1. Governing Equations

To form non-dimensional variables we scale all lengths on D, velocities on Q/D,

time on Q/D2 and pressures on the inertial scale according to

p =
ρQ2

D2
p̃+ p0, (1)
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where p (p̃) denotes the dimensional (dimensionless) fluid pressure.

The corresponding dimensionless parameters take the form

c̃λ =
(EA)D

ρQ2
, c̃κ =

EJ

ρQ2D
, T̃ =

TD

ρQ2
, R̃e =

Qρ

µ
, p̃e =

(pe − p0)D
2

ρQ2
, (2)

where c̃λ, c̃κ and T̃ are the dimensionless extensional, bending stiffnesses and pre-

tension of the elastic beam, respectively, R̃e is the Reynolds number and p̃e is

the external pressure. The corresponding dimensionless lengths of the upstream,

downstream and collapsible segments of the channel and the dimensionless beam

thickness are scaled as

L̃u =
Lu

D
, L̃d =

Ld

D
, L̃ =

L

D
, h̃ =

h

D
, (3)

respectively. We henceforth focus on the dimensionless quantities and drop the tildes

for simplicity.

2.1.1. Fluid Equations

The governing equations for the (two-dimensional) fluid are the incompressible

Navier-Stokes equations in the form,

∇ · u = 0,
∂u

∂t
+ (u · ∇)u = ∇ · σ, (4)

where u = (u, v) is the planar fluid velocity and the Newtonian stress tensor σ takes

the form

σ = −pI+Re−1
(
∇u+∇uT

)
, (5)

where I is the identity matrix and the superscript T represents the matrix transpose.

2.1.2. Beam Equations

We denote the two components of beam deformation as xb = (xb(l, t), yb(l, t)) in

terms of the beam coordinate l; using a modified constitutive law for the massless

beam, the dimensionless governing equations for the beam can be written as (details

see Wang et al. [2021])

cκκ
∂ (λκ)

∂l
+ cλ

∂λ

∂l
+ λσ1 = 0, (6)

−cκ
∂

∂l

(
1

λ

∂(λκ)

∂l

)
+ cλλκ(λ− 1) + λκT + λσ2 − λpe = 0, (7)

∂xb

∂l
= λ cos θ,

∂yb
∂l

= λ sin θ,
∂θ

∂l
= λκ, (8)

where θ is the angle between the rigid wall and the tangent vector of the deformed

beam (see Fig. 1), κ is the curvature of the beam and λ is the principal stretch of
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the beam, which can each be computed in terms of the beam deformation as

κ =
1

λ3

(
∂xb

∂l

∂2yb
∂l2

− ∂yb
∂l

∂2xb

∂l2

)
, λ =

√(
∂xb

∂l

)2

+

(
∂yb
∂l

)2

, (0 ≤ l ≤ L). (9)

In addition, σ1 and σ2 are the tangent and normal components of the fluid traction

on the beam,

σ1 = (−σn̂) · t̂, σ2 = (−σn̂) · n̂, (10)

where t̂ and n̂ are the tangent and normal unit vectors of the deformed beam (see

Fig. 1).

2.1.3. Boundary Conditions

We prescribe a parabolic inlet flow with unit flux in the form

u = 6y(1− y), v = 0, (x = −Lu, 0 ⩽ y ⩽ 1). (11)

We assume the no-slip condition along the rigid walls as well as continuity of velocity

between the elastic beam and the fluid in the form

u = 0, (y = 0; y = 1,−Lu ≤ x ≤ 0, L ≤ x ≤ L+ Ld), (12)

u = ub =
∂xb

∂t , (x ∈ ∂Ωb). (13)

The two ends of the elastic beam are fixed to the rigid wall in the form

xb(0, t) = 0, yb(0, t) = 1, xb(L, t) = L, yb(L, t) = 1, θ(0, t) = θ(L, t) = 0.

(14)

2.2. The Finite Element Method

A finite-element method is used to solve the coupled fluid-beam system. We divide

the fluid domain into three sections, denoted as A, B and C for the upstream,

compliant and downstream compartments (Fig. 1), respectively [Luo and Pedley,

1996; Luo et al., 2008]. In section B, we use an adaptive mesh that consists of

rotational spines that connect fixed nodes in the bottom wall with nodes in the

deformable beam [Cai and Luo, 2003]. Then nodes are seeded along these spines

covering region B. Each spine can rotate around its fixed node on the rigid wall.

Hence, nodes in section B can move along the rotational spine as the beam is

deformed. Further details of the numerical method are provide elsewhere [Luo et al.,

2008; Hao et al., 2016]. A mesh of 36657 elements is used for the numerical solutions

in this study with time-step ∆t = 0.01. Convergence tests of grid- and time-step-

independence were carried out between three meshes and two choices of time-step

(for details see Wang et al. [2021]).
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2.3. Parameter Choices

In our previous studies we modeled the elasticity of the beam by varying the ex-

tensional stiffness cλ [Luo et al., 2008; Wang et al., 2021], which is proportional to

the bending stiffness of the beam since cκ =
(
h2/12

)
cλ, and fixed the other beam

parameters including the pre-tension (T = 0), beam thickness (h = 0.01) and ex-

ternal pressure (pe = 1.95). Conversely, in this study we fix cλ = 1600 and examine

the role of these other parameters on both the steady (Sec. 3) and unsteady (Sec.

4) behaviour of the system. In particular we note that increasing the beam thick-

ness allows us to alter the bending stiffness of the structure independently of the

extensional stiffness. Following Luo et al. [2008], we fix the geometry of the channel

according to Lu = L = 5, Ld = 30.

3. Multiple Steady Solutions

We discuss the predictions of the steady system considering the role of increasing

pre-tension (Sec. 3.1) and beam thickness (Sec. 3.2).

3.1. Role of Pre-tension

In order to investigate the role of pre-tension T in setting the steady beam shape,

Fig. 2 summarises the steady solutions of the maximal and minimal beam positions

(Fig. 2a), several typical beam shapes (Fig. 2b) and the upper and lower limit points

(Fig. 2c) with different values of pre-tension with fixed wall thickness h = 0.01. In

particular, the maximal (ymax, solid line) and minimal (ymin, dash-dot line) beam

deflection on the y−direction as a function of Reynolds number Re is shown in Fig.

2(a) for T = 0 (black), T = 1 (red) and T = 5 (blue) at fixed external pressure

pe = 1.1. For low Reynolds numbers the beam is fully inflated (i.e. ymin = 1);

this is the upper branch of steady solutions. As the Reynolds number increases the

elastic beam becomes increasingly collapsed though the Bernoulli effect. Notably, for

T = 0 the system enters a region with three steady states for 354.56 ≲ Re ≲ 362.78

similar to our previous model [Wang et al., 2021]. As the Reynolds number further

increases, the system again exhibits a unique steady state for Re > 362.78; this

branch is the lower branch of steady solutions. The upper and lower branches of

steady solutions are connected by an intermediate branch, which they intersect at

the upper and lower limit points, respectively.

A similar region with multiple steady states is observed for T = 1 (355.79 ≲
Re ≲ 358.75), although the beam pre-tension has significantly narrowed the range

of Reynolds numbers for which it is evident for this choice of external pressure. The

region with multiple steady states vanishes entirely for large pre-tension (T = 5,

blue lines in Fig. 2a).

To illustrate these steady configurations in detail, Fig. 2(b,c) illustrates the

possible steady wall shapes at both Re = 340 and Re = 360 for T = 0 and T = 5,

respectively. At Re = 340, located on the upper branch for T = 0 (see the solid
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Fig. 2. Steady solutions for fixed beam thickness h = 0.01: (a) maximal (ymax, solid line) and
minimal (ymin, dash-dot line) beam position against Re for T = 0 (color black), T = 1 (color red)
and T = 5 (color blue) for pe = 1.1; (b), (c) The steady beam shapes for pe = 1.1 with Re = 340
(solid line) and Re = 360 (dashed line) for T = 0 and T = 5, respectively. (d)-(f) The upper and
lower limit points in parameter space spanned by the external pressure pe and Reynolds number
Re for T = 0, T = 0.1 and T = 1, respectively. Note the vertical solid and dashed lines in panel
(a) are at Re = 340 and 360, respectively. The region with multiple steady solutions is shaded in
blue in panels (d)-(f).

vertical line in Fig. 2a), the steady wall shape is fully inflated and is unique (solid

line in Fig. 2b). Conversely, at Re = 360, located in the region with multiple steady

states for T = 0 (see the dashed vertical line in Fig. 2a), there are three possible

steady wall shapes (Fig. 2b). Whereas for T = 5 (Fig. 2c), the system has a unique

steady state for both Reynolds numbers and the wall is significantly less deflected

due to the larger pre-tension.

Fig. 2(d-f) summarises the region with multiple steady states for T = 0 (Fig.

2d), T = 0.1 (Fig. 2e) and T = 1 (Fig. 2f) in parameter space spanned by the

external pressure and Reynolds number. In each case we see a triangular region with

multiple steady states with external pressure below a critical value and Reynolds

number above a critical value. As T increases, this critical point is gradually pushed

to larger Reynolds number and lower external pressures. However, the region with

multiple steady states (Fig. 2f) remains of approximately the same width relative to

the critical point. In summary, large pre-tension suppresses multiple steady states of
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Fig. 3. Steady solutions for T = 0, showing (a) the maximal (ymax, solid line) and minimal
(ymin, dash-dot line) beam position against Re for h = 0.01 (color black), h = 0.086 (color red)
and h = 0.122 (color blue); the upper and lower limit points in parameter space spanned by the
external pressure pe and Reynolds number Re for h = 0.01 (b), h = 0.027 (c) and h = 0.086 (d),
respectively. In panels (b)-(d), the region with multiple steady solutions is shaded in blue.

the system by shifting the critical point for multiple solutions across the parameter

space.

3.2. Role of Beam Thickness

To investigate the role of increased bending stiffness on the steady configuration

of the beam, Fig. 3 demonstrates the steady solutions with various beam thick-

ness, plotting the maximal (ymax) and minimal (ymin) beam deflection against the

Reynolds number Re for three beam thicknesses (h = 0.01, 0.086, and 0.122) with

fixed pre-tension T = 0 and external pressure pe = 1.1 in Fig. 3(a). Similar to Fig.

2, the system shows multiple steady states for h = 0.01 (354.56 ≲ Re ≲ 362.78);

this region of multiple solutions narrows with increased beam thickness h = 0.086

(354.87 ≲ Re ≲ 355.8). Additionally, the steady system is unique for sufficiently

large beam thickness h = 0.122. Fig. 3(b-d) summarises the corresponding upper

and lower limit points in parameter space spanned by the external pressure pe and

Reynolds number Re for the same three beam thicknesses, showing that the region

with multiple steady states narrows as h increases, but the critical point for the

existence of multiple solutions does not vary much across the parameters tested. In

summary, this figure demonstrates that increasing the beam thickness (and hence

the bending stiffness) eventually suppresses multiple steady states; however, this is

achieved by narrowing the tongue while holding the critical point fixed.
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Fig. 4. An overview of the parameter space spanned by the Reynolds number and external pres-
sure at T = 0 and h = 0.01. The computed neutrally stable points are denoted as filled black
circles, and the upper and lower limit points are denoted as filled black squares connected with
dashed and solid lines. The region where the system is stable is shaded in grey and the region with
multiple steady solutions is shaded in blue. (b), (c) show the zoom-in of the region near pe = 2.25
and pe = 1.48, respectively. Note the unsteady solutions of the operating points for pe = 2.25: U1
(Re = 168.85), U2 (Re = 171), U3 (Re = 173), U4 (Re = 174.5); and for pe = 1.48: L1 (U1a)
(Re = 266.8), L2 (Re = 271), L3 (Re = 274) are shown in Fig. 5.

4. Self-excited Oscillations

In order to test the stability of the system for a given parameter combination we

apply a small increment to the steady solution (here we use the steady solution

corresponding to a 1% increase in the extensional stiffness cλ). The system is deemed

stable if the unsteady solution converges to its corresponding steady solution, and

unstable if the perturbation grows [Drazin, 2002]. The state between stable and

unstable is termed as neutrally stable. In this model the perturbation grows in an

oscillatory manner and saturates into a finite amplitude limit cycle. In this study,

we report the dynamics of this oscillatory limit cycle and ignore the initial transient.

In particular, we present phase portraits of the oscillation as a function of the wall

pressure at the upstream and downstream ends of the compliant segment (e.g. Fig.

5c-f, i-l and Fig. 6b-e) and compute the fluid pressure on the wall at the channel

midpoint time-averaged over a period of oscillation (e.g. Fig. 5a,g, Fig. 6a, Fig. 8

and Fig. 9). In this section, we focus on the unsteady solutions for fixed extensional

stiffness (cλ = 1600), testing the stability of both the upper and lower steady

branches. In particular, we investigate oscillatory solutions with no pre-tension and

low beam thickness (Sec. 4.1), large beam thickness (Sec. 4.2) and large pre-tension

(Sec. 4.3).

4.1. Multiple Oscillatory Solutions with Low Bending Stiffness

We first analyse unsteady simulations of perturbations to the upper and lower steady

branches with no pre-tension (T = 0) and a thin beam (h = 0.01). Here we extend

our previous analysis [Wang et al., 2021] to examine the parameter space spanned

by the external pressure and Reynolds numbers, as shown in Fig. 4 (Note that in
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Fig. 5. Unsteady solutions of the upper and lower steady branches for pe = 2.25 and pe = 1.48.
(a, g) Bifurcation diagram of midpoint wall pressure as a function of the Reynolds number for
pe = 2.25 and pe = 1.48, respectively; (b, h) Oscillation period as a function of the Reynolds
number for pe = 2.25 and pe = 1.48, respectively; (c-f, i-l) Phase portraits in the space spanned
by the wall pressure measured at the upstream and downstream ends of the compliant segment
for pe = 2.25 and pe = 1.48, respectively.

Wang et al. [2021] we held the external pressure pe = 1.95 throughout). The steady

behaviour of the system is similar to the cases presented in Fig. 2(d-f) and 3(b-

d), where three steady states can co-exist in a narrow tongue between the upper

and lower limit points (blue shaded region marked by filled symbols). Testing the

stability of these steady solutions we find that both the upper and lower steady

branches can independently become unstable to oscillations (each via a supercriti-

cal Hopf bifurcation) in the neighbourhood of the region of parameter space with

multiple steady states. The computed neutrally stable points from the upper and

lower steady branches are marked as filled circles, and the neutral stability curves

are denoted as dot-dashed lines connecting these neutral points. In this parame-

ter space the upper branch is unstable within a narrow tongue to the left of the

trace of the upper branch limit points. This upper branch neutral curve intersects

the trace of the upper branch limit points at a co-dimension 2 (Takens-Bogdanov)

point [Glendinning, 1994; Strogatz, 2018] at pe ≈ 2.25, Re ≈ 174.5 (we term this
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Fig. 6. Unsteady bifurcation diagram of the system for T = 0, h = 0.01 and pe = 1.1, showing (a)
The midpoint wall pressure pmid as a function of the Reynolds number Re. The steady midpoint
pressure pmid (solid (stable) and dashed (unstable) lines), the time-averaged midpoint wall pressure
pavgmid (triangles), the upper and lower branch limit points (squares); (b-e) Phase portraits in space
spanned by the wall pressure measured at the upstream and downstream ends of the compliant
segment at operating points i-iv labelled in (a). The corresponding values of the upper, intermediate
and lower steady branches are denoted by open circles.

the upper Takens-Bogdanov point). For external pressures less than this upper

Takens-Bogdanov point the upper branch oscillation is eventually restabilised as

the Reynolds number increases via an interaction between the oscillatory limit cy-

cle and the upper branch limit point [see details in Wang et al., 2021]. However, this

unstable tongue extends to slightly larger external pressures than those which admit

see multiple steady states. For external pressures greater than the upper Takens-

Bogdanov point the upper branch oscillation instead restabilises via a second Hopf

bifurcation as the Reynolds number increases. This interaction is explored further

in Fig. 5, where we examine the time-averaged midpoint pressure of fully developed

upper branch oscillations (Fig. 5a), their corresponding period (Fig. 5b) and illus-

trate several limit cycles of oscillation (Fig. 5c-f). As in Wang et al. [2021], this

upper branch oscillation is associated with an overall decrease in the time-averaged

midpoint pressure compared to the steady state (Fig. 5a), and the period of oscil-

lation increases as the upper limit point is approached (Fig. 5b). The oscillation

develops a rather complicated limit cycle (Fig. 5c-f), similar to the upper branch

oscillations reported in Wang et al. [2021].

Furthermore, the lower branch of steady solutions is unstable within a tongue

to the right of the region with multiple steady states. This tongue is stabilised for

large external pressure (pe ≳ 2.12), and tracks close to the curve of lower branch

limit points, merging at a second (lower) Takens-Bogdanov point at Re ≈ 266.8,

pe ≈ 1.48. The neighbourhood of this lower Takens-Bogdanov point is explored in

Fig. 5(g-l), plotting the time-averaged midpoint pressure (Fig. 5g), period of oscilla-

tion (Fig. 5h) and several limit cycles (Fig. 5i-l) for fixed external pressure pe = 1.48.

During oscillation the midpoint pressure is again less than the corresponding steady

configuration. Just beyond the critical Reynolds number for lower branch instabil-

ity, the oscillation grows and saturates into an elliptical limit cycle of larger period

than the upper branch oscillations (open circles in Fig. 5h) but of much smaller
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(a).

amplitude (open circles in Fig. 5g). A phase portrait for point L1 is shown in Fig.

5(i). For Reynolds numbers sufficiently close to critical (Re ≳ 266.8) this small-

amplitude limit cycle is maintained over the lifetime of our numerical simulations.

However, for larger Reynolds numbers (Re ≳ 270.3) the system visits this limit

cycle only transiently and eventually saturates into a limit cycle of larger amplitude

(open triangles in Fig. 5g) and shorter period (open triangles in Fig. 5h). These

nonlinear oscillations are a direct continuation of the oscillations bifurcating from

the upper branch steady state, displaying analogous phase portraits (Fig. 5j,k). Fur-

thermore, across the range of Reynolds numbers which exhibit the small-amplitude

limit cycle growing from the lower steady branch (266.8 ≲ Re ≲ 270), it turns out

that the system also exhibits a saturated limit cycle analogous to the upper branch

oscillations for these points as well (amplitude and period shown as open triangles

in Fig. 5(g,h) and a typical phase portrait is shown in Fig. 5(l). Hence, this system
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appears to exhibit hysteresis in the oscillatory behaviour across a small range of

parameters with two possible branches of fully developed oscillations (open circles

and open triangles in Fig. 5h); these two branches merge together at Re ≈ 270.3

and then continue to large Reynolds numbers (open triangles in Fig. 5h). There

are two possibilities to explain this observation: either the system exhibits two co-

existing limit cycles across a range of parameters, or these reported lower branch

(small-amplitude) limit cycles are in fact long transients which eventually grow and

saturate to a limit cycle analogous to the upper branch oscillations (note that we see

no evidence of this transition for simulations close to the critical Reynolds number

over the long time intervals considered in our simulations). Either way, for large

enough Reynolds numbers the system exhibits a merged family of oscillations (open

triangles in Fig. 5h) which grow from the lower steady branch but are a direct

continuation of nonlinear oscillations bifurcating from the upper steady branch.

It emerges that for external pressures less than the lower Takens-Bogdanov point,

this merged family of oscillations becomes more prominent with a typical example

for pe = 1.1 shown in Fig. 6, showing the bifurcation diagram (Fig. 6a) and four

typical limit cycles in the neighbourhood of the region with multiple steady states

(Fig. 6b-e). As the Reynolds number increases the system becomes unstable along

the upper branch of steady solutions, exhibiting a decrease in the time-averaged

midpoint pressure with an elaborate limit cycle around the upper branch steady

state (Fig. 6b). As the Reynolds number increases into the region with multiple

steady states the oscillation encompass all three steady solutions (Fig. 6c, d), and

there is now no interaction with the intermediate steady state (a prominent feature

of purely upper branch oscillations, as discussed in Wang et al. [2021]). As the

Reynolds number continues to increase into the region with only a lower steady

state, the oscillation exhibits a qualitatively similar limit cycle (Fig. 6e).

To further explore the nature of these merged oscillations, Fig. 7 examines the

oscillation in more detail at a point in parameter space which exhibits multiple

steady states, showing time-trace of the wall pressure at the two ends of the compli-

ant segment (Fig. 7a) and several snapshots of the flow-field and pressure contours

in the channel (Fig. 7b-e). The fully developed (nonlinear) oscillation retains many

of the characteristics of the upper and lower branch oscillations from which it has

merged (these individual oscillations are discussed in Wang et al. [2021]). Similar

to the upper branch oscillations, the limit cycle involves an upstream propagat-

ing hump in the wall profile which is suppressed by interaction with the upstream

rigid segment and replaced by a new upstream propagating hump originating at the

downstream end of the compliant segment. However, like the lower branch oscilla-

tions, the wall profile exhibits significant indentation into the channel (and so much

lower fluid pressures). This greater wall indentation leads to the formation of a low

pressure region near the end of the compliant segment (Fig. 7d), which creates a

(weak) vorticity wave propagating along the downstream rigid segment (Fig. 7e, f),

similar to oscillations about a collapsed steady state [Luo and Pedley, 1996]. Inter-
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Fig. 8. Bifurcation diagrams of midpoint wall pressure pmid as a function of the Reynolds number
Re at T = 0, pe = 1.1 for (a) h = 0.086 and (b) h = 0.094 and h = 0.122. The steady midpoint
pressure pmid is denoted as solid (stable) and dashed (unstable) lines. The time-averaged midpoint
wall pressure pavgmid is denoted as filled triangles, the upper and lower branch limit points are denoted
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estingly, the wall pressures at the two ends of the compliant segment are much closer

to being in phase than the upper or lower branch oscillations alone. In summary,

the figure illustrates the flow profile of our new family of self-excited oscillations,

showing that it retains characteristics of both the upper and lower oscillations that

have been reported elsewhere [Wang et al., 2021].

4.2. Oscillations with Large Beam Thickness

To evaluate the role of the beam thickness, h, in the unsteady response of the system,

Fig. 8 presents bifurcation diagrams showing the onset of self-excited oscillations,

plotting the time-averaged midpoint pressure alongside the corresponding steady

midpoint pressure as a function of the Reynolds number for three beam thicknesses

(h = 0.086, 0.094 and 0.012) with zero pre-tension and fixed external pressure

(pe = 1.1). For beam thickness h = 0.086 (Fig. 8a), the system exhibits multiple

steady states in the range 354.87 ≲ Re ≲ 355.8. In this case the oscillations from

the upper and lower steady branches merge into one family of oscillations across the

region with multiple steady states (similar to Fig. 6). When the beam thickness is

increased to h = 0.094, the multiple steady states vanish but the system still exhibits

transition to self-excited oscillations at Re ≈ 344.07 (denoted as the dashed line),

which grow in amplitude as the Reynolds number increases (Fig. 8b). However, as

the beam thickness is further increased to h = 0.122 the system no longer becomes

unstable to oscillations and the steady system has a unique solution for all external

pressures (Fig. 8b). In summary, increasing the thickness of the beam (and hence

the bending stiffness) suppresses the onset of self-excited oscillations as well as the

region with multiple steady states.

4.3. Oscillations with Large Pre-tension

In order to evaluate the role of pre-tension T in the onset of self-excited oscillations,

Fig. 9 plots a bifurcation diagram showing the time-averaged midpoint wall pressure
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compared to the steady midpoint pressure as a function of the Reynolds number

for large pre-tension T = 1 (Fig. 9a) and T = 5 (Fig. 9b) for fixed external pressure

(pe = 1.1) and beam thickness (h = 0.01). For T = 1, the steady system exhibits

multiple steady solutions (Fig. 2) and the oscillations initiated close to the upper and

lower steady branches merge into one family of oscillations across the region with

multiple steady solutions (Fig. 9a). However, for much larger pre-tension (T = 5) the

system exhibits a unique steady state for all Reynolds numbers but this still becomes

unstable to self-excited oscillations at Re ≈ 338.3. As before, the time-averaged

midpoint pressure is lower than the corresponding steady value and decreases with

the Reynolds number (Fig. 9b). Therefore, the onset of oscillations is preserved with

increasing pre-tension despite the loss of multiple steady states.

5. Discussion

In this study we revisit a theoretical model for flow in a planar collapsible channel

where the flexible wall is modelled as a pre-stressed elastic beam using a modified

nonlinear constitutive law [Wang et al., 2021], investigating the influence of the

external pressure, beam pre-tension and thickness (a proxy for bending stiffness) on

the steady and unsteady behaviour of the system. The model was solved numerically

using the finite element method.

Similar to the Starling Resistor experiments [Bertram et al., 1990; Bertram and

Castles, 1999] and previous models of flow in collapsible channels and tubes [Ar-

mitstead et al., 1996; Heil, 2004; Stewart, 2017], our model predicts that the steady

system can exhibit multiple co-existing states, consisting of upper, intermediate and

lower steady branches. The model predicts that this region of multiple steady states

is suppressed by increasing either the wall pre-stress (Fig. 2) or the wall bending

stiffness (Fig. 3). In the former the critical point for multiple steady states is post-

poned to larger Reynolds numbers and lower external pressures as the pre-stress

increases (Fig. 2d-f), whereas in the latter the critical point does not move signifi-
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cantly but the region with multiple steady states narrows as the bending stiffness

increases (Fig. 3b-d).

Previous studies have indicated that self-excited oscillations can (independently)

grow from either the upper and the lower branches of steady solutions [Wang et al.,

2021] in the neighbourhood of the region with multiple steady states (Fig. 4, 5).

Our model predicts that these two families of oscillations eventually merge into a

single family of oscillatory behaviour for sufficiently low external pressure (Fig. 6).

This new merged family of oscillations retains characteristics of both the upper and

lower branch oscillations (Fig. 7). This new family of oscillations is preserved as

the beam pre-stress increases, despite the loss of multiple steady states (Fig. 9).

Conversely, this merged family of oscillations is suppressed by increasing the beam

thickness (i.e. increasing the bending stiffness of the beam, Fig. 8).

Acknowledgements

We gratefully acknowledge funding from the Chinese Scholarship Council (DYW)

and UK Engineering and Physical Sciences Research Council grants EP/S020950,

EP/S030875 and EP/N014642 (XYL and PSS).

References

Armitstead, J. P., Bertram, C. D. and Jensen, O. E. [1996] “A study of the bifurca-

tion behaviour of a model of flow through a collapsible tube,” Bull. Math. Biol.

58(4), 611–641.

Bertram, C. D. [1982] “Two models of instability in a thick-walled collapsible tube

conveying a flow,” J. Biomech. 15(3), 223–224.

Bertram, C. D. [1986] “Unstable equilibrium behaviour in collapsible tubes,”

J. Biomech. 19(1), 61–69.

Bertram, C. D. and Castles, R. J. [1999] “Flow limitation in uniform thick-walled

collapsible tubes,” J. Fluids Struct. 13(3), 399–418.

Bertram, C. D. and Pedley, T. J. [1982] “A mathematical model of unsteady col-

lapsible tube behaviour,” J. Biomech. 15(1), 39–50.

Bertram, C. D., Raymond, C. J. and Pedley, T. J. [1990] “Mapping of instabilities

for flow through collapsed tubes of differing length,” J. Fluids Struct. 4(2), 125–

153.

Bertram, C. D., Raymond, C. J. and Pedley, T. J. [1991] “Application of nonlinear

dynamics concepts to the analysis of self-excited oscillations of a collapsible tube

conveying a fluid,” J. Fluids Struct. 5(4), 391–426.

Bertram, C. D. and Tscherry, J. [2006] “The onset of flow-rate limitation and flow-

induced oscillations in collapsible tubes,” J. Fluids Struct. 22(8), 1029–1045.

Cai, Z. X. and Luo, X. Y. [2003] “A fluid–beam model for flow in a collapsible

channel,” J. Fluids Struct. 17(1), 125–146.



July 12, 2021 11:50 wang˙multiple˙collapsible

References 17

Drazin, P. G. [2002] Introduction to hydrodynamic stability (Cambridge University,

Cambridge).

Glendinning, P. [1994] Stability, instability and chaos: an introduction to the theory

of nonlinear differential equations (Cambridge University, Cambridge).

Grotberg, J. B. and Gavriely, N. [1989] “Flutter in collapsible tubes: a theoretical

model of wheezes,” J. Appl. Physiol. 66(5), 2262–2273.

Hao, Y. J., Cai, Z. X., Roper, S. and Luo, X. Y. [2016] “An Arnoldi-frontal approach

for the stability analysis of flows in a collapsible channel,” Int. J. Appl. Mech.

8(06), 1650073.

Hazel, A. L. and Heil, M. [2003] “Steady finite-reynolds-number flows in three-

dimensional collapsible tubes,” J. Fluid Mech. 486, 79–103.

Heil, M. [2004] “An efficient solver for the fully coupled solution of

large-displacement fluid–structure interaction problems,” Comput. Methods

Appl. Mech. Eng. 193(1-2), 1–23.

Heil, M. and Boyle, J. [2010] “Self-excited oscillations in three-dimensional collapsi-

ble tubes: simulating their onset and large-amplitude oscillations,” J. Fluid Mech.

652, 405–426.

Heil, M. and Hazel, A. L. [2011] “Fluid-structure interaction in internal physiological

flows,” Annu. Rev. Fluid Mech. 43, 141–162.

Herrada, M. A., Blanco-Trejo, S., Eggers, J. and Stewart, P. S. [2021] “Global

stability analysis of flexible channel flow with a hyperelastic wall,” Revised to

2021.

Jensen, O. E. [1990] “Instabilities of flow in a collapsed tube,” J. Fluid Mech. 220,

623–659.

Luo, X. Y., Cai, Z. X., Li, W. G. and Pedley, T. J. [2008] “The cascade structure

of linear instability in collapsible channel flows,” J. Fluid Mech. 600, 45–76.

Luo, X. Y. and Pedley, T. J. [1996] “A numerical simulation of unsteady flow in a

two-dimensional collapsible channel,” J. Fluid Mech. 314, 191–225.

Luo, X. Y. and Pedley, T. J. [2000] “Multiple solutions and flow limitation in col-

lapsible channel flows,” J. Fluid Mech. 420, 301–324.

Stewart, P. S. [2017] “Instabilities in flexible channel flow with large external pres-

sure,” J. Fluid Mech. 825, 922–960.

Strogatz, S. H. [2018] Nonlinear dynamics and chaos (CRC press, Florida).

Tantucci, C. [2013] “Expiratory flow limitation definition, mechanisms, methods,

and significance,” Pulm. Med. 2013, 1–6.

Wang, D., Luo, X. and Stewart, P. [2021] “Energetics of collapsible channel flow with

a nonlinear fluid-beam model,” arXiv e-prints , arXiv:2106.16234, URL https:

//arxiv.org/abs/2106.16234.

Whittaker, R. J., Heil, M., Jensen, O. E. and Waters, S. L. [2010] “Predict-

ing the onset of high-frequency self-excited oscillations in elastic-walled tubes,”

Proc. R. Soc. A 466(2124), 3635–3657.

https://arxiv.org/abs/2106.16234
https://arxiv.org/abs/2106.16234

