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Abstract The prediction of soft-tissue failure may yield a better understanding of the pathogenesis of arterial
dissection and help to advance diagnostic and therapeutic strategies for the treatment of this and other diseases
and injuries involving the tearing of soft tissue, such as aortic dissection. In this paper, we present computational
models of tear propagation in fibre-reinforced soft tissue undergoing finite deformation, modelled by a hyperelastic
anisotropic constitutive law. We adopt the appropriate energy argument for anisotropic finite strain materials to
determine whether a tear can propagate when subject to internal pressure loading. The energy release rate is
evaluated with an efficient numerical scheme that makes use of adaptive tear lengths. As an illustration, we present
the calculation of the energy release rate for a two-dimensional strip of tissue with a pre-existing tear of length a
under internal pressure p and show the effect of fibre orientation. This calculation allows us to locate the potential
bifurcation to tear propagation in the (a, p) plane. The numerical predictions are verified by analytical solutions
for simpler cases. We have identified a scenario of tear arrest, which is observed clinically, when the surrounding
connective tissues are accounted for. Finally, the limitations of the models and further directions for applications
are discussed.

Keywords Arterial dissection · Energy release rate · Finite-element analysis · HGO model · Soft tissue · Tear
propagation and arrest

1 Introduction

Failure of soft tissue can occur as a result of various diseases. In one particular disease, aortic dissection, a
longitudinal tear occurs in the inner layer of the aortic wall, which results in the development of a false lumen that
is formed as pressurised blood leaks into the tear. Aortic dissection is a life-threatening disorder; certain types of
dissection, if left untreated, have a mortality rate of 33% within the first day, 50% within the first 2 days, and 75%
within the first fortnight [1]. This pattern of mortality has remained essentially unchanged over the last 60 years [2],
so early diagnosis and treatment is critical for survival. The advancement of diagnostic and therapeutic strategies
depends crucially on improving our knowledge of the pathogenesis of aortic dissection.
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There are various hypotheses of the pathogenesis of aortic dissection, most of which involve three stages. Firstly,
haemodynamic changes modify the loading on the arterial walls [3]; secondly, remodelling of the tissue occurs
in response to the changed loading condition [4]; and thirdly, the mechanical environment changes owing to the
presence of a small initial lesion. Of particular importance is the development of an understanding of the factors
governing the propagation of the initial tear in the anisotropic soft tissue under blood pressure and large deformation.
This is the focus of our paper.

Fibre-reinforced soft tissues are composed of a ground matrix and collagen fibres and are often characterised as
being incompressible, hyperelastic, anisotropic and residually stressed. To model a tear in arteries, one may follow
the approaches used to describe material failure in damage and fracture mechanics. Four of the commonly used
mathematical theories are based on the stress intensity factor (SIF), the strain of individual components (the matrix
and fibres), the cohesive zone and energy arguments.

The SIF criterion requires calculation of the stress field in the vicinity of the tip [5]. For a linear elastic isotropic
material, the stress field near the tip is characterised by a stress intensity factor K which exhibits an r−1/2 singularity,
where r is the distance from the tip. A criterion for propagation is that, for a given mode of propagation, K is greater
than a specified material toughness Kc (K > Kc). However, the asymptotic stress field near the tip is not generally
known for finite-deformation non-linear elasticity, with the exception of simplified cases for isotropic power-law
materials [6,7].

A failure criterion based on the representative strain of the individual components εi of soft tissue requires a
model for considering the component strengths and modes of failure. Thus, the failure criterion can be expressed
as εi > εic, where εic is the ultimate strain of the i th component just before failure. For example, Ionescu et al. [8]
assume fibres fail when they are overstretched, but the matrix can be damaged under shear.

A cohesive zone approach was originally proposed for failure in concrete to model the process zone where the
failure of the material takes place. A cohesive law gives equations relating normal and tangential displacement
jumps across the cohesive surfaces at the front of a tip, to the tractions. It can be used to analyse tear propagation,
nucleation, and arrest [9]. A cohesive law requires at least two parameters, the maximum tension just before failure
and the work of dissipation, i.e. the area under the curve of cohesive traction against the relative displacement of the
faces of the tear. Cohesive models have been used for the analysis of fracture in biological tissues for modelling a
peeling test of an arterial strip under external loading [10]. Elices et al. [11] illustrated that the shape of a cohesive
curve also has a significant effect on the simulation of failure, thus detailed experiments are required to determine the
cohesive law for soft tissue [12]. Recently, Pandolfi and colleagues have developed anisotropic cohesive elements
based on a standard finite-element method (FEM) for a strongly oriented fibre-reinforced material model [13–15]
and used a direction-dependent resistance ellipsoid surface to reflect the anisotropic response of the material in the
tearing process.

The energy approach to failure is based on calculating the energy release rate (ERR), G, which is the change
in total potential energy, using per unit extension of the tear. It was developed by, among others, Griffith [16] and
extended by Irwin and Wells [17]. Using the ERR to analyse the effects of defects historically preceded the use
of the SIF and is equivalent to the cohesive zone model in some circumstances [18]. The concept of ERR stems
from the energy balance principle during an infinitesimal quasi-static tear extension; it is the energy per unit area
released from the system by extending the tear surface by an infinitesimal area dA. In plane strain, the deformation
is two-dimensional and G is calculated per unit length instead of per unit area. Given the material parameter Gc,
the critical energy required to break all bonds across dA, we can evaluate the potential for propagation of a tear: if
G > Gc, then the tear may propagate (i.e. it is energetically feasible); otherwise, it is stationary. Thus, G − Gc is
the potential for tear propagation. In particular, ignoring any plastic effects, G can be calculated simply on the basis
of the work done by loads and changes in strain energy accompanying the increase in tear area. Many numerical
methods exist for calculating G, e.g. [19], and most rely, not on evaluating the singular stress field at the tip, but
rather on the global energy and work, so an accurate value for G can be obtained with modest mesh refinement.
Hence, for the arterial dissection problem, we choose to use the energy approach.

We use an invariant homogeneous fibre-reinforced material as a description for the aortic wall and focus on
identifying the conditions that govern the onset of tear propagation. For simplicity, we assume that pressurised
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blood fills the tear, and hence a false lumen is subject to the same arterial pressure as a true lumen, and we neglect
flow in a small radial tear which connects the main dissection to the lumen. A finite-element model (FEM) is
developed to study the finite elastic deformation of the aortic wall containing an initial tear and analyse the potential
for tear propagation. We derive a failure criterion in terms of the ERR and describe a computational framework
to calculate this. We illustrate the ideas by studying the behaviour of a tear in a two-dimensional strip of arterial
material containing a single longitudinal tear. Using this computational framework, we obtain the condition for tear
propagation in strips of material with different fibre distributions. In addition, we simulate the constraint arising
from surrounding connective tissues and show that this can lead to tear arrest.

2 Methodology

2.1 Energy budget

A sample of tissue with a tear can deform and split apart when loaded, as illustrated in Fig. 1. The total potential
energy of the system is

E = Π + Gca, (1)

where the mechanical energy Π = Ue − W , Ue is the strain energy of the tissue sample at equilibrium, Gc is the
energy required for breaking bonds linking the new torn surfaces (per unit area a in three dimensions, or per unit
length a in two dimensions), and W is work done by the load. The minimal potential energy principle requires
that

dE
da

< 0 or G > Gc, (2)

where G = −dΠ/da is the ERR. To determine whether a tear may propagate, it is essential to first evaluate the
ERR of the system.

2.2 Computational approach to calculating ERR

A simplified geometry for the arterial tissue is employed. A key clinical observation is that many patients present
with a dissection of fixed length at risk of further tearing. We seek to determine the conditions under which a tear of
finite length will propagate in a large artery via the criterion given in (2). The geometry is simplified by modelling
the artery as a cylinder with an axisymmetric tear subject to constant pressure p, approximating the blood pressure

Fig. 1 A change in the
sample under force F ,
Ω → ω, can be approached
in two steps: creating a tear
of area a, Ω → Ω̂ ,
followed by elastic
deformation, Ω̂ → ω.
Correspondingly, the total
potential energy for the
system, E , is decomposed
into surface energy, Gca,
and mechanical energy, Π

F

F
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F

F
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F

F
a
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Fig. 2 The variation in total potential energy due to a tear propagation from ωa to ωa+δa is δE = δΠ+Gcδa = (Πa+δa −Πa)+Gcδa.
To obtain Π for the calculation of the ERR in (3), we calculate the equilibria of Ωa and Ωa+δa subject to a constant uniform pressure,
p, on the tear surfaces using the FEM

by its mean value, neglecting the small communicating tear between the lumen and main dissection, considering a
cross-section through the wall and simplifying further to a two-dimensional strip, ωa (Fig. 2).

For hyperelastic anisotropic soft tissues undergoing finite deformation, criterion (2) must be evaluated numeri-
cally. There are two methods for calculating the ERR using the FEM. One is based on the variation in local energy
in the vicinity of the tip; the other is based on the variation in the global energy [20]. We adopt the latter approach
because its allows us to avoid any difficulties when it is extended to finite-deformation non-linear elasticity, even
when body forces and residual stresses are included. The formula for calculating a numerical approximation to G
is

G = −δΠ
δa

= −Πa+δa −Πa

δa
. (3)

To obtain the equilibrium value of Πa , we solve a specified boundary value problem using the FEM package
FEAP [21]. With pressure loading, the solution can be obtained by a proportional load process, in which the loading
parameter is increased (parametrised by an artificial ‘time’ t) incrementally towards its final value and the solution
is updated at each increment. Depending on the material parameters and the particular method used to solve the
discretised equations, this calculation can be time consuming. To improve computational efficiency, we incorporate
interpolation techniques for Πa . We evaluate Πa for a collection of lengths and use cubic spline interpolation
between these values. This gives a smooth approximation to Π(a) which can be used to estimate G = −dΠ/da.
The numerical procedure relies on the numerical calculations of the strain energy Ue and the work done by external
load W , which we now describe.

2.3 Calculation of strain energy Ue

For arterial tissue, we use the Holzapfel–Gasser–Ogden (HGO) constitutive law [22], which is based on the histology
of the artery. The strain energy function in the HGO model is split into contributions from the matrix Ψm and the
fibres Ψ f , viz.

Ψ (C) = Ψm(I1)+ Ψ f (I4, I6) = c

2
(I1 − 3)+

∑

n=4,6

ψ(In), (4)
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Fig. 3 Sketch of deformation of one tear surface under constant pressure: t and n are the tangent and normal unit vectors of the deformed
tear surface, respectively, and v is the velocity of the particle at time t which originated at x = x(s, 0)

where the two fibre families, aligned along the reference unit vector directions A1 and A2, only contribute when
stretched and are given by

ψ (In) =
{

k1
2k2

[
exp

(
k2(In − 1)2

) − 1
]

when In > 1,
0 when In ≤ 1.

(5)

In (4) and (5), c, k1, and k2 are material parameters, and I1 and In (n = 4, 6) are invariants of the right Cauchy–
Green strain tensor C = FTF, specifically

I1 = tr(C), In = C : Mn (n = 4, 6),

with F being the deformation gradient, M4 = A1 ⊗ A1, and M6 = A2 ⊗ A2.
To approximate the incompressible behaviour in the finite-element calculation, we employ the multiplicative

decomposition of the deformation gradient [23] to form a quasi-incompressible material model

Ψ (C) = Ψv(J )+ Ψ̄ (C̄) = K

2
(J − 1)2 + Ψ̄ (C̄), (6)

where J = det(F) and C̄ = J−2/3C. The incompressibility condition is satisfied to a good approximation when
the penalty constant K is large enough. The Cauchy stress is then

σ = −dΨv
dJ

I + c dev(b)+
∑

n=4,6

2
dψ

dIn
dev(mn), (7)

where b = FFT, mn = FMnFT and dev(·) = (·) − 1
3 tr(·)I. A detailed derivation of the HGO model for a user

subroutine in FEAP [24] is shown in Appendix 1. The verification of the model is discussed in Appendix 2.

2.4 Calculation of work done by pressure

Consider the tear surface specified by a position vector x = x(s, t), 0 ≤ s ≤ a, 0 ≤ t ≤ T , as shown in Fig. 3. At
time t = 0, x(s, 0) specifies the initial tear surface. The force on a small portion of the tear of length dl is

df = −p dl n = −p

∣∣∣∣
∂x
∂s

ds

∣∣∣∣ n,

and the work done in a small time dt is

dw = df · v dt = df · ∂x
∂t

dt.

The work done by the distributed force (pressure) is then

W =
∫

dw = −p
∫ T

0

∫ a

0
n · ∂x

∂t

∣∣∣∣
∂x
∂s

∣∣∣∣ ds dt. (8)
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Table 1 Characterisation
of materials used in four
numerical experiments on
effect of fibres

Experiment Material type A1 A2

1 Isotropic N/A N/A

2 Transversely isotropic (1, 0, 0) (1, 0, 0)

3 Orthotropic (cos(π/4), sin(π/4), 0) (cos(π/4), − sin(π/4), 0)

4 Transversely isotropic (0, 1, 0) (0, 1, 0)

Let k be the unit vector along the third direction into the diagram; then n = k × t and t = ∂x
∂s

∣∣ ∂x
∂s

∣∣−1
. Substituting

these expression into (8) gives

W = −p
∫ T

0

∫ a

0

(
k × ∂x

∂s

)
· ∂x
∂t

ds dt. (9)

The triple product is the signed volume of the parallelepiped defined by the three vectors and |k| = 1; therefore,
the integral in (9) represents the area swept by the tear surface.

3 Results

3.1 Numerical experiments

Consider a strip with two ends fixed in the y-axis direction, as shown in Fig. 4. To avoid rigid body motions, the x-
coordinate of the centreline of the strip is fixed. For a tear under the pressure loading, we consider the ERR due to the
tear extension for four different materials, one without fibres and the others with different fibre orientations (Table 1).
In all cases, we set the values of the material parameters in the constitutive law (5) at c = 3.0 kPa, k1 = 2.3632 kPa
and k2 = 0.8393, which are typical values for the media of rabbit carotid artery [22].

3.1.1 Isotropic material

We seek a condition for the onset of tear propagation as a function of tear length and pressure, and so we calculate
G(a, p). In particular, we consider the possibility of propagation for a tear of length a ∈ [0.4, 10.0] mm subject to
pressure p ∈ [0, 0.6] kPa.

In the numerical Experiment 1, the strip has no fibres and is isotropic. The ERR G(a, p) is a monotonically
increasing function of a for each value of p, as shown in Fig. 5. A longer tear leads to an increased ERR and,
thus, an increase in the likelihood of tear propagation. This observation agrees with the results of a beam model
described in Appendix 3 [see Eq. (26)]. A comparison of the curves for different pressures shows that G(a, p) is
also a monotonically increasing function of p for fixed values of a, in agreement with high pressure favouring tear
propagation.

3.1.2 Fibre-reinforced materials

To investigate the effect of collagen fibres on the ERR, we perform three more numerical experiments by reinforcing
the strip with fibres of different orientations. In Experiment 2, the fibres are parallel to the tear, in Experiment 3
the fibres are aligned at π/4 to the tear, and in Experiment 4 the fibres are normal to the tear, as specified by the
alignment vectors A1 and A2 in Table 1.

The curves of G(a) when p = 0.6 kPa are shown in Fig. 6. The curve for Experiment 2 is very close to that
for Experiment 1. The fibres can only support loads in tension, and the regions with subject to stretch are small
and only occur just ahead of the tear tips (Fig. 7). Consequently, the tear opening and stored energy, and thus the
mechanical energy, are similar to those for Experiment 1 (Fig. 8).

123



Tear propagation and arrest in fibre-reinforced soft tissue

ap
y

x

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

p=0.3

p=0.36

p=0.42

p=0.48

p=0.54

p=0.6

a [mm]

G
[J

m
2
]

Gc

ac

Fig. 4 Sketch of strip with single longitudinal tear of length a
under internal pressure p. Boundary conditions: the two ends are
fixed in the y-direction, and the centres of the two ends are fixed
in the x-direction

Fig. 5 Energy release rate G for a fibre-free isotropic strip, plot-
ted against tear length a subject to various values of pressure p.
Gc is a material-dependent critical parameter, and when, for
example, Gc = 2 Jm−2 and p = 0.6 kPa, it is energetically
favourable for a tear of length greater than ac to propagate
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Fig. 6 Graphs of ERR G(a) when p = 0.6 kPa for four numeri-
cal experiments listed in Table 1. G decreases as the angle between
the fibres and the tear decreases

Fig. 7 First component of Almansi strain tensor e11 = 1
2

(1 − I −1
4 ) for Experiment 2. The regions with positive values,

close to the tear tips, indicate fibre stretching
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Fig. 8 Width of tear with pressure p = 0.6 kPa for four numerical
experiments listed in Table 1. As the fibres become more parallel
to tear, the width of tear decreases

Fig. 9 Second component of Almansi strain tensor e22 =
1
2 (1 − I −1

4 ) for Experiment 4. The positive values indicate fibre
stretching

As the fibres become more parallel to the tear going from Experiment 2 to Experiment 4, the ERR decreases
because the fibres take on a greater load to resist the opening of the tear, as shown in Fig. 8. Specifically, the region
with stretch along the fibre direction in Experiment 4 (Fig. 9) is greater than that in Experiment 2 (Fig. 7). G(a, p)
is also shown as a contour plot in Fig. 10. The region at highest risk of tear propagation is at the top right-hand
corner. These contours are similar in all four numerical experiments.

3.2 Effects of connective tissue: tear arrest

To consider the effect on tear propagation of the connective tissue around the strip, we add two linearly elastic
blocks to the sides of the strip in the computational model. The reference configuration and boundary conditions
are shown in Fig. 11. The central strip is the fibre-free material used in Experiment 1. The ERR plots in Fig. 12
show that arrest of the tear propagation can occur due to the surrounding connective tissue resisting the deformation
of the strip. Arrest of the propagation of the tear is also found in the simple beam model described in Appendix 3
(Fig. 17). However, for softer connective tissue (with a Young’s modulus of E = 0.01 kPa instead of E = 10 kPa),
the arrest phenomenon disappears (Fig. 13), and so the stiffness of the surrounding connective tissue is an essential
factor influencing the likelihood of tear propagation.

4 Discussion

In this paper, we have developed models to evaluate the likelihood of tear propagation in soft tissue with the failure
criterion expressed in terms of the ERR. Models which build on the energy balance apply equally well to both

123



Tear propagation and arrest in fibre-reinforced soft tissue

0.2

0.2

0.2
0.2

1

1

1

1.8

1.8

2.6

2.6

3.4

4.2
5

tear length [mm]

pr
es

su
re

 [k
P

a]
 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.2

0.2

0.2
0.2

1

1

1

1.8

1.8

2.6

2.6

3.4

4.2
5

tear length [mm]

pr
es

su
re

 [k
P

a]
 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.2

0.2

0.2
0.2

1

1

1

1.8

1.8

2.6

2.6

3.4

4.2

tear length [mm]

pr
es

su
re

 [k
P

a]
 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6
0.2

0.2

0.2
0.2

1

1

1

1.8

1.8

2.6

tear length [mm]

pr
es

su
re

 [k
P

a]
 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

(a) (b)

(c) (d)

Fig. 10 Contours of G(a, p) for four numerical experiments in Table 1. The region at highest risk of tear propagation lies at the top
right-hand corner a Exp.1, b Exp. 2, c Exp. 3, d Exp. 4

linearly elastic isotropic problems and to finite strain and anisotropic problems, and provide useful theoretical
insight in the absence of detailed experimental data. By assuming tear propagation to be an isothermal process, we
explored whether a pre-existing dissection could propagate in artery walls subject to constant pressure. Such an
approach can be used to evaluate the risk of propagation of aortic dissection and other injuries to soft tissue.

A key element of the energy approach is to evaluate the change in the energy budget with the tear size, which is
non-trivial for finite strain and fibre-reinforced soft tissue problems. Using a nearly incompressible HGO orthotropic
constitutive law, in conjunction with a penalty method, we have developed an efficient computational model which
allows us to calculate the ERR for incompressible soft tissues. In particular, the ERR due to the tear extension is
estimated by incorporating an interpolation technique on Π(a) for the sake of computational efficiency.

Qualitative verification of the computational models was carried out. This included testing the models for simple
cases where analytical solutions are available. In addition, we found that the ERR from the computational models
had qualitatively the same trend as the ERR predictions from a beam model (Appendix 3) for the isotropic material.

Although the exact failure threshold depends on the tissue properties, the energy behaviour of such materials
owing to a pre-existing tear is clearly demonstrated through the contours of the ERR in the tear-length and pressure
space, (a, p). For both isotropic and fibre-reinforced materials with different fibre orientations, we use numerical
experiments to show that the risk of tear propagation increases with both a and p. Interestingly, the particular
fibre structure changes the gradient of the ERR curve, with non-fibrous (isotropic) material producing the steepest
increase (Experiment 1), followed by cases where the alignment of the fibres is normal (Experiment 2) and oblique
(Experiment 3) to the tear. In the case where the fibres are aligned parallel to the tear, the gradient is least steep
(Experiment 4). This shows that the presence of fibres reduces the risk of tear propagation and that the orientation
of the fibres also plays an important role. This effect may be more pronounced in physiological scenarios since the
fibre–matrix interaction is represented simply in our models.
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Fig. 11 Reference configuration and current configuration of strip when constrained by two blocks. The tear surfaces are loaded with
constant pressure. The outer boundaries of the confining blocks are constrained so that they cannot move in the direction perpendicular
to the axis of the tear. The ends of the strip and block are constrained so they cannot move in the direction parallel to the direction of
the tear
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Fig. 12 Graphs of ERR G for a strip constrained by two linearly
elastic blocks, as shown in Fig. 11. For example, when Gc =
0.13 Jm−2 and p = 0.6 kPa, it is only energetically favourable
for a tear to propagate when its length a ∈ (a1, a2) (cf. Fig. 5)

Fig. 13 In contrast to Fig. 12, where the Young’s modulus of
the surrounding tissue is E = 10 kPa, the ERR G(a) in the case
with much softer surrounding tissue (E = 0.01 kPa) is always a
monotonically increasing function of the tear length, a, and tear
arrest cannot occur

Our study shows that for a given pressure, the ERR increases monotonically with tear length. In other words,
once a tear is initiated, it will always grow. However, when the effects of connective tissues are considered, both
computational and beam models predict tear arrest. That is, at some critical values of a, the ERR decreases with an
increase in a. Tear arrest is observed clinically since patients with aortic dissection which has arrested are then at the
risk of further propagation of the dissection. This is the first time that tear arrest in soft tissues has been demonstrated
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in computational models. We also found that tear arrest only occurs when the Young’s modulus of the surrounding
connective tissue is sufficiently great, suggesting that disease-induced softening of connective tissues may lead to
further tear propagation. Although our study is only qualitative and is not based on physiological geometries, this
finding nevertheless enhances our understanding of the relationship between pathological conditions of connective
tissues and arterial dissection.

Finally, we would like to mention the limitations of the study. To establish basic concepts without going into
complex numerical modelling, we consider two-dimensional homogeneous tissue strips in which the tear can only
propagate along its original direction since the geometry, material and load are symmetric. A natural next step
would be to extend our approach to three-dimensional thick-walled tube models and include the effects of residual
stress or opening angles, which will change the stress and ERR distributions. Another limitation of this study is that
we have specified the tear propagation direction based on the symmetry in our chosen examples. When the method
is extended to three-dimensional models, the tear direction should be determined by maximising G − Gc, where
Gc is a direction-dependent material parameter. For instance, Ferrara and Pandolfi used a directional resistance
surface [13,14] to reflect the anisotropic response in the soft tissue in their cohesive–zone approach. Ultimately,
models like this can be developed to study patient-specific geometries constructed from medical images and provide
evidence for the potential development of arterial dissections.

5 Conclusion

We have developed computational models for predicting tear propagation in two-dimensional artery models. These
models extend the Griffith energy balance principle in linear elasticity to fibre-reinforced materials with finite
deformation and are verified using analytical solutions for simpler cases. The results show that the presence of
fibres will in general slow down the ERR with respect to driving tear propagation due to an existing tear and that
fibres aligned parallel to a tear will decrease the ERR most. However, the existence of fibres alone cannot stop the
growth of tears in our models. Tear arrest occurs only when surrouding connective tissues with sufficient stiffness
are included. Although the models are simplified, our work provides important insights into the behaviour of tear
propagation in soft tissues.

Acknowledgments LW is supported by a China Scholarship Council Studentship and the Fee Waiver Programme at the University
of Glasgow.

Appendix 1: Derivative of Cauchy stress and tangential moduli for a quasi-incompressible material (6)

Cauchy stress

Follow the standard formulas of the theory of finite elasticity, e.g. see [25]. We firstly calculate the second Piola–
Kirchhoff stress,

S = 2
∂Ψ

∂C
= 2

(
∂Ψv

∂C
+ ∂Ψm

∂C
+ ∂Ψ f

∂C

)
, (10)

where
∂Ψv

∂C
= Ψ ′

v(J )
∂ J

∂C
= 1

2
Ψ ′
v(J )JC−1 = K

2
(J − 1)JC−1,

∂Ψm

∂C
= c

2

∂ Ī1

∂C
= c

2

(
J−2/3I − 1

3
Ī1C−1

)
,

∂Ψ f

∂C
=

∑

n=4,6

ψ ′( Īn)
∂ Īn

∂C
=

∑

n=4,6

k1( Īn − 1) exp
(

k2[ Īn − 1]2
)(

J−2/3Mn − 1

3
ĪnC−1

)
. (11)
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Substitute these into (10) to obtain the explicit expression for the second Piola–Kirchhoff stress. Pushing it forward
using

σ = J−1FSFT

immediately gives the Cauchy stress

σ = K (J − 1)I + c

J

(
b̄ − 1

3
Ī1I

)
+ 2

J

∑

n=4,6

k1
(
Īn − 1

)
exp

(
k2

[
Īn − 1

]2
)(

J−2/3mn − 1

3
Īn I

)
, (12)

where b̄ = J−2/3FFT and mn = FMnFT. In particular,

m4 = a1 ⊗ a1 and m6 = a2 ⊗ a2,

where ai = FAi (i = 1, 2) represents the deformed vector of the unit vector Ai characterising the orientation of
the i th family of fibres in the reference configuration.

Tangent moduli

Similarly, the material tangent moduli associated with the increment of the second Piola–Kirchoff stress S and the
Green strain tensor E = 1

2 (C − I) is derived first:

C = 2
∂S
∂C

= 2

(
∂Sv

∂C
+ ∂Sm

∂C
+ ∂S f

∂C

)
, (13)

where Sx = 2∂Ψx/∂C, x = {v,m, f }. In index notation,

∂SvI J

∂CK L
= JC−1

I J Ψ
′′
v (J )

∂ J

∂CK L
+ Ψ ′

v(J )C
−1
I J

∂ J

∂CK L
+ Ψ ′

v(J )J
∂C−1

I J

∂CK L

= 1

2
JC−1

I J C−1
K L

[
(JΨ ′′

v (J )+ Ψ ′
v(J )

] + JΨ ′
v(J )

∂C−1
I J

∂CK L
,

∂Sm
I J

∂CK L
= c

[
−1

3

(
∂ Ī1

∂CK L
C−1

I J + Ī1
∂C−1

I J

∂CK L

)
+ ∂ J−2/3

∂CK L
δI J

]
,

∂S f
I J

∂CK L
=

∑

n=4,6

2

[
ψ ′′( Īn)

∂ Īn

∂CI J

∂ Īn

∂CK L
− 1

3
ψ ′( Īn)

(
∂ Īn

∂CK L
C−1

I J + Īn
∂C−1

I J

∂CK L
+ J−2/3C−1

K L AI J

)]
. (14)

We note some useful differentials:

∂C−1
I J

∂CK L
= −1

2

(
C−1

I K C−1
J L + C−1

I L C−1
J K

)
,

∂ Ī1

∂CI J
= −1

3
Ī1C−1

I J + J−2/3δI J , Ψ ′
v(J ) = K (J − 1), Ψ ′′

v (J ) = K ,

∂ Īn

∂CI J
= −1

3
ĪnC−1

I J + J−2/3 AI J , n = 4, 6,
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ψ ′( Īn) = k1( Īn − 1) exp
(

k2[ Īn − 1]2
)
,

ψ ′′( Īn) = k1 exp
(

k2[ Īn − 1]2
) [

1 + 2k2( Īn − 1)2
]
.

Substituting (14) into (13) gives the explicit expression for the material tangent moduli. Pushing it forward gives
the spatial tangent moduli required by a user-provided material model in FEAP. Its components are as follows:

ci jkl = 1

J
Fi I Fj J FkK Fl LCI J K L

= δi jδkl
[
JΨ ′′

v (J )+ Ψ ′
v(J )

] − Ψ ′
v(J )(δikδ jl + δilδ jk)

−2

3

c

J

[
−1

3
Ī1δklδi j + δi j b̄kl + δkl b̄i j − Ī1

2
(δikδ jl + δilδ jk)

]

+ 4

J

∑

n=4,6

{
ψ ′′( Īn)

(
−1

3
Īnδi j + J−2/3mni j

) (
−1

3
Īnδkl + J−2/3mnkl

)

−1

3
ψ ′( Īn)

[
−1

3
Īnδi jδkl − Īn

2
(δikδ jl + δilδ jk)+ J−2/3(mni jδkl + δi j mnkl)

]}
. (15)

Finally, transforming (12) and (15) into the corresponding matrix form gives all formulas for the user subroutine
for the HGO material model.

Appendix 2: Verification of material model for simple cases

We verify our model on the basis of comparisons with analytical results for a plane strain problem for a unit-square
sample of fibre-reinforced material. For simplicity, both families of fibres have the same orientation, along the
x-axis.

Firstly, we stretch the block along the x-axis with a stretch ratio λx . Plane strain and incompressibility ensure
that the deformation gradient can be written as

F =
⎛

⎝
λx 0 0
0 1/λx 0
0 0 1

⎞

⎠ . (16)

Substituting (16) into (4) gives the corresponding strain energy (Fig. 14). For an incompressible material (4) we
derive the Cauchy stress

σ = −LI + c b +
∑

n=4,6

2ψ ′(In)mn, (17)

where L is the Lagrange multiplier. Without loss of generality, we consider a material with both families of fibres
along the horizontal direction, A1 = A2 = [1, 0, 0]T . Substituting (16) into (17) gives the Cauchy stress

σ = −LI + c

⎛

⎝
λ2

x 0 0
0 1/λ2

x 0
0 0 1

⎞

⎠ + 2ψ ′(I4)

⎛

⎝
λ2

x 0 0
0 0 0
0 0 0

⎞

⎠. (18)

Since the surfaces with normal directions parallel to the y-axis are traction free, we have

0 = σyy = −L + 1/λ2
x , (19)

and thus L = 1/λ2
x . Substituting into (18) we have

σxx = −1/λ2
x + cλ2

x + 2ψ ′(λ2
x )λ

2
x . (20)

This analytical response is shown in Fig. 15.
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Fig. 14 The stored energy calculated by the computational model
agrees with the analytical expression for the energy in a simple
tension experiment

Fig. 15 Verification of model for HGO material against analyti-
cal results for principal longitudinal stress σxx vs. stretch λx

We now compare the analytical with the numerical results. In the computations, the penalty parameter K in (6)
is chosen to be 105, at which value or greater the numerical results agree with analytical predictions for both the
energy (Fig. 14) and stress (Fig. 15).

Appendix 3: A simple beam model for ERR

Inequality (2) is known as the Griffith criterion when applied to linear elastic problems. Consider a beam of constant
Young’s modulus E and second moment of area J . The beam is bonded to a surface except for a region 0 ≤ x ≤ a,
where x measures the length along the beam from one end. The deflection of the beam is w(x), and the boundary
conditions are

w(x) = 0 for x ≥ a, w′′(0) = 0, w′′′(0) = 0. (21)

The equation satisfied byw(x) depends on the loading experienced by the beam. We take a general function F(x, w)
so that

E Jw′′′′(x) = F(x, w). (22)

Different choices of F(x, w) give different external boundary conditions, e.g. in what follows we simulate the
effect of the constraint of the surrounding connective tissue. In particular, we are interested in the calculation of the
mechanical energy

Π(a) = 1

2

∫ ∞

0
E J

(
w′′(x)

)2 dx +
∫ ∞

0
f (x, w) dx, (23)

where F(x, w) = −∂ f/∂w and G = −dΠ/da. For a given value of Gc, (23) enables us to use (2) to determine
whether a tear of length a can propagate.
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We now use this simple beam model to explore the type of phenomena we obtained from the numerical experi-
ments. To simulate the boundary condition, we set F(x, w) = p, a constant. Solving the ordinary differential beam
equation (22) gives

w(x) =
⎧
⎨

⎩

p

24E J

(
x4 − 4a3x + 3a4

)
x < a,

0 x > a,
(24)

and therefore, substituting into (23), we find that

Π(a) = − p2a5

40E J
. (25)

The energy release rate is

G = −dΠ

da
= p2a4

8E J
. (26)

G is a monotonically increasing function of a and p, and therefore an increase in either the length of the unbonded
region (the tear) or the pressure results in the propagation of the tear being energetically favourable.

To consider the effect of surrounding connective tissues, we set F(x, w) = p − kw, where the constant k is the
stiffness per unit length of the springs, as shown in Fig. 16. Consequently, f = −pw + kw2/2, and the solution
for w(x) is

w(x) = p

k
+ W (x), (27)

where W (x) satisfies

W ′′′′ + 4λ4W (x) = 0, λ4 = k

4E J
. (28)

This is solved to give

W (x) = e−λx [A cos(λx)+ B sin(λx)] + eλx [C cos(λx)+ D sin(λx)] , (29)

with A, B,C and D chosen to satisfy the boundary conditions. Non-dimensionalising the deflection with p/k and
x , with (4E J/k)1/4, leads to the canonical problem

d4 y

ds4 = 4 − 4y, (30)

with boundary conditions y′′(0) = y′′′(0) = 0 and y(α) = y′(α) = 0, where α = a/ l. The solution to this problem
is

y(s) = 1 + (sin s cosh s + cos s sinh s) (cosα sinh α − sin α cosh α)− 2 cos s cosh s cosα cosh α

cos2 α + cosh2 α
. (31)

The mechanical energy is

Π =
( p

k

)2
E J

l

l4

∫ α

0

1

2

(
y′′(s)

)2 ds + 1

2
k

( p

k

)2
l
∫ α

0
y(s)2 ds − p2

k
l
∫ α

0
y(s) ds. (32)

This expression simplifies to

Π = p2l

k

[∫ α

0

1

8

(
y′′(s)2 + 4y(s)2

)
− y(s) ds

]
, (33)

and then we obtain the ERR

G = −dΠ

da
= − p2

k

{
1

8

[
y′′(α)2 + 4y(α)2

]
− y(α)

}
. (34)
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Fig. 16 Effect of connective tissue using beam model. The semi-
infinite beam, of constant Young’s modulus E and second moment
of area J , is bonded to a surface except for a region 0 < x < a,
which represents the tear. The spring bed represents the surround-
ing connective tissues

Fig. 17 Tear arrest is also demonstrated by the beam model when
connective tissue is present. The ERR G is no longer a monotonic
function of a, and for a given critical value Gc, a tear of length a,
where a1 < a < a2 or a > a3, will propagate. However, the tear
arrests when a2 < a < a3

We display the curve of G(a) for a set of typical parameters in Fig. 17. When subject to a constant pressure, G(a)
is not a monotonically increasing function of a, and propagation arrest occurs. This is qualitatively similar to what
is seen in Fig. 12 in the numerical simulations for a strip of fibre-reinforced tissues subject to finite strain.
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